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Abstract: Motivated by practical applications in satellite formations and antenna arrays etc.,
the problem of targeting a linear array of point sources at one common point of interest is
formulated and then solved using a novel distributed control strategy. These point sources are
located collinearly and the two at the two ends orient readily to the target point. The other point
sources have to rely on sensing the changes of the relative orientation angles of their nearest
neighbors to adjust their own orientations; we rigorously prove that under our control law using
only local information, their orientation lines will intersect at the same point of concurrency as
the two point sources at the two ends. The crucial idea behind our designed control law is the
intuitive argument from plane geometry that reducing the differences between the distances to
the baseline of the pairwise intersection points of the orientation lines helps realizing concurrent
targeting. This idea is further utilized to construct the key argument in our analysis about
the boundedness and the exponential convergence speed of the orientation angles. Numerical
simulations are used to validate the effectiveness of our control strategy.
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1. INTRODUCTION

Coordinated teams of multiple autonomous agents have
been employed in a wide range of applications, and as a
result the study on cooperative control of multi-agent sys-
tems has been especially active over the past decade {Bai
et al. (2011); Cao et al. (2008); Mesbahi and Egerstedt
(2010); Murray (2007); Ren and Cao (2011); Qu (2009)}.
There are several challenging application scenarios, though
coming from different engineering fields, sharing notewor-
thy common features. In the satellite formation flying
project led by the Jet Propulsion Laboratory (JPL) in
the US, to be competent for staring-imaging missions, all
the formation-flying satellites in the low earth orbit (LEO)
are required to “gaze” at one target point, e.g. an aircraft
carrier on the earth. In Fig. 1, the scenario is illustrated
where a formation of microsatellites in space targets at a
common area of interest on the earth. Such cooperative
gazing tasks become even more important when synthetic
aperture radars (SAR) are more and more often used for
remote sensing and mapping the surface of the earth and
the other planets {Krieger et al. (2007, 2009, 2013)}. In
civilian applications, arrays of sensors are used to capture
the changing statuses of a targeting object in order to
achieve higher precision in comparison to one single sensor
{Blum and Liu (2006)}. Figure 2 shows a linear array
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Fig. 1. Satellite formation flying in LEO 1

Fig. 2. A linear array of cameras 2

of such cameras. In communication networks, arrays of
directional antennas are frequently used to reduce the
influence of noises or to improve energy efficiency {Mas
(2011)}.
In all the applications mentioned above, the central el-
ement of these tasks is to cooperatively orient arrays
of agents such that they target at one common point.

1 http://dst.jpl.nasa.gov/control
2 http://www.eee.hku.hk/˜dsp
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While various position or attitude coordination strategies
using local information have been extensively discussed in
the literature {Anderson et al. (2008); Bai et al. (2008);
Hatanaka et al. (2012); Ji et al. (2008); Cao et al. (2011);
Liu and Jiang (2013); Sarlette et al. (2009); Vig and
Adams (2006); Wang et al. (2012); Zhou and Kumar
(2012)}, the distributed concurrent targeting problem that
we have just identified has several unique features that
distinguish itself from most of the well studied coop-
erative control problems for multi-agent systems. First,
when concurrent targeting is accomplished, the orienta-
tions of the agents are actually different and so these
popular consensus algorithms cannot be directly applied.
Second, the sharing of global and local information has
special patterns: some information about the target can
be manually programmed or remotely communicated to
some but not all agents due to cost considerations, and so
the control strategy to be designed has to make a smart
classification about the agents with or without access to
the information about the target. Third, the orientations
are usually described by signed angles, and so the notion
of the positive direction of rotating angles is a piece of
critical information, which might not be able to be shared
as a common knowledge among all the agents. We stress
that message passing is not allowed in this setup.

While some of the features of the concurrent targeting
problem are obvious, some others are subtle. It is the
first goal of this paper to formulate clearly the distributed
concurrent targeting task for linear arrays of point sources
so that interested researchers might attack this challeng-
ing problem from different angles. Our second goal is
to present our own solution to this problem and prove
rigourously its effectiveness. So the main contribution
of the present paper is twofold. We formulate an inter-
esting problem arising from several application domains
and thus, by attracting attention from researchers to this
problem, we promote applications in satellite formations,
synthetic sensor networks and directional antenna arrays.
Furthermore, the control strategy that we propose care-
fully uses arguments from plane geometry, which shows the
close connection between geometric relationships among
agents and the freedom to design distributed control laws.
Such exploitation can be useful in other multi-agent coor-
dination problems when geographic or geometric informa-
tion is inherently embedded in the problem formulation.

The rest of this paper is organized as follows. In Section 2
we formulate the distributed concurrent targeting problem
that we are interested in. A distributed control strategy is
discussed in Section 3, for which we provide its intuitive
motivation and rigourous performance analysis. Numerical
simulations and some concluding remarks are given in
Sections 4 and 5, respectively.

2. PROBLEM FORMULATION

2.1 General description

We consider a linear array of point sources, each of which
is associated with an oriented half-line in the same half-
plane. Such a point source is used to model a directional
antenna adjusted to transmit or receive signals in one
direction, a camera calibrated with narrow field of view

to focus on an object at long range, or any source whose
size is negligible relative to the distance to a target of
interest and whose out- or in-flow is particularly dense
in one direction. In the rest of this paper, for the sake of
conciseness, we simply call the point sources agents. All the
agents are initially positioned on an oriented line, which
we refer to as the baseline, and do not share the global
information about the positive direction of this line. Each
agent, except for the two positioned at the two ends of
the linear array, has two nearest neighbors, one on its
each side; each of the two agents at the two ends has
only one nearest neighbor which is the closest agent in
distance. Each agent is equipped with a sensor that is able
to measure in its fixed local coordinates (1) the distances
to the nearest neighbors, (2) for each nearest neighbor, the
magnitude of that unique non-reflex angle determined by
the half-line associated with itself and the half line starting
from its position and passing through the corresponding
nearest neighbor, and (3) for each nearest neighbor, the
magnitude of that unique non-reflex angle determined by
the half-line associated with the corresponding nearest
neighbor and the half-line starting from that neighbor and
passing through itself.

Each agent has one degree of freedom that is to rotate
its half-line around its current position. The concurrent
targeting problem for linear arrays of point sources is to
design a control protocol for each agent to rotate in such a
way that their half-lines intersect at a given target point in
the plane. We say a solution to this problem is distributed if
the location of the target is only known to the two agents at
the two ends of the linear array and the other agents have
to adjust their orientations using only their own sensed
information.

2.2 Mathematical setting

For notational convenience that becomes clear later, we
consider there are n+ 2 (n ≥ 1) agents in the linear array.
For analysis purposes, we choose the global coordinate
system for the plane by aligning the x-axis with the
baseline and positioning the origin at a point on the
baseline, which is outside the line segment formed by the
positions of the two agents at the two ends of the linear
array. We write the coordinates of the target point by
(xr, yr). We label the agents along the positive direction of
the x-axis by 0, 1, . . . , n+ 1. For each agent i, 0 ≤ i ≤ n+
1, let (xi, 0) denote its position in the global coordinate
system and for a pair of neighboring agents i and j, we use
dij to denote their relative distance. Note that dij = dji.
We use θi to denote agent i’s orientation angle which
is formed by rotating the x-axis counterclockwise until
reaching agent i’s half-line.

Let αij be the unique non-reflex angle formed by agent i’s
half-line and the half-line starting from (xi, 0) and passing
through (xj , 0). Then for agent i, 1 ≤ i ≤ n, the sensed
information includes di,i−1, di,i+1, αi,i−1 and αi,i+1. Let
αi = αi,i+1, 1 ≤ i ≤ n, be agent i’s orientation angle
described in its own coordinate system, which, without
loss of generality in view of the fact that the agents are in
collinear positions, can be taken to be either θi or π − θi
depending on whether the directions are the same for the
zero-angle references of the local and global coordinate
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Fig. 3. Relationship between αi and θi. (a) The case when
αi = θi; (b) The case when αi = π − θi.

systems as illustrated in Fig. 3. We assume that agents 0
and n+ 1 are readily pointing to the target and remain in
that direction; otherwise, since agents 0 and n + 1 know
about (xr, yr), standard control laws, e.g. PI controllers,
can always realize this assumption. So we have

α0 = ᾱ0, αn+1 = ᾱn+1,

where without ambiguity ᾱ0 and ᾱn+1 are uniquely deter-
mined by (xr, yr). Assume that the rotational dynamics
of each agent i, 1 ≤ i ≤ n, can be described by a single-
integrator model

α̇i = ui, 1 ≤ i ≤ n, (1)

where ui ∈ IR is agent i’s control input that corresponds to
a torque. Note that α̇i = θ̇i if agent i’s zero-angle direction
is the same as that of the global coordinate system and
α̇i = −θ̇i otherwise.

So the distributed concurrent targeting problem that has
been defined in the previous subsection is for each agent i,
1 ≤ i ≤ n, to design ui using di,i−1, di,i+1, αi,i−1 and αi,i+1

such that the half-lines for all the agents pass through
(xr, yr).

In the next section, we present our solution to this dis-
tributed concurrent targeting problem.

3. MAIN RESULTS

In this section we present our control protocol to solve
the distributed concurrent targeting problem and prove
that under this protocol, the half-lines of all the agents
intersect at the target in the end. We first state the
main theorem and then give its intuitive motivation and
rigourous mathematical proof.

Theorem 1. Consider the distributed controllers

ui =
1

di,i+

(
cot(αi,i+) + cot(αi+,i)

)
+

1

di,i−

(
cot(αi,i−) + cot(αi−,i)

)
, 1 ≤ i ≤ n, (2)

where cot denotes the cotangent function, i+ is the label of
agent i’s neighbor who lies in agent i’s zero-angle direction
and i− is that of the other neighbor of agent i. When 0 <
θi(0) < π, each agent’s orientation αi(t) determined by the
closed-loop dynamics (1) and (2) converges exponentially
fast to a constant α∗i as t goes to infinity such that the
half-lines determined by (xi, 0) and α∗i for each agent i all
intersect at (xr, yr).

We first remark that although the initial conditions 0 <
θi(0) < π, 1 ≤ i ≤ n, are given using θi in the
global coordinate system, distributed procedures can be
constructed to make this initial condition satisfied by

Bi−1 Bi Bi+1

li−1
li

li+1

B
θi−1 θi θi+1

h
i,i−

1 h
i,i+

1

Fig. 4. One example of the geometric relationships among
li−1, li, li+1

all the agents 1, . . . , n only using local information. This
initial condition can also be automatically satisfied if the
agents know the crude information about in which half-
plane the target lies, e.g. using the strength of the received
signals by a directional antenna, noticing that the agents
share the same reference line dividing the two half-planes.

We use a specific scenario shown in Fig. 4 to explain
intuitively why the control law (2) might work. We
use li to denote the half-line associated with agent i.
Apparently, the half-lines li−1, li and li+1 intersect at
a single point if and only if the altitudes hi,i−1 and
hi,i+1 indicated in the figure are equal. Suppose i+ =
i + 1, then 1

di,i+

(
cot(αi,i+) + cot(αi+,i)

)
= 1

hi,i+1
and

1
di,i−

(
cot(αi,i−) + cot(αi−,i)

)
= − 1

hi,i−1
, and so ui in (2)

becomes ui = 1
hi,i+1

− 1
hi,i−1

, which leads to the rotation of

li making the difference between hi,i+1 and hi,i−1 become
smaller. When i+ = i− 1, we have similar arguments.

We now proceed to provide a rigourous proof for Theorem
1. Towards this end, we need first to rewrite (1) and (2)
using the global coordinates. The following result makes
exactly this attempt.

Lemma 2. If 0 < θi(t) < π for all 1 ≤ i ≤ n and t ≥ 0,
then the closed-loop dynamics (1) and (2) written using
each agent’s local coordinate system can be equivalently
written using the global coordinate system for analysis
purposes as

θ̇i = ai,i+1 (cot θi − cot θi+1)− ai,i−1 (cot θi−1 − cot θi) ,
(3)

where ai,i+1 = 1
di,i+1

and ai,i−1 = 1
di,i−1

.

Proof. From the definition of αi, we know that αi = θi if
agent i’s zero-angle axis agrees with the global x-axis and
αi = −θi otherwise. For the case when αi = θi, it follows
that i+ = i+ 1, i− = i− 1 and

θ̇i = ui,

αi,i+ = θi, αi+,i = π − θi+1,

αi,i− = π − θi, αi−,i = θi−1.

Substituting these equalities into (1) and (2) leads to (3).
For the other case when αi = −θi, it follows that i+ = i−1,
i− = i+ 1 and

θ̇i = −ui,
αi,i+ = π − θi, αi+,i = θi+1,

αi,i− = θi, αi−,i = π − θi−1.
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Again substituting these equalities into (1) and (2) leads
to (3). Summarizing the two cases, we arrive at the
conclusion. �

Now we prove a weaker version of Theorem 1 assuming
that 0 < θi(t) < π always holds throughout the n-agent
system’s evolution.

Proposition 1. If 0 < θi(t) < π for all 1 ≤ i ≤ n and t ≥ 0,
each agent’s orientation αi(t) determined by the closed-
loop dynamics (1) and (2) converges exponentially fast to
a constant α∗i as t goes to infinity such that the half-lines
determined by (xi, 0) and α∗i for each agent i all intersect
at (xr, yr).

Proof. Because of Lemma 2, we know that the closed-loop
dynamics of the n-agent system is completely described by
(3). And so it suffices to study the θi-system (3).

Let ηi = cot θi, i = 1, . . . , n. Then using the fact that
aij = aji for all 1 ≤ i, j ≤ n and i 6= j, from (3) we get

η̇i =−
(
1 + η2

i

)(
− ai−1,iηi−1 + (ai,i−1 + ai,i+1)ηi − ai+1,iηi+1

)
,

which can be further written into a compact form

η̇ = −M(Aη + b), (4)

where η = [η1, · · · , ηn]T ,

M =


1 + η2

1 0 . . . 0
0 1 + η2

2 . . . 0
...

...
. . .

...
0 0 . . . 1 + η2

n

 , b =


−a0,1η0

0
...
0

−an+1,nηn+1

 ,
and A is given in (∗). In the appendix, we prove that M
and A are positive definite. So A−1 always exists and is
unique. Define

e
∆
= η +A−1b, (5)

and then the dynamics of e are given by

ė = −MAe. (6)

Since M and A are invertible, e = 0 is the unique equilib-
rium of (6). Consider the candidate Lyapunov function

V (e) =
1

2
eTAT e. (7)

Obviously, it is positive definite and radially unbounded.
Its time derivative along the trajectories of (6) is

V̇ = eTAT ė = −eTATMAe

≤− min
1≤i≤n

(1 + η2
i )eTATAe

≤−λ2
1e

T e

≤−λ
2
1

λn
eTAT e = −2λ2

1

λn
V, (8)

where the positive numbers λ1 and λn are the small-
est and the largest eigenvalues of the positive definite
matrix A, respectively. Hence, we know that system (6)
is globally exponentially stable. Because of the one-to-
one correspondence between e and η defined in (5), we

know that η converges exponentially fast to η∗
∆
= −A−1b.

Consequently, cot θi converges exponentially to η∗i . Since
0 < θi(t) < π for all t ≥ 0 and the cotangent function is
a monotone function on (0, π), we know that θi converges
exponentially to arccotη∗i .

B
i− 1

θ∗i−1 θ∗i

i

θ∗i+1

i+ 1

y
r i,
i−

1

y
ri,i+

1

Fig. 5. A hypothetical steady state

Now we only need to prove that when θ∗i = arccotη∗i , all
the agents’ half-lines intersect at (xr, yr). Since θ∗i is the
equilibrium of (3), it follows that

ai,i+1

(
cot θ∗i − cot θ∗i+1

)
− ai,i−1

(
cot θ∗i−1 − cot θ∗i

)
= 0.

(9)
For 1 ≤ i ≤ n, we examine the intersection of the half-
line determined by (xi, 0), θ∗i and the half-line deter-
mined by (xi+1, 0), θ∗i+1, and denote its coordinates by
(xri,i+1, y

r
i,i+1), where yri,i+1 6= 0 since 0 < θi(t) < π,

1 ≤ i ≤ n. We first prove by contradiction that all the
intersection points have to live in the same half-plane.
Suppose half-line li, 1 ≤ i ≤ n, intersects with the half-
lines of its neighbors in different half-planes, see Fig. 5. In
this case,

ai,i+1

(
cotθ∗i − cotθ∗i+1

)
< 0,

and
ai,i−1

(
cotθ∗i−1 − cotθ∗1

)
> 0,

which contradicts (9). So all the intersection points have
to be in the same half-plane. In addition, we know 0 <
θ0 < θn+1 < π. So all the intersections have to be in the
upper half-plane. Thus yri,i+1, 0 ≤ i ≤ n, are positive. From
trigonometry calculation, e.g. the calculation shown in Fig.
4, one can easily show that ai,i+1

(
cot θ∗i − cot θ∗i+1

)
=

yri,i+1. Hence, (9) implies that

yr0,1 = yr1,2 = · · · = yrn,n+1,

which, because of the fact that all the points of the half-
lines are uniquely determined by their y-coordinates, fur-
ther implies that all the intersection points (xri,i+1, y

r
i,i+1)

are one and the same. In addition, the two half-lines
associated with agents 0 and n + 1 intersect at (xr, yr),
so it must be true that all the half lines are concurrent at
(xr, yr). �

The result stated in Theorem 1 is stronger than that in
Proposition 1 since it only stipulates requirements on the
initial condition θi(0) instead of the whole evolution of
θi(t) for t ≥ 0. However, the proof of Proposition 1 has
helped us to gain insight into the converging process of θi;
in particular, the construction of the candidate Lyapunov
function (7) has shed light on how the trajectories of
system (3) might be bounded for all t ≥ 0. So we are
ready to prove the main result of this paper as follows.

Proof of Theorem 1: Because of the result in Proposition
1, it suffices to prove that for system (3), if 0 < θi(0) < π,
then 0 < θi(t) < π holds for all t ≥ 0. We prove this
by contradiction. Suppose 0 < θj(t) < π can be violated
for some 1 ≤ j ≤ n and we let T > 0 to be the first
time instant that such a violation takes place. Then since
θj(t) changes continuously, we know that either θj(T ) = 0
or θj(T ) = π. In either case, we have limt→T ηj(t) = ∞
and so do e(t) and V (t). Since T is the first time that
0 < θi(t) < π, 1 ≤ i ≤ n, is violated, from (8) in the proof

of Proposition 1 we know that V̇ (t) < 0 for all 0 ≤ t < T
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A =



a0,1 + a1,2 −a1,2

−a1,2 a1,2 + a2,3 −a2,3

. . .
. . .

−ai−1,i ai−1,i + ai,i+1 −ai,i+1

. . .
. . .

−an−1,n an−1,n + an,n+1


(∗)

and thus it must be true that limt→T V (t) < V (0) is
finite. W have arrived at a contradiction and the proof
is complete. �

Remark 3. In fact, from (8) one can see that as long as θ0

and θn+1 are fixed, V always decreases and θi, 1 ≤ i ≤ n,
always converges. So if the half-lines of agents 0 and n+ 1
are parallel to each other instead of intersecting at (xr, yr),
one can check that all the θi, 0 ≤ i ≤ n + 1, become the
same exponentially fast. So the distributed control law (2)
can also be used to rotate all the half-lines to achieve the
same orientation.

In the next section, we will present our simulation results.

4. SIMULATION EXAMPLES

We consider a linear array of 10 agents that are positioned
randomly on the baseline. The initial orientations θi(0),
1 ≤ i ≤ 8, are randomly chosen from (0, π) and the half-
lines of agents 0 and 9 intersect at a single point, which
is taken to be the target. The converging process of the
orientations of these agents under the control law (2) is
shown in Fig. 6, where the red half-lines are fixed and
associated with the two agents at the two ends, and the
blue ones rotate and are for the other agents. As expected,
all the half-lines become concurrent at the target.

One interesting observation from the simulations that
worths further investigation is that some half-lines might
become close to being concurrent at a point different
than the target before later on they continue to rotate
until passing the target. Subgroup “clustering” before
group-level synchronizing is common in the rendezvousing
behaviors of multiple autonomous robots {Martinez et al.
(2007)}, and we will explore the connections to the control
laws for solving rendezvous problems in the future.

5. CONCLUSIONS

In this paper we have formulated the distributed concur-
rent targeting problem for linear arrays of point sources
and proposed a control strategy to solve this problem.
Both theoretical analysis and numerical simulations have
been provided to show the performance of our proposed
control law. We are currently working on two general-
izations. One is to consider groups of point sources that
distribute in the plane instead of on a line. The other is
to consider more detailed rotational dynamics of the point
sources.
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(a) t=3s (b) t=4s

(c) t=5s (d) t=6s

(e) t=10s (f) t=40s

Fig. 6. The converging process of the half-lines of the
agents

Appendix A. THE POSITIVE DEFINITENESS OF M
AND A

The positive definiteness of M follows from the fact that
it is a diagonal matrix with positive elements. For the
symmetric matrix A, ai−1,i, 1 ≤ i ≤ n + 1, are positive,
and

Aii ≥
n∑

j=1,j 6=i

| Aij | .

From the Gershgorin circle theorem {Horn and Johnson
(1985)}, we know that all the eigenvalues of A are non-
negative. Now we prove by contradiction that they are
all positive. Suppose A has a zero eigenvalue. Then there
exists a non-zero eigenvector ξ such that Aξ = 0. Since the
ith row sum of A, i = 2, · · · , n− 1, is zero, ξ has to be 1n.
However, such an ξ = 1n cannot be an eigenvector since
the first and the last row sums of A are non-zeros. So we
have reached a contradiction. Thus 0 is not an eigenvalue
of A, and hence, A is positive definite.
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