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Abstract: This paper presents a MPC (Model Predictive Control) algorithm for MEMS vibratory 
gyroscopes based on force-balancing control strategy. In the proposed MPC method, using a set of 
orthonormal basis functions named Laguerre functions, a new prediction and optimization technique is 
designed. To enhance the capability of proposed MPC method for tracking time-varying reference 
trajectories, first a repetitive control technique is developed. Second, following representing the 
governing dynamical equations of the vibratory gyroscope, discrete-time Laguerre network based MPC 
has been developed. The effective tracking performance of the proposed control methods has been shown 
through computer simulations. 
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1. INTRODUCTION 

Technically speaking, gyroscopes are instruments for 
measuring the rotation rate of a rigid element. Fabrication 
methods of MEMS technology have made possible to 
construct gyroscopes in very compact sizes. Most of the 
MEMS gyroscopes are of vibratory kind gyroscopes, i.e. 
vibrating elements are used to detect the applied angular 
velocity. The main operating principle of the gyroscopes is 
based on Coriolis effect to transfer energy from one mode of 
vibration to the other one (Acar & Shkel 2009). 

In most MEMS vibratory gyroscopes, the basic structure 
consists of a proof mass suspended by elastic members above 
a substrate. The proof mass has the capability of oscillating 
along two perpendicular directions; known as drive ( x ) and 
sense ( y ) directions. Thereby, the overall mechanical system 

of gyroscope can be considered as a 2DOF (two degrees of 
freedom) vibrating system (Acar & Shkel 2009); see Fig. 1. 
In conventional mode of operation, the proof mass is driven 
to vibrate in x  direction with its natural frequency; then, in 
presence of angular velocity, Coriolis acceleration causes the 
oscillation of proof mass in the other (sense) direction. The 
amplitude of second vibration mode provides information 
about the input angular velocity. Ideally, the vibrating modes 
of the gyroscope are supposed to have no mechanical 
coupling and their natural frequencies should be matched 
(Park & Horowitz 2003). 

However, in practice, the fabrication imperfections and 
ambient noises violate the ideal conditions and therefore 
cause less performance and inaccurate results. Hence, using a 
suitable control system to compensate the imperfections and 
to improve the performance of the vibratory gyroscope is 
required (Park & Horowitz 2003). As an important control 
technique, in force-balancing strategy, the sense direction is 
forced to be stationary, while the other direction vibrates with 

a known frequency. The control effort of sense direction is 
used to estimate the applied angular velocity (Park & 
Horowitz 2003 and Bature, Sreeramreddy & Khasawneh 
2006).  

Model predictive control has several interesting aspects in 
particular the effective applicability to multi-input, multi-
output systems and the ability to handle imposed constraints 
on system (Wang 2009).  Most of classic model predictive 
control algorithms merely consider tracking on step-wise 
reference trajectories with zero steady-state error and also 
simultaneously rejection of fixed-value disturbances 
(Camacho & Bordons 2007). This accomplishes via 
embedding an integrator to the underlying system. However, 
in the case of non-step reference trajectories, for example 
periodic signals, the method is unable. Therefore, Repetitive 
control method based on internal model principle, may be 
used to enhance the tracking capability in the reference 
signals with zero steady-state error (Wang et al. 2011). The 
proposed technique can be considered as the generalization of 
the integral action. 

Two key steps in a MPC, are: first, modelling of future 
behaviour of system including states, outputs and 
manipulated variables based on some describing model of the 
plant; and second, performing an optimization process in 
order to obtain the optimal control action for applying on the 
system. In the case of MIMO systems with complex 
dynamics or fast sampling times, traditional MPC methods 
require using too many parameters and heavy matrix 
computations. A new approach, which can be considered as a 
solution to these problems, is to use a set of orthonormal 
functions with exponential nature to model the future 
trajectory of the control input. Due to the exponential nature, 
using these orthonormal functions results in a fast 
convergence rate (Wang 2009). One appropriate choice for 
these function, is so-called Laguerre function, which has 
been fully discussed by Wang (2009). 
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In this paper, a new discrete-time MPC approach is proposed 
for MEMS vibratory rate gyroscope, based on force-
balancing control scheme. In the problem of controlling 
vibratory gyroscopes, tracking of periodic reference signals is 
required. In order to adapt the MPC to track periodic 
reference signals with zero steady-state error, the 
combination of repetitive control method with predictive 
control is developed. In the designed discrete-time MPC 
method, discrete-time Laguerre network is used for 
prediction and optimization processes. It is assumed that in 
the MEMS gyroscope, sensors may only measure the 
displacements of proof mass in derive and sense directions. 
Since the proposed MPC method uses state-space model of 
the system, an observer should be used to estimate the 
unmeasured states including velocities. For the estimation 
purpose, Kalman filter is a suitable tool; especially in the 
case of noisy environments. Therefore, in the performed 
simulations Kalman filter is used to estimate the unknown 
velocities of proof mass in derive and sense directions. 

2. DYNAMICS OF MEMS VIBRATORY RATE 
GYROSCOPE 

An intuitive method to describe the dynamics of the MEMS 
gyroscope is obtaining the acceleration of proof mass by 
taking the second time derivative of its position vector (Acar 
& Shkel 2009). For this purpose, we introduce two Cartesian 
reference frames; the first is a ground -fixed inertial reference 
frame { }XY Z and the second is a body-fixed reference frame 

{ }xyz which is fixed to the gyroscope table. According to 

Coriolis's theorem, the time derivatives of a given vector A  
in two reference frames { }XY Z and { }xyz are related by: 

( ) ( )XY Z xyz

d d

dt dt
= + Ω ×

A A
A    (1) 

Where the subscripts stand for which reference frame the 
derivative is taken, and Ω  is the angular velocity vector of 
{ }xyz  frame axes with respect to { }XY Z frame. Considering 

the position vector of proof mass in reference frame { }XY Z , 
r , the position vector of the origin of { }xyz  with respect to 

{ }XY Z , rɶ and the position vector of proof mass with respect 

to { }xyz  ρ  yields: 

r r ρ= +ɶ                                    (2) 

Now by twice differentiating (2) with respect to time and 
using (1) the acceleration of proof mass is obtained as: 

2

2
( )

.
( ) 2 ( )   xyz xyzX Y Z

rela

d r dr
a r r

dtdt
= + Ω× + Ω × Ω × + Ω ×

�������������������

ɶ ɶ
ɶ ɶ  

2

2
  +( ) ( ) 2 ( )

.
xyz xyz

d

dt

d

dt

ρ ρρ ρ+ Ω× + Ω× Ω× + Ω×       (3) 

Where 
X Y Za is the acceleration of proof mass with respect to 

inertial frame { }X Y Z and 
.

Ω  is the time derivative of 
Ω (which is same in both reference frames). Coriolis term, 

2 ( )xyz

d

dt

ρ
Ω×  play main role in characterising of vibratory 

MEMS gyroscope, because it provides the energy transfer 

mechanism between two modes of vibration. Regarding 

( , , )T

x y z
Ω = Ω Ω Ω and ( , , )Tx y zρ = with respect to 

gyroscope frame{ }xyz ; in the case of Z-axis gyroscope, 

xΩ and yΩ are negligible in comparison to, zΩ . 

Furthermore, in a long enough period of time, 0≈Ωɺ  and 
the centrifugal and the relative acceleration terms often could 
be neglected. With these simplifying assumptions and using 
Newton's second law we can obtain the equation of motion of 
proof mass (with mass m) in the reference frame { }xyz  as 
follows. 

 

Fig. 1. Schematic of MEMS vibratory gyroscope (Fei & Ding 
2010) 
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Where 
 [ , ] Tq x y= is the displacement vector of proof mass 

measured from its free position, and 
 [ , ] T

x yu u u= is applied 
electrostatic control force. 
 
Note that the damping coefficient x yd and the stiffness 

coefficient xyk have been considered to model the coupling 
effect between x and y directions, which are mainly caused 
by fabrication imperfections (Fei & Ding 2010). 
For the purpose of computational efficiency, non-
dimensionalized governing equations are more appropriate 
and useful. By introducing the reference mass m, reference 

length 0
q and non-dimensional time 0tτ ω=  (4) is re-

written in the following non-dimensional form (Fei & Ding 
2010); 

2q Dq Kq q u+ + + Λ =ɺɺ ɺ ɺ                    (5) 
Where 

2 2
0 0 00 0 0

; ; ; ;
q D K u

q D K u
q m m mqω ωω ω

Λ→ → → → Λ →
 

3. MODEL PREDICTIVE CONTROL 

In various types of MPC algorithms, different model 
structures of the system may be used; e.g. transfer function 
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models, finite impulse response and etc. Here we use state-
space model which is a suitable tool for description and 
handling of MIMO systems. The majority of traditional MPC 
formulations are based on integral action; i.e. embedding an 
integrator to the system. The technique ensures that the 
system will track step-wise reference trajectories with zero 
steady-state error. However, in most applications, the 
reference signals include periodic signal components (for 
instance the MEMS vibratory gyroscope) and the MPC with 
integral action is inapplicable to precise track of these kind of 
reference trajectories (Wang et al. 2011).Therefore, to solve 
the tracking difficulty along periodic/ sinusoidal  trajectories, 
a new design of MPC of the MEMS gyroscope is proposed in 
the paper. 

3.1 MPC for Tracking Periodic Reference Trajectories 

Generally speaking, the reference signal, ( )r t with a known 

structure will satisfy the following type differential equation 
with real coefficients, iα ( 0,..., 1)ri n= − . 

1

1 1 01
0

r r

rr r

n n

nn n

d r d r d r
r

dtdt dt
α α α

−

− −+ + + + =⋯                (6) 

Taking Laplace transform of both sides of (5) yields: 

( ) ( ) ( (0), (0),..., )
d r

s R s F r s
dt

Γ =  

1 0
1

1( )
r

r r
n

n ns s s sα α α−
−Γ = + + + +⋯                                 (7) 

Where, s denotes Laplace variable and F represents some 
terms of the initial values of r(t). The polynomial ( )sΓ is 

called the generating polynomial of the reference signal, 
( )r t ; for example, sinusoidal reference signal, 

0( ) sin( )r t r tω=  has the generating polynomial 
2 2( )s s ωΓ = + . According to the Internal Model Principle, 

for tracking the reference signal ( )r t with zero steady state 

error; the generating polynomial must be embedded in the 
system (Goodwin, Graebe & Salgado 2001). Since we are 
dealing with discrete time systems, we replace (6) with a 
difference equation and use the Z-transform instead of 
Laplace transform to obtain the generating polynomial in 
discrete manner: 

1 1

1( ) 1
r

rn
nz z zβ β −− −Γ = + + +⋯                       (8) 

Where, 
1z −  is the backward shift operator. It should be noted 

that 1( )z −Γ  can be obtained directly by discretizing the 
differential equation (6). 
The following state-space description is considered for 
underlying plant model. 

( 1) ( ) ( ) ( )

      ( ) ( ) ( )

x k Ax k Bu k w k

y k Cx k v k

+ = + +
= +

                 (9) 

Where nx ∈ℝ , 
mu ∈ℝ and qy ∈ℝ are respectively the state 

vector, manipulated control variable and output of system; 
( ) nw k ∈ℝ  is process disturbance and ( ) qv k ∈ℝ  is 

measurement noise. In order to model the noises and 
disturbances, we assume that ( )w k and ( )v k

 
satisfy 

following equations: 
1 1( ) ( ) ( ) ,  ( ) ( ) ( )z w k k z v k kε ξ− −Γ = Γ =        (10) 

Where ( )kε and ( )kξ are zero-mean white noises.  

Incorporating, 1( )z −Γ in system (9) has been proposed and 

discussed by Wang et al .2011; In this method, new variables 
are used as: 

1 1( ) ( ) ( ) ,  ( ) ( ) ( )s sx k z x k u k z u k− −= Γ = Γ  

By applying 1( )z −Γ  to both sides of state equation (9), we 

get the filtered form of (9): 
( 1) ( ) ( ) ( )s s sx k Ax k Bu k kε+ = + +           (11) 

Now, a new state vector ( )X k is considered as follows. 
     ( ) [ ( ) ( )  ( 1)    ( 1) ]T T T T T

s rX k x k y k y k y k n= − − +⋯  

With the new state, we will obtain an augmented state-space 
models: 

( 1) F ( ) G ( ) Ξ( )

     ( ) H ( ) ( )
sX k X k u k k

y k X k v k

+ = + +
= +

             (12) 

Where Ξ( )k  denotes the augmented noise terms. The 

characteristics equation of the augmented state-space model 
(12) comprises of characteristic equation of original plant and 
the generating polynomial of reference signal; thus according 
to the internal model principle we can assure that the output 
will follows reference trajectory with zero steady state error 
(Wang et al. 2011). The method is also known as Repetitive 
control in literatures. 

3.2 Prediction and Optimization Using Laguerre Functions 

The next step in design of MPC is predicting the future of 
state and output vectors based on the chosen system model 
and current information of the plant. It is reasonable to set 
these predictions equal to their expected values. With this in 
mind, based on (12) we get: 

1
1

0

)

( ) F ( ) F G ( )

             ( ) H (

p
p i

s
i

pX k p X k u k i

y k p X k p

−
− −

=

+ = + +

+ = +

∑         (13) 

Note that the disturbance and noise terms were vanished, 
because the expectation of a white noise is zero; See Wang 
(2009) for more details. The main target of MPC is to find 
the future trajectory of control input which is optimal, i.e. it 
minimizes a function of some type of error. A new interesting 
and simultaneously efficient method to describe this future 
trajectory is use of a set of discrete-time orthonormal basis 
functions, named Laguerre functions. This method has been 
fully discussed in Wang (2009) and here we just briefly 
explain the main idea and steps. 
First, portion the input vector and matrix as: 

1 2  

1 2

( ) [ ( )  ( )    ( )]

            G [    ]

m T
s s s s

m

u k u k u k u k

G G G

=
=

⋯

⋯
 

Where ( ) s
iu k and iG are the ith component and the ith 

column of G , respectively. Next, express each control input 

( ) i
su k in finite series of discrete-time Laguerre functions; so 

in vector form: 
 ( ) ( ) T

s i i
iu k L k η=                          (14) 

Where ( )iL k  is the ith Laguerre Network, which is specified 

by the number of functions iN and the pole of the network 

ia , and comprises of first iN discrete-time Laguerre 
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functions. The vector iη  contains coefficients of Laguerre 

expansion. The orthonormality of discrete-time Laguerre 
function can be expressed as: 

0

( ) ( )T
N N

k

L k L k I
∞

×
=

=∑                             (15) 

Where, I stands for identity matrix. As another important 
property, the discrete-time Laguerre network, ( )L k  satisfies 

the following recursive equation: 
( 1) ( )lL k A L k+ =                              (16) 

N N
lA ×∈ℝ is a function of poles location a  as: 

21

0

( , )  

( ) 1

l

i j

i j

A i j a i j

i ja a− −

<

= =

>− −







              (17) 

Noting that the stability of network requires
 

[0,1)a ∈ ; 

Equation (16) can be used for iterative computation of ( )L k  

with the following initial values. 
2 2 -1 -1  

 (0) 1  [1 -    (-1) ]N N TL a a a a= − ⋯       (18) 

Now, substituting Laguerre network description (14) in 
prediction model (13) yields: 

1

1 1 1
0

1( ) F ( ) F [ ( )   ( ) ]
p

p T T
m m m

i

p iX k p X k G L i G L iη η
−

=

− −+ = +∑ ⋯

 
 ( ) F ( ) ( )  

       ( ) H ( )

p TX k p X k p
y k p X k p

φ η+ = +
+ = +                  

(19) 

where: 

 
1

1
 

1 1
0

                         

1
 

 [ ]

( ) [ ( )   ( ) ]

T T T
m

p
T T T

m m
i

p jp F G L k G L k

η η η

φ
−

=

− −

=

=∑

⋯

⋯
 

Now, the design objective of searching an optimal future 
trajectory of manipulated variable switches to determine the 
optimal Laguerre coefficients, η . Let consider the following 

quadratic cost function: 

1

0

( ( ) ( )) ( ( ) ( ))

        + ( ) ( )

w

w

Np
T

i

Np
T

s s
j

J r k y k i Q r k y k i

u k j R u k j

=

=

= − + − +

+ +

∑

∑
                 (20) 

Where ( )r k is the reference signal, wQ and wR are 

weighting matrices on tracking error and control input, 
respectively. Note that we have assumed that the reference 
signal remains constant during prediction. By utilizing the 
orthonormal property of Laguerre functions the cost function 
can be simplified to: 

 

1

( ( ) ( )) ( ( ) ( ))
Np

T T

i

J r k y k i Q r k y k i Rη η
=

= − + − + +∑     (21) 

Without any constraint, the unknown vector η can be found 

by minimizing the cost function J: 

1

mod

1 1

 ( ( )  ( ) ) ( ( )  )T

i i

Np Np
ii Q i R i Q F Xη φ φ φ−

= =

= − +∑ ∑        (22) 

Where, modX  (the modified state vector) has been defined in 

order to change the problem to regulator design scheme (i.e. 
( ) 0r k = ) as follows  (Wang 2009): 

T T T T
mod ( ) [ ( ) ( ( ) ( )) ,...,( ( 1) ( )) ],

rsX k x k y k r k y k r kn= − − + −
      (23) 

4. MPC FOR MEMS VIBRATORY GYROSCOPE 

Referring to (5), by considering the state vector as 
 [    ] TX x x y y= ɺ ɺ , and the input vector  [  ] T

x yu u u= , the 

following continuous-time state-space realization is obtained 
(Fei & Ding 2010): 

X AX Bu= +ɺ      (24) 

Where the system matrices are: 
0 1 0 0

( 2 )
 

0 0 0 1

( 2 )

xx xx xy xy z

xy xy z yy yy

k d d
A

k d k d

ω
 
 − − − − − Ω =
 
 − − + Ω − −  

 

0 1 0 0

0 0 0 1

T

B =
 
 
 

 

Now, assuming that merely positions, x and y of proof 

mass are measured by sensors; the measurement equation is: 
1 0 0 0

,    
0 0 1 0

CX C= =
 
 
 

y                    (25) 

The other states can be estimated via an observer. By the 
way, we should discretize the above mentioned model using 
some suitable sampling time, sT . 

In force-balancing control strategy of vibratory gyroscope, 
we try to control the x (derive) direction displacement such 
that it follows a periodic reference signal and simultaneously 
the y (sense) axis displacement remains stationary (Bature, 

Sreeramreddy & Khasawneh 2006); thus the reference 
trajectories can now be described by differential equations 

2 0r rx xω+ =ɺɺ  and 0ry =ɺ , respectively. The generating 

polynomials 1( )x z −Γ  and 1( )y z −Γ  are obtained by 

discretizing these differential equations. The overall 
generating polynomial is considered to be 

1 1 1( ) ( ) ( )
x y

z z z− − −Γ = Γ Γ . After achieving the motion control 

of the proof mass, the control input in y  direction can be 

used to extract the information about unknown angular 
velocity. Indeed, since 0r r ry y y= = =ɺ ɺɺ , therefore: 

 
( 2 ) 0y xy r xy z ru k x d x−− + Ω =ɺ

               
(26) 

The suitable approach to estimate the angular velocity
 
by (26) 

is recursive least square algorithm; substituting the desired 
value 0 sin(  )rx X tω= ; (26) yields (Bature, Sreeramreddy & 

Khasawneh 2006): 

0 0

0

( ) cos(  ) sin(  )

ˆ2 cos(  )

y k xy k xy k

z k

u t d X t k X t

X t

ω ω ω

ω ω

− −

= Ω
                  (27) 
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5.  SIMULATIONS 

To assess the proposed MPC method of MEMS gyroscopes, 
computer simulations are performed based on non-
dimensioned equations. For this purpose, we use the 
following gyroscope parameters (Fei & Ding 2010): 

0 0

0.57 - 08 , 80.98  71.62

5 0.429 - 06  0.678 - 03   

0.0429 - 06  1 ,  1 - 06

,

, ,

,

xx yy

xy xx yy

xy

N N
m e Kg k k

m m
N Ns Ns

k d e d e
m m m

Ns
d e kHz q e m

m
ω

= = =

= = =

= = =

 

The input angular velocity is assumed 10 rad/sec in plant 
model simulations. The desired reference trajectories are 

sin(  )rx tω= with 5kHzω = and 0ry = . The Laguerre 

network parameters for each control input 1 xu u= and 

2 yu u= are 1 2 0.5a a= =  and 1 2 5N N= = , respectively. The 

parameters of MPC cost function are set to be 
{0.001, 0.001}R diag= , {1, 0,1, 0}Q diag=  and 60pN = . In 

order to estimate the unmeasured states, Kalman filter is 

implemented with process noise covariance 4 4
610  

f
Q I ×

−= , 

and measurement noise covariance 2 2
810

f
R I ×

−= . 
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Figure. 2. top to bottom: x direction output, and x direction 
tracking error. 
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Figure. 3. top to bottom: y direction output, and y direction 
tracking error. 
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Figure. 4. top to bottom: control effort in x direction and 
control effort in y direction. 
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Figure. 5. estimation of unknown angular velocity 

6. CONCLUSIONS 

This paper presented a discrete-time MPC method for MEMS 
vibratory gyroscope. The main idea was using the force-
balancing strategy for tracking control of the gyroscope and 
the estimation of input angular rate. The prediction and 
optimization processes have been designed based on discrete-
time Laguerre functions in modelling the future trajectory of 
input control variables. Repetitive control method was 
combined with the predictive control to ensure that the 
system will track the periodic reference trajectories with zero 
steady-state error. By the way, in the proposed control 
system, a Kalman filter was used as the observer of unknown 
states. To estimate the input angular rate through the control 
input in the sense direction, a recursive least square method 
was utilized. Computer simulation has been performed in 
order to testify the proposed method were it was observed 
that the method is successful in both tracking the reference 
trajectories and the estimation of input angular velocity. 
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