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Abstract: In this paper a two terminal VSC-HVDC system embedded in a strong grid AC-
environment is considered, emphasizing modeling, controllers design and small-signal stability
analysis. Traditionally, DC cables are most often modeled by Π-sections, and when using them
for higher frequencies or in case of transmission over long distances, approximation accuracy
aspects must be considered. Here, a distributed parameter cable model, based on the damped
wave equation, is used to overcome this limitation. It is shown that the VSC-HVDC system can
be described by a forward transfer function cascaded with a feedback loop. The first transfer
function will be different, due to which input and output variables that are considered but is in
all realistic cases stable. The feedback loop, where the forward path is a rational function and
the return path is a dissipative infinite dimensional system, remains the same in all cases. The
stability is then analyzed, using the Nyquist criterion, in a straight forward manner. Numerical
examples are given by MATLAB.
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1. INTRODUCTION

The main purpose of the HVDC-systems (High Voltage
Direct Current) invented in the 1950:th was the trans-
mission of DC electric power over longer distances, not
seldom across water, and at both terminals embedded
in AC-environment. These systems were largely based on
thyristor technology [Rudervall et al. (2000)]. At the end of
the 1990:th the thyristor systems were gradually replaced
by so called voltage source converters, VSC:s, based on
recent power transistor technology [Larsson et al. (2001)].

Various aspects of these VSC-HVDC systems have been
addressed by several researchers and engineers from rough-
ly 1997. In some of these contributions focus has been on
short term operation of the VSC-HVDC systems, empha-
sizing dynamics and control. From the system theory point
of view the VSC:s involve several linear subsystems, for
example PI-controllers and linear circuit elements, but also
nonlinear subsystems, due to the relations between power
and voltage (or current). If large changes in voltage levels,
for example due to severe system faults, should be taken
into account, nonlinear dynamical models must be used
in analysis. A major interest has been in the dynamics
close to steady state (implying sinusoidal steady state at
the AC-side and constant steady state at the DC-side).
Consequently linearized dynamical models then have been
in focus [Svensson (1998)].

One particular aspect of linear dynamics that has drawn
much attention is the system stability. Naturally, state-
space models are preferred to be used. Typically the DC-

cable has been modeled by one simple Π-link [Karlsson
(2002), Pipelzadeh et al. (2013)]. This is often sufficient, at
least when considering short cables and low frequencies. If
more general results are required, for example fast system
excitation caused by abrupt disturbances and perhaps
in very long cables (200 - 400 km), it would be more
appropriate to use a distributed parameter cable model
together with state-space (or transfer function) VSC-
models.

In this paper a VSC-HVDC system is modeled, comprising
VSC:s and AC-side dynamics, together with a distributed
parameter cable model, based on the one dimensional
damped wave equation. The system is linearized around
an arbitrary operational point and the resulting linear
infinitely dimensional model is based on the use of transfer
functions. It turns out that the system can be described
by two cascaded systems: One is a forward combination of
transfer functions that will be different, due to which input
signal and which output signal that are considered, but
always be input to output stable. The second is a feedback
system, where the forward subsystem is finite dimensional
and the return subsystem only depends on the infinite
dimensional cable model. The stability of this feedback
system, that remains the same for all combinations of
input and output signals, is analyzed by use of the Nyquist
criterion. Schemes and equations are deduced in the paper
and some simulations in frequency domain are showed as
well. The purpose is to provide a tool for small-signal
analysis of the total VSC-HVDC system, including a cable
model that is valid independently of the cable length or
which frequencies that can be considered due to a given
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cable model approximation. The focus is here on the
strong AC-grid case, making some simplifications possible.
However the weak-grid case can quite likely be treated by
the same approach.

2. PROBLEM FORMULATION

A standard VSC-HVDC system is described by Fig. 1. It
consists of two three-phase AC sources, which represent
the equivalent electrical systems that are connected by
the DC cable. At the AC-side of the VSC:s, the series
inductances (L1, L2) and resistances (R1, R2) represent
the AC reactor and the power losses in the converter. The
transmission line would be interpreted as a distributed
parameter model. The shunt capacitors at the terminals
are denoted by C1, C2 respectively.

2.1 Model and Control objectives

In a standard VSC-HVDC systems, one converter station
(VSC1) is assigned the duty as the DC voltage controller
to secure the stability of the DC-Bus voltage; the other
station (VSC2) operates as the active power controller to
guarantee and balance the power exchanges [Ooi andWang
(1990)]. Besides, in each VSC, it is possible to control
the reactive power or grid voltage at the AC side; this
is, however, not considered in this paper.

As the DC cable is modeled by a single Π-link, the stability
of the system can be investigated through the eigenvalue
calculation. However, the high frequency information is
not well interpreted by the Π-scheme cable model and thus
impossible to analyze the real dynamic influence from the
DC cable. The new standard VSC-HVDC model includes
the distributed parameter cable model and formulate the
transfer function into the block diagram as shown at Fig.2.
Therefore, if g1(s) is a rational function of ‘s’ and the
infinite dimensional transfer function h1(s) represents a
dissipative system, the feedback loop stability could be
analyzed by use of the Nyquist criterion.

Input
g1(s)

h1(s)

+
- Output

g0(s)

Fig. 2. General block diagram of VSC-HVDC system

2.2 Assumptions and statements

The main assumptions and statements of the proposed
model are the following:

• The connected AC grids are well balanced and strong,
i.e. the nominal AC grid voltage is as most subject to
small variation and the dynamics of Phase Locked
Loop and low pass filter for feed forward terms are
ignored.

• The model is derived in the so-called dq reference
plane, which is oriented according to the robust
Phase Locked Loop. The dynamic transformation
from three phase abc-frame into dq-frame is given by,
for example, [Mohan (2001)].

• The two VSC:s are ideal and symmetrical, having a
switching frequency of 1kHz. The relevant time delay
is half of the switching period, around 0.5 ms. After
design the system time constant is at least ten times
larger then 0.5ms, the time delays of the VSC’s are
negligible.

• The units for voltage, current and active power are
[kV], [kA] and [MW] respectively.

• All reference signals x are expressed as xref .
• The differential operator is expressed by ‘p’ and the
Laplace form of time domain variable x(t) is marked
by x̃(s).

3. SYSTEM MODEL

In this section, the dynamic equations of VSC is given in
the power invariant dq reference frame, where the frame
is chosen to be in alignment with the voltage direction
i.e. vsq0 = 0. For balanced and strong AC grid, the grid
frequency is assumed to be constant i.e. ω = 2πf0 and
f0 = 50Hz. Since the VSC:s are symmetric, the variables
and parameters in this section would not be subscribed,
i.e. index 1,2 are not used and which are applied to denote
different VSC:s.

The local controller of the VSC is separated into two cas-
caded parts: inner current controller and outer controller.
The inner current controller provides the voltage reference

(vrefcd and vrefcq ) to the pulse width modulator (PWM).
The d-axis outer controller is used to track the reference
of either DC voltage or active power and generates the

d-axis current reference (irefd ) to the inner current loop.
Since the q-axis current has no impact on the dynamics
at the DC side (after d- and q-dynamics decoupling), the
q-axis current reference (irefq ) is thus assumed to be zero.

3.1 Inner current loop

The AC current dynamics in the dq frame is given by:

L ·
did
dt

= −R · id + ωL · iq + vsd − vcd (1)

L ·
diq
dt

= −R · iq − ωL · id + vsq − vcq (2)

The current controller consists of one PI-controller and two
feed forward signals i.e. the grid voltage and cross coupling
current, which are given as following:

vrefcd = −(Kp +
Ki

p
)(irefd − id) + vsd + ωL · iq (3)

vrefcq = −(Kp +
Ki

p
)(irefq − iq) + vsq − ωL · id (4)

Due to the switching action of the PWM inside the
converter, a delay of half a switching period appears, where
Tsw = 1/(2fsw) = 0.5ms. If the design time constant of
the inner current loop is chosen ten times larger than the
delay Tsw, it is reasonable to ignore the impact of the delay

during the analysis of system dynamics i.e. vrefcd ≈ vcd
and vrefcq ≈ vcq [Harnefors et al. (2007)]. Consequently, the
dynamics between the d- and q-axis are decoupled.

It is also important to notice that, in order to cancel
the dominant pole (−R/L) in the external circuit of the
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Fig. 1. Standard VSC-HVDC system embedded in a strong AC environment

converter, the PI-parameters are designed as Kp = αcL
and Ki = αcR, where αc is the bandwidth of inner current
loop and the corresponding time constant is τc = 1/αc.
The linearized inner current closed loop is then simplified
as a first order system with bandwidth αc:

∆ĩd(s) =
αc

s+ αc
︸ ︷︷ ︸

Gc(s)

∆ĩrefd (s) (5)

∆ĩq(s) =
αc

s+ αc

∆ĩrefq (s) (6)

Note that the unavoidable uncertainties in the AC side
model parameters, L and R, from a practical point of view
are assumed to be quite small. Hence these uncertainties
will have only a minor impact on the inner current loop
performance. In addition, since the outer loop bandwidth
usually is designed to be at least ten times smaller than αc,
the effect caused by the inner loop parameter uncertainty
would not influence the entire system dynamics very
much. Therefore, the design of the inner current loop PI-
controller based on model parameters is well justified.

However, even if the inner current feedback loop is cas-
caded by a slower system in the outer loop, the inner loop
dynamics should not be ignored. This is due to that the
inner current feedback loop performs as a low pass filter for
the feed forwarded DC load power in the outer DC voltage
control loop, which is shown in Fig. 3. It guarantees that
no exceeded active power would be transmitted into the
DC side due to high frequency resonance at the DC side.

∆vrefDC+
-

vDC0Fd(s)

PI-controller

+

∆Pload

1
vsd0

∆irefd

DC voltage controller

αc

s+αc

∆id

inner
current

loop

Model
∆vDC

Fig. 3. DC voltage control loop (∆vsd is assumed to be
zero)

3.2 Direct voltage control loop

The DC voltage is determined by the capacitor charging
power that is the difference between input active power to
the VSC (assume the VSC is power lossless) and DC load
power:

d

dt
(
1

2
C · v2DC) = P − Pload (7)

⇒ C · vDC0 ·
d∆vDC

dt
= ∆P −∆Pload (8)

Therefore, the linearized expression of the input active
power and DC load power are required:

P = Re{(vsd0 +∆vsd + j∆vsq)(id0 +∆id − jiq0 − j∆iq)}

≈ vsd0id0
︸ ︷︷ ︸

P0

+ vsd0∆id + id0∆vsd + iq0∆vsq
︸ ︷︷ ︸

∆P

(9)

Pload = (vDC0 +∆vDC)(iDC0 +∆iDC)

≈ vDC0iDC0
︸ ︷︷ ︸

Pload0

+ vDC0∆iDC + iDC0∆vDC
︸ ︷︷ ︸

∆Pload

(10)

(9) shows that ∆P is proportional to ∆id and independent
with ∆iq. Therefore, the output of DC voltage controller,
i.e. the d-axis reference current, could be designed through
the reference input active power. The reference input
active power is the sum of a PI-controller operating on
the error of DC voltage square and feed forward DC load
power:

P ref =

(

Kpd +
Kid

p

)

︸ ︷︷ ︸

Fd(p)

·ν + Pload (11)

ν =
(vrefDC)

2 − v2DC

2

irefd =
P ref

vsd
(12)

⇒ ∆P̃ ref = Fd(s)vDC0(∆ṽrefDC −∆ṽDC) + ∆P̃load (13)

∆ĩrefd =
1

vsd0
∆P̃ ref −

P0

v2sd0
∆ṽsd (14)

Combining equations (8-10), (13-14) and the inner current
loop (5), the linearized expression of DC voltage is given
as following, where ∆vsq is assumed to be zero (due to fast
PLL dynamics):

∆ṽDC = (CvDC0s+ vDC0FdGc + iDC0(1−Gc))
−1

·

· [vDC0FdGc ·∆ṽrefDC − vDC0(1−Gc) ·∆ĩDC+

+ id0(1 −Gc) ·∆ṽsd] (15)

After designing the PI-controller parameters as Kpd =

2Cζωnd andKid = Cω2
nd, the transfer function from∆vrefDC

to ∆vDC is given at (16). The approximation is based on
the assumption that the inner current loop is much faster
than the outer loop and thus Gc(s) ≈ 1. However, this
assumption is only used to analyze the transfer function

from ∆vrefDC to ∆vDC but not for the entire two terminal
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VSC-HVDC system.

∆ṽDC

∆ṽrefDC

=
vDC0Fd(s)Gc(s)

CvDC0s+ vDC0Fd(s)Gc(s) + iDC0(1−Gc(s))

≈
vDC0Fd(s)

CvDC0s+ vDC0Fd(s)

=
2ζωnds+ ω2

nd

s2 + 2ζωnds+ ω2
nd

(16)

A common requirement of the closed loop DC voltage
dynamics is to have a bandwidth ten times smaller than
the inner loop [Harnefors et al. (2007)] so that the DC
voltage would not be sensitive to the DC load power. In
addition, the damping ratio is chosen around 1 in order to
decrease the DC voltage overshoot. As ζ = 1, the relation
between the natural frequency ωnd and the DC voltage
bandwidth αd is:

ωnd =

√

−(2ζ2 + 1) +
√

(2ζ2 + 1)2 + 1 · αd ≈ 0.4αd

(17)

3.3 Active power control loop

For the outer controller of transmitted active power, again
a PI-controller is used. The controller parameters are
designed by inner current loop pole cancelation, choosing
the bandwidth of the outer loop as αp = 0.2αd. Therefore,
the DC voltage would not display large oscillations during
the variations of transmitted active power. The linearized
differential equations of the active power control loop are
derived as following:

irefd = (Kpp +
Kip

p
)(P ref − P )/vsd (18)

⇒ ∆ĩrefd =
1

vsd0
(Kpp +

Kip

s
)(∆P̃ ref −∆P̃ ) (19)

Combining equations (8-10), (19) and the inner current
loop (5), the linearized expression of active power and DC
voltage is given as following, where ∆vsq is assumed to be
zero and Kpp = αp/αc, Kip = αp:

∆P̃ =
αp

s+ αp
︸ ︷︷ ︸

Gp(s)

·∆P̃ ref +
id0s

s+ αp

·∆ṽsd (20)

∆ṽDC = (CvDC0s+ iDC0)
−1(Gp(s) ·∆P̃ ref+

+ id0(1−Gp(s)) ·∆ṽsd − vDC0 ·∆ĩDC) (21)

It can be seen from above equations that, for active
power controller, the AC dynamics is independent with
DC dynamics but not reversely.

3.4 DC cable

The conventional method of approximating a transmission
line is to replace the line by cascaded lumped RLGC-
sections, which is shown in Fig. 4. The terminal voltage
and current are represented by vDC1, vDC2, iDC1 and
iDC2. The cable parameters are given by r, l, g, c and
d, which are the cable density of resistance, inductance,
conductance, capacitance and the cable length.

Cable

vDC2(t)=vDC(d,t)

iDC2(t)=-iDC(d,t)

vDC1(t)=vDC(0,t)

iDC1(t)=iDC(0,t)

vDC(x,t)

iDC(x,t)

vDC(x+ ,t)

iDC(x+ ,t)

RLGC-section

Fig. 4. DC cable model

At an arbitrary distance ‘x’ from terminal 1, the voltage
vDC and current iDC obey:

∂vDC(x, t)

∂x
+ r · iDC(x, t) + l ·

∂iDC(x, t)

∂t
= 0 (22)

∂iDC(x, t)

∂x
+ g · vDC(x, t) + c ·

∂vDC(x, t)

∂t
= 0 (23)

These well known transmission line equations are readily
derived directly from Fig. 4, after letting the element ∆x
approach zero. Taking the Laplace transforms of these two
linear PDE:s and eliminating iDC , the following ordinary
differential equation is obtained:

d2ṽDC(x, s)

dx2
− (r + l · s)(g + c · s) · ṽDC(x, s) = 0 (24)

The boundary conditions are:

ṽDC(0, s) = ṽDC1(s) (25)

ṽDC(d, s) = ṽDC2(s) (26)

Introducing the complex damping factor per unit length γ
and the wave admittance Y0:

γ(s) =
√

(c · s+ g)(l · s+ r) (27)

Y0(s) =

√
c · s+ g

l · s+ r
(28)

Define the current from the AC to DC side as positive,
implying that the terminal currents iDC1(t) = iDC(0, t)
and iDC2(t) = −iDC(d, t) (see Fig. 4). We can formulate a
relationship between the terminal currents and voltages:

[
ĩDC1(s)
ĩDC2(s)

]

=

[
h1(s) −h2(s)
−h2(s) h1(s)

]

·

[
ṽDC1(s)
ṽDC2(s)

]

(29)

Further, letting Γ(s) = γ(s) · d, the functions h1 and h2

are obtained as:

h1(s) = Y0(s) coth(Γ(s)) (30)

h2(s) =
Y0(s)

sinh(Γ(s))
(31)

As the cable system itself is dissipative, the functions h1(s)
and h2(s) have infinite numbers of poles strictly located
in the left half plane.

4. BLOCK DIAGRAM OF TWO TERMINAL
VSC-HVDC SYSTEM

As previously mentioned, the VSC-HVDC system is as-
sumed to be embedded in a strong AC environment. Here
the DC cable is described by a distributed parameter
model, not to be restricted to the study of short cables
and low frequencies. In the control system, the converter
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∆vrefDC1

∆vDC1

+
-

(Kpd +
Kid

s
)vDC10αc

s+αc

+ - 1
vDC10C1

· 1
s

∆vDC1

h1(s)
+
-

∆iDC1

vDC10

∆P ref
2 +

-
∆P2

αp

s

+
-

1
vDC20C2

· 1
s

∆vDC2

h1(s)
+ -

vDC20

+ +
-

iDC10

P10

vsd10

∆vsd1

s
s+αc

-
++

iDC20

∆vsd2
P20

vsd20

+

h2(s)

h2(s)

DC cable

Fig. 5. Linearized VSC-HVDC system

VSC1 is assigned the duty of controlling the DC voltage
and VSC2 of controlling the transmitted active power. The
block diagram illustrating this case is found in Fig. 5.

In the linearized system, there are two reference signals,

∆vrefDC1 and ∆P ref
2 , and two AC grid disturbances, ∆vsd1

and ∆vsd2, considered as inputs. From (20), it is clear that
the active power ∆P2 is independent of DC side variations

and depends on the inputs ∆P ref
2 and ∆vsd2. Therefore,

the DC grid voltage ∆vDC1 and ∆vDC2 have been chosen
as the system outputs.

Use Fig. 5, rewrite equations (15), (21) and combine with
the DC cable dynamics (29):

∆ṽDC1 = g11∆ṽrefDC1 +
id10g11s

vDC10αcFd

∆ṽsd1 −
g11s

αcFd

∆ĩDC1

(32)

∆ṽDC2 =
g12Gp

vDC20
∆P̃ ref

2 +
id20(1−Gp)g12

vDC20
∆ṽsd2 − g12∆ĩDC2

(33)

∆ĩDC1 = h1∆ṽDC1 − h2∆ṽDC2 (34)

∆ĩDC2 = −h2∆ṽDC1 + h1∆ṽDC2 (35)

Where,

g11 =
vDC10FdGc

C1vDC10s+ vDC10FdGc + iDC10(1−Gc)
(36)

g12 =
vDC20

C2vDC20s+ iDC20
(37)

Insert (34) and (35) into (32) and (33):

[

1 +
g11s

αcFd

h1 −
g11s

αcFd

h2

−g12h2 1 + g12h1

]

︸ ︷︷ ︸

Λ(s)

[
∆ṽDC1

∆ṽDC2

]

=






g11 0
id10g11s

αcvDC10Fd

0

0
g12Gp

vDC20
0

iDC20(1−Gp)g12
vDC20






︸ ︷︷ ︸

Φ(s)







∆ṽrefDC1

∆P̃ ref
2

∆ṽsd1
∆ṽsd2







(38)

Thus, the MIMO transfer function between inputs and
outputs is given by:

[
∆ṽDC1

∆ṽDC2

]

= Λ−1Φ







∆ṽrefDC1

∆P̃ ref
2

∆ṽsd1
∆ṽsd2







(39)

Noting from (29) that the DC cable dynamics is symmetric
and as h2

1(s) − h2
2(s) ≡ Y 2

0 (s), the determinant of the
matrix Λ is independent of the irrational function h2(s).

In addition, this conclusion can be extended to weak AC
grid or the case considering the dynamics of PLL and the
low pass filter for the feed forwards at each VSC, again see
[Harnefors et al. (2007)].

From what is mentioned above, it is possible to rewrite the
block diagram of each input output combination into the
form of Fig. 2, where g1(s) is determined by det(Λ) and
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unique for all input output combinations. The determinant
of Λ and g1 are then given by:

det(Λ) = (1 +
g11g12s

αcFd

Y 2
0 )

︸ ︷︷ ︸

g1d(s)

+(g12 +
g11s

αcFd

)

︸ ︷︷ ︸

g1n(s)

·h1 (40)

g1(s) =
g1n(s)

g1d(s)
(41)

1

det(Λ)
=

g1
1 + g1h1

·
1

g1n
(42)

Unlike g1(s) which remains the same, g0(s) depends on
which element of the MIMO transfer function Λ−1Φ that
is picked out due to choice of input and output signals.

As normally ∆vrefDC1 = 0 (implying that vrefDC1 = vDC10),
the most encountered situation is a change in the desired

transmitted power ∆P ref
2 and its impact on the DC line

voltage ∆vDC1. At the same time, no AC disturbances are

considered. Therefore, the transfer function from ∆P ref
2

to ∆vDC1 is deduced below.

4.1 Dynamics from ∆P ref
2 to ∆vDC1

The forward path function g0(s) corresponding to the

input ∆P ref
2 and output ∆vDC1 is:

g0(s) =
g11g12Gps

vDC20αcFdg1n
︸ ︷︷ ︸

f1(s)

h2(s) (43)

The block diagram from ∆P ref
2 to ∆vDC1 is illustrated at

Fig. 6, where f1(s) is a rational function with respect to
‘s’ and h2(s) has infinite number of stable poles.

∆P
ref
2

f1(s) h2(s) g1(s)

h1(s)

+
-

∆vDC1

g0(s)

Fig. 6. Block diagram from ∆P ref
2 to ∆vDC1

Insert (36), (37) into (43), the expression of f1(s) is given
as following:

f1(s) =
αps

vDC20(s+ αp)Q3(s)
(44)

Q3(s) = (C1 + C2)s
3 + (C1αc +

iDC10

vDC10
+

iDC20

vDC20
)s2+

+ αcKpds+ αcKid (45)

In order to guarantee the roots of Q3(s) are located at the
left half plane, the following inequality should be hold:

C1αc +
iDC10

vDC10

+ iDC20

vDC20

C1 + C2
>

Kid

Kpd

=
ωnd

2ζ
(46)

For the purpose of less transmission losses, the DC voltage
drop between two terminals should be small, which implies
that iDC10/vDC10 + iDC20/vDC20 is much less than C1αc.
In addition, the bandwidth of inner current loop αc is
designed to be ten times larger than the DC voltage loop.
Therefore the inequality holds for all reasonable design of
PI-controllers and the poles of f1(s) have strictly negative
real part and are thus stable.

Similarly, it can be proved that the feed forward path
function g0(s) is stable for all the input output combi-
nations. Therefore, the entire system stability in practice
only depends on the feedback loop dynamics.

5. CLOSED LOOP STABILITY ASSESSMENT

As was previously concluded, for reasonably designed PI-
parameters, the entire system stability only relies on the
feedback loop g1(s)/[1 + g1(s)h1(s)], where g1(s) is a
rational function with respect to ‘s’ and h1(s) is input to
output stable. Therefore, the number of unstable poles of
the open loop transfer function g1(s)h1(s) is determined
by g1(s), where g1(s) is:

g1(s) =
Q3(s)(ls+ r)

P5(s)
(47)

P5(s) = (ls+ r)(C2s+
iDC20

vDC20
)[C1s

3 + (C1αc +
iDC10

vDC10
)s2

+ αcKpds+ αcKid] + s2(cs+ g) (48)

Assuming a closed path Υ, enclosing all of the right
half complex s-plane and having the clockwise positive
direction, we can apply the Nyquist criterion: The number
of anti-clockwise encirclements around the point (-1,0)
in the g1(s)h1(s)-plane should, for a stable closed loop
system, equal the number of open loop unstable poles of
g1(s), as h1(s) is already a stable function [Astrom and
Murray (2008)].

In the case study setup, the VSC-HVDC system parame-
ters and initial states are listed in Table1. There are two
cases that would be discussed in this section: one example
is using the rectifier (AC→DC) as DC voltage controller
(standard situation) and the other is using the inverter
(DC→AC) as DC voltage controller.

Table 1. Parameter of VSC-HVDC system

Cable distance d 50,150,450 km

Cable inductance density l 0.189 mH/km

Cable capacitance density c 0.207 µF/km

Cable resistance density r 0.0376 Ω/km

Cable conductance density g 0 S/km

Phase reactor inductance L 53 mH

Phase reactor resistance R 0.167 Ω

DC shunt capacitor C 33 µF

Rated AC voltage (dq-frame) vsd0 200 kV

Rated DC voltage vDC0 300 kV

Rated transmission power P0 600 MW

System frequency f 50 Hz

5.1 Rectifier performs as DC voltage controller

If the rectifier controls the DC voltage and the inverter
controls the transmitted active power, the steady states
are vDC10 = 300kV and P20 = −600MW . The poles of
g1(s) with different cable distances are given in Table 2.
For all three cable distances, there is one unstable pole of
the open loop transfer function g1(s)h1(s).

The Nyquist plots of the transfer functions g1(jω)h1(jω)
with different cable distances are given in Fig. 7. It
shows that for all three cases, g1(jω)h1(jω) anti-clockwise
encircles the critical point (-1,0) once, which is equal to
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Table 2. Poles of g1(s) with P20=-600MW

d Poles of g1(s)

50 23.9 -3.3+3.4j -3.3-3.4j -206.8+954j -206.8-954j

150 25.3 -3.3+3.5j -3.3-3.5j -204.5+951j -204.5-951j

450 31.3 -3.3+3.5j -3.3-3.5j -194.7+938j -194.7-938j

the number of positive poles of g1(s)h1(s). Consequently,
for the different cable distances, d=50km, 150km, 450km,
the VSC-HVDC system remains stable at the operational
point vDC10=300kV and P20=-600MW.
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Fig. 7. Nyquist plot of g1h1(jω) with P20 = −600MW :
d=50km (solid blue); d=150km (dashed red);
d=450km (dashed dotted black)

5.2 Inverter performs as DC voltage controller

If instead the inverter controls the DC voltage and the
rectifier controls the transmitted active power, the steady
states are vDC10 = 300kV and P20 = 600MW . The poles
of g1(s) with different cable distances are given in Table 3.
For all three cases, there are two unstable poles of the open
loop transfer function g1(s)h1(s).

Table 3. Poles of g1(s) with P20=600MW

d Poles of g1(s)

50 1.2+11.5j 1.2-11.5j -3.6 -198+994j -198-994j

150 1.1+11.3j 1.1-11.3j -3.6 -195+995j -195-995j

450 0.95+10.6j 0.95-10.6j -3.6 -190+996j -190-996j

The Nyquist plots of the transfer functions g1(jω)h1(jω)
with different cable distances are given in Fig. 8. It
shows that for all three cases, g1(jω)h1(jω) anti-clockwise
encircles the critical point (-1,0) twice, which is equal to
the number of positive poles of g1(s)h1(s). Consequently,
for the different cable distances, d=50km, 150km, 450km,
the VSC-HVDC system remains stable at the operational
point vDC10=300kV and P20=600MW.
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Fig. 8. Nyquist plot of g1h1(jω) with P20 = 600MW :
d=50km (solid blue); d=150km (dashed red);
d=450km (dashed dotted black)

6. CONCLUSIONS

A mathematical model for small-signal stability analysis
of a two terminal VSC-HVDC system with a distributed
parameter DC cable model has been presented. Due to the
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symmetric properties of the cable model, the block dia-
gram of each input output combination could be rewritten
as in Fig. 2, where g0(s) is stable with reasonable design of
the DC voltage PI-controller and the forward path of the
feedback loop, g1(s), is a rational function of ‘s’ and the
return path h1(s) is dissipative. Using this approach, the
small-signal stability could be analyzed by the Nyquist
criterion. Two examples have been illustrated, showing
that in both cases with either the rectifier or the inverter
working as DC voltage controller, the system is stable for
three different cable distances d=50km, 150km, 450km.

The proposed method enables the VSC-HVDC system
stability to be determined with arbitrary DC cable length
and not limited to short length cable model approxima-
tions. Further, no assumptions of low frequency bands are
demanded by using the distributed parameter cable mod-
el. The proposed approach to stability analysis could in
principle be extended into the weak grid AC environment
case. Some more (rational) transfer functions have then to
be taken into account as well.
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