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Abstract: This paper presents a MPC (Model Predictive Control) algorithm for MEMS vibratory
gyroscopes based on force-balancing control strategy. In the proposed MPC method, using a set of
orthonormal basis functions named Laguerre functions, a new prediction and optimization technique is
designed. To enhance the capability of proposed MPC method for tracking time-varying reference
trajectories, first a repetitive control technique is developed. Second, following representing the
governing dynamical equations of the vibratory gyroscope, discrete-time Laguerre network based MPC
has been developed. The effective tracking performance of the proposed control methods has been shown

through computer simulations.
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1. INTRODUCTION

Technically speaking, gyroscopes are instruments for
measuring the rotation rate of a rigid element. Fabrication
methods of MEMS technology have made possible to
construct gyroscopes in very compact sizes. Most of the
MEMS gyroscopes are of vibratory kind gyroscopes, i.e.
vibrating elements are used to detect the applied angular
velocity. The main operating principle of the gyroscopes is
based on Coriolis effect to transfer energy from one mode of
vibration to the other one (Acar & Shkel 2009).

In most MEMS vibratory gyroscopes, the basic structure
consists of a proof mass suspended by elastic members above
a substrate. The proof mass has the capability of oscillating
along two perpendicular directions; known as drive (x ) and
sense (y ) directions. Thereby, the overall mechanical system

of gyroscope can be considered as a 2DOF (two degrees of
freedom) vibrating system (Acar & Shkel 2009); see Fig. 1.
In conventional mode of operation, the proof mass is driven
to vibrate in x direction with its natural frequency; then, in
presence of angular velocity, Coriolis acceleration causes the
oscillation of proof mass in the other (sense) direction. The
amplitude of second vibration mode provides information
about the input angular velocity. Ideally, the vibrating modes
of the gyroscope are supposed to have no mechanical
coupling and their natural frequencies should be matched
(Park & Horowitz 2003).

However, in practice, the fabrication imperfections and
ambient noises violate the ideal conditions and therefore
cause less performance and inaccurate results. Hence, using a
suitable control system to compensate the imperfections and
to improve the performance of the vibratory gyroscope is
required (Park & Horowitz 2003). As an important control
technique, in force-balancing strategy, the sense direction is
forced to be stationary, while the other direction vibrates with
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a known frequency. The control effort of sense direction is
used to estimate the applied angular velocity (Park &
Horowitz 2003 and Bature, Sreeramreddy & Khasawneh
2006).

Model predictive control has several interesting aspects in
particular the effective applicability to multi-input, multi-
output systems and the ability to handle imposed constraints
on system (Wang 2009). Most of classic model predictive
control algorithms merely consider tracking on step-wise
reference trajectories with zero steady-state error and also
simultaneously rejection of fixed-value disturbances
(Camacho & Bordons 2007). This accomplishes via
embedding an integrator to the underlying system. However,
in the case of non-step reference trajectories, for example
periodic signals, the method is unable. Therefore, Repetitive
control method based on internal model principle, may be
used to enhance the tracking capability in the reference
signals with zero steady-state error (Wang et al. 2011). The
proposed technique can be considered as the generalization of
the integral action.

Two key steps in a MPC, are: first, modelling of future
behaviour of system including states, outputs and
manipulated variables based on some describing model of the
plant; and second, performing an optimization process in
order to obtain the optimal control action for applying on the
system. In the case of MIMO systems with complex
dynamics or fast sampling times, traditional MPC methods
require using too many parameters and heavy matrix
computations. A new approach, which can be considered as a
solution to these problems, is to use a set of orthonormal
functions with exponential nature to model the future
trajectory of the control input. Due to the exponential nature,
using these orthonormal functions results in a fast
convergence rate (Wang 2009). One appropriate choice for
these function, is so-called Laguerre function, which has
been fully discussed by Wang (2009).
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In this paper, a new discrete-time MPC approach is proposed
for MEMS vibratory rate gyroscope, based on force-
balancing control scheme. In the problem of controlling
vibratory gyroscopes, tracking of periodic reference signals is
required. In order to adapt the MPC to track periodic
reference signals with zero steady-state error, the
combination of repetitive control method with predictive
control is developed. In the designed discrete-time MPC
method, discrete-time Laguerre network is wused for
prediction and optimization processes. It is assumed that in
the MEMS gyroscope, sensors may only measure the
displacements of proof mass in derive and sense directions.
Since the proposed MPC method uses state-space model of
the system, an observer should be used to estimate the
unmeasured states including velocities. For the estimation
purpose, Kalman filter is a suitable tool; especially in the
case of noisy environments. Therefore, in the performed
simulations Kalman filter is used to estimate the unknown
velocities of proof mass in derive and sense directions.

2. DYNAMICS OF MEMS VIBRATORY RATE
GYROSCOPE

An intuitive method to describe the dynamics of the MEMS
gyroscope is obtaining the acceleration of proof mass by
taking the second time derivative of its position vector (Acar
& Shkel 2009). For this purpose, we introduce two Cartesian
reference frames; the first is a ground -fixed inertial reference
frame {XYZ } and the second is a body-fixed reference frame

{xyz } which is fixed to the gyroscope table. According to

Coriolis's theorem, the time derivatives of a given vector A
in two reference frames {XYZ } and {xyz } are related by:

dA dA

—yyy =), +QXA 1

o e =) W
Where the subscripts stand for which reference frame the
derivative is taken, and € is the angular velocity vector of

{xyz} frame axes with respect to {XY Z } frame. Considering
the position vector of proof mass in reference frame {XYZ},
1, the position vector of the origin of {xyz} with respect to
{XYZ}, 7 and the position vector of proof mass with respect
to {xyz} p yields:

r=r+p 2)
Now by twice differentiating (2) with respect to time and

using (1) the acceleration of proof mass is obtained as:
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Where a,,, is the acceleration of proof mass with respect to

inertial frame {XYZ}and Q is the time derivative of

€ (which is same in both reference frames). Coriolis term,

d
29><(d—'t0)xyZ play main role in characterising of vibratory

MEMS gyroscope, because it provides the energy transfer

mechanism between two modes of vibration. Regarding
Q=(Q,.,2,.Q) andp=(x,y,2)" with

gyroscope frame {X¥Z}; in the case of Z-axis gyroscope,

respect to

Q,and Q, are negligible in comparison to, €, .

Furthermore, in a long enough period of time, £ = 0 and
the centrifugal and the relative acceleration terms often could
be neglected. With these simplifying assumptions and using
Newton's second law we can obtain the equation of motion of

proof mass (with mass m) in the reference frame {*yz} as

follows.
y Q.
Tl &
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Fig. 1. Schematic of MEMS vibratory gyroscope (Fei & Ding
2010)
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Where ¢ =[x,y1" is the displacement vector of proof mass

measured from its free position, and ¥ =[u,,u, | "is applied
electrostatic control force.

Note that the damping coefficient d., and the stiffness

coefficient k., have been considered to model the coupling
effect betweenX and Y directions, which are mainly caused
by fabrication imperfections (Fei & Ding 2010).

For the purpose of computational efficiency, non-
dimensionalized governing equations are more appropriate
and useful. By introducing the reference mass m, reference

4) is re-
written in the following non-dimensional form (Fei & Ding
2010);

length 4, and non-dimensional time 7 = @t

Gg+Dg+Kg+2AG =u 5)
Where
ieq; b —>D;L2+K;A—>A; —u
q, ma, maj, 2} mq, @,

3. MODEL PREDICTIVE CONTROL

In various types of MPC algorithms, different model
structures of the system may be used; e.g. transfer function
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models, finite impulse response and etc. Here we use state-
space model which is a suitable tool for description and
handling of MIMO systems. The majority of traditional MPC
formulations are based on integral action; i.e. embedding an
integrator to the system. The technique ensures that the
system will track step-wise reference trajectories with zero
steady-state error. However, in most applications, the
reference signals include periodic signal components (for
instance the MEMS vibratory gyroscope) and the MPC with
integral action is inapplicable to precise track of these kind of
reference trajectories (Wang et al. 2011).Therefore, to solve
the tracking difficulty along periodic/ sinusoidal trajectories,
a new design of MPC of the MEMS gyroscope is proposed in
the paper.

3.1 MPC for Tracking Periodic Reference Trajectories

Generally speaking, the reference signal, r(¢) with a known
structure will satisfy the following type differential equation
with real coefficients, ¢, (i =0,...,n, —1).
d n, r d n,.—lr
PR
dt™ Todt™
Taking Laplace transform of both sides of (5) yields:

dr
+eoto,—+a,r =0 6
v % (©6)

I'(s)R(s)= F(r(O),Zt—r(O),...,s)

T(s)=s" +a, "' +--+aos+a, (7)

Where, s denotes Laplace variable and F represents some
terms of the initial values of r(t). The polynomial T'(s)is
called the generating polynomial of the reference signal,
r(t); for example, sinusoidal reference  signal,
r(t)=r,sin(ax) has  the

generating  polynomial

['(s)=s>+@" . According to the Internal Model Principle,
for tracking the reference signal r(t) with zero steady state

error; the generating polynomial must be embedded in the
system (Goodwin, Graebe & Salgado 2001). Since we are
dealing with discrete time systems, we replace (6) with a
difference equation and use the Z-transform instead of
Laplace transform to obtain the generating polynomial in
discrete manner:

F(z’l)=1+,6’]z"+---+,b’"'z’”’ (8)

Where, z ' is the backward shift operator. It should be noted
that T'(z™') can be obtained directly by discretizing the
differential equation (6).
The following state-space description is considered for
underlying plant model.
x(k +1)=Ax(k)+Bu(k)+w (k)
y(k)=Cx(k)+v (k)

Wherex € R", ue R" and y € R? are respectively the state

€))

vector, manipulated control variable and output of system;
w(k)e R" is process disturbance and v(k)e R’ is
measurement noise. In order to model the noises and
disturbances, we assume that w(k)and v (k) satisfy
following equations:

Tz Hwk)=ek), T Hvk)=&k) (10

Where £(k ) and £ (k ) are zero-mean white noises.

Incorporating, I'(z ')in system (9) has been proposed and

discussed by Wang et al .2011; In this method, new variables
are used as:

x,(k)=T(z "x(k), u,(k)=T(") u(k)
By applying T'(z ') to both sides of state equation (9), we
get the filtered form of (9):
x, (k+1)=Ax_(k)+Bu, (k)+e(k)
Now, a new state vector X (k) is considered as follows.
X (k)=[x (k) y(k) yk =" - yk -=n +D"]"

With the new state, we will obtain an augmented state-space
models:

(1)

X (k+D)=FX (k)+Gu, (k)+Ek)
y(k)=HX (k)+v (k)
E(k) denotes the augmented noise terms. The

12)

Where

characteristics equation of the augmented state-space model
(12) comprises of characteristic equation of original plant and
the generating polynomial of reference signal; thus according
to the internal model principle we can assure that the output
will follows reference trajectory with zero steady state error
(Wang et al. 2011). The method is also known as Repetitive
control in literatures.

3.2 Prediction and Optimization Using Laguerre Functions

The next step in design of MPC is predicting the future of
state and output vectors based on the chosen system model
and current information of the plant. It is reasonable to set
these predictions equal to their expected values. With this in
mind, based on (12) we get:

p-l
X (k+p)=F’X (k)+» F""'"'Gu, (k +i
(k +p) ()% Gu,(k+0) |
y(k +p)=HX (k +p)

Note that the disturbance and noise terms were vanished,
because the expectation of a white noise is zero; See Wang
(2009) for more details. The main target of MPC is to find
the future trajectory of control input which is optimal, i.e. it
minimizes a function of some type of error. A new interesting
and simultaneously efficient method to describe this future
trajectory is use of a set of discrete-time orthonormal basis
functions, named Laguerre functions. This method has been
fully discussed in Wang (2009) and here we just briefly
explain the main idea and steps.
First, portion the input vector and matrix as:

(k) =luy (k) ultk) - ul(k)]"
G=[G, G, - G,]

Where u! (k) and G, are the ith component and the irh
column of G , respectively. Next, express each control input
u' (k) in finite series of discrete-time Laguerre functions; so
in vector form:

ul (k)=L, (k)" 7, (14)
Where L, (k) is the ith Laguerre Network, which is specified
by the number of functions N, and the pole of the network

a., and comprises of first

; N, discrete-time Laguerre
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functions. The vector 7}, contains coefficients of Laguerre

expansion. The orthonormality of discrete-time Laguerre
function can be expressed as:

S LU (k)= (15)
k=0

Where, [ stands for identity matrix. As another important
property, the discrete-time Laguerre network, L (k) satisfies

the following recursive equation:

L (k+1)=A,L (k) (16)
A e RV*N is a function of poles location a as:
0 i<j

A (i,j)=1a i=j (17)
() N—a® 1>

Noting that the stability of network requires ae[0,1);
Equation (16) can be used for iterative computation of L (k)
with the following initial values.

LO)=A1-a"[1 -a a - D""'a""1"  ag)
Now, substituting Laguerre network description (14) in
prediction model (13) yields:

X (k+p)=F'X (k)+§F”‘i‘1[G1Ll(i)T n - G,L @(i)n,]
i=0

X (k+p)=F'X (k)+d(p)"n (19)
y(k +p)=HX (k +p)

where:

p-l .
#(p)" =Y FPIG LK) - G,L, k)]

i=0

n=om --m,1"

Now, the design objective of searching an optimal future
trajectory of manipulated variable switches to determine the
optimal Laguerre coefficients, 7. Let consider the following

quadratic cost function:

7= (rk) =y (k +i ) Q, (rk) =y (k +i))

i=1

Np
+>u (k+jR,u, (k +j)

=0
Where r(k)is Q,and R are

weighting matrices on tracking error and control input,
respectively. Note that we have assumed that the reference
signal remains constant during prediction. By utilizing the
orthonormal property of Laguerre functions the cost function
can be simplified to:

J =Z(r(k)—y(k +i)) Q(r(k)=y (k +i)+n" Ry (21)

i=1

(20)

the reference signal,

Without any constraint, the unknown vector 7] can be found

by minimizing the cost function J:
Np

n=-CQ.0) 0 ¢G) +R)' Qo) 0 FHX

i=1 i=1

(22)

Where, X (the modified state vector) has been defined in

order to change the problem to regulator design scheme (i.e.
r(k)=0) as follows (Wang 2009):

X o (k) =[x (k)0 (k) =r (k) ooy (k=1 +1) =1 (kD'
(23)

4. MPC FOR MEMS VIBRATORY GYROSCOPE

state vector as
T the

Referring to (5), by considering the
X =[x x y y]", and the input vector u =[u, u,]

following continuous-time state-space realization is obtained
(Fei & Ding 2010):

X =AX +Bu (24)
Where the system matrices are:
0 1 0 0
k., -, -0, -d,-2Q)
4=l 0 0 1
-k, —-d,+2Q) -k, —d,,

01 0 0f
B =
0 0 01
Now, assuming that merely positions, X andy of proof
mass are measured by sensors; the measurement equation is:
1 00 O
y=CX, C =
0 010

The other states can be estimated via an observer. By the
way, we should discretize the above mentioned model using
some suitable sampling time, 7 .

(25)

In force-balancing control strategy of vibratory gyroscope,
we try to control the x (derive) direction displacement such
that it follows a periodic reference signal and simultaneously
the y (sense) axis displacement remains stationary (Bature,

Sreeramreddy & Khasawneh 2006); thus the reference
trajectories can now be described by differential equations

X, +a)2xr =0 and y, =0, respectively. The generating

polynomials T (z !y and I“y (z") are obtained by
discretizing these differential equations. The overall
generating polynomial is considered to be

I'z)=T (z '])l“y (z™"). After achieving the motion control
of the proof mass, the control input in y direction can be
used to extract the information about unknown angular
velocity. Indeed, since y, =y, =y, 6 =0, therefore:

u, —k, x,-d, +2Q)x, =0 (26)
The suitable approach to estimate the angular velocity by (26)
is recursive least square algorithm; substituting the desired
value x, =X ;sin(@ t) ; (26) yields (Bature, Sreeramreddy &

Khasawneh 2006):

u,t,)-d X,ocos(wt,)—k X, sin(wt,)
A N @n
=2Q X wcos(wt,)
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5. SIMULATIONS

To assess the proposed MPC method of MEMS gyroscopes,
computer simulations are performed based on non-
dimensioned equations. For this purpose, we use the
following gyroscope parameters (Fei & Ding 2010):

m =057 -08Kg . k. =80.98° &k  =7162°-
m ) m

ko =5 4 =0429-06%, d =0.678 -032%

d,, =0.0429 -06&, o, =1kHz, q, =1e -06m
i m

The input angular velocity is assumed 10 rad/sec in plant
model simulations. The desired reference trajectories are
x, =sin(wr)with @=5kHz and y,=0. The Laguerre
network parameters for each control input u, =u_and
u,=u,are a =a,=0.5 and N, =N, =5, respectively. The
parameters of MPC cost function are set to be
R =diag{0.001,0.001}, Q =diag{1,0,1,0} and N, =60. In
order to estimate the unmeasured states, Kalman filter is

implemented with process noise covariance Q, =101 ia

and measurement noise covariance R, = 107°1,,, .
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Figure. 2. top to bottom: x direction output, and x direction
tracking error.
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Figure. 3. top to bottom: y direction output, and y direction
tracking error.
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Figure. 4. top to bottom: control effort in x direction and
control effort in y direction.
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Figure. 5. estimation of unknown angular velocity
6. CONCLUSIONS

This paper presented a discrete-time MPC method for MEMS
vibratory gyroscope. The main idea was using the force-
balancing strategy for tracking control of the gyroscope and
the estimation of input angular rate. The prediction and
optimization processes have been designed based on discrete-
time Laguerre functions in modelling the future trajectory of
input control variables. Repetitive control method was
combined with the predictive control to ensure that the
system will track the periodic reference trajectories with zero
steady-state error. By the way, in the proposed control
system, a Kalman filter was used as the observer of unknown
states. To estimate the input angular rate through the control
input in the sense direction, a recursive least square method
was utilized. Computer simulation has been performed in
order to testify the proposed method were it was observed
that the method is successful in both tracking the reference
trajectories and the estimation of input angular velocity.
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