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Abstract: In this paper, a new fault diagnosis methodology based on nonlinear system
modelling and frequency analysis is developed. The method is derived via resolving several
fundamental issues associated with conducting system fault diagnosis using the NARMAX
(Nonlinear Auto-Regressive Moving Average with eXougenous inputs) modelling and NOFRFs
(Nonlinear Output Frequency Response Functions) based frequency analysis, which was recently
proposed and extends the well-known linear system modelling and FRF (Frequency Response
Function) based frequency analysis to the nonlinear case. Simulation studies verify the
effectiveness of the new method and demonstrate the performance of the method when applied to
address a mechanical structural system fault diagnosis problem. The new methodology has the
potential to resolve a wide range of input output data based engineering system fault diagnosis
problems
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1. INTRODUCTION

Fault diagnosis can ensure reliable and safe operations of
engineering systems and is therefore very important in a
wide range of engineering disciplinary areas.

There are many available fault diagnosis strategies in-
cluding, for example, parity equations Chow and Willsky
[1984], state observers Patton et al. [1989], Frank et al.
[2000], and system identification Isermann [2005, 2006],
etc. In these approaches, faults are either represented as
unknown inputs or disturbances to model parameters. The
model parameter change based fault representations are
capable to represent component wear and sensor failure,
and it has been well recognized that system identification
approaches are more adequate for dealing with associated
fault diagnosis problems Venkatasubramanian et al. [2003].
However, this requires a very detailed physical model of the
underlying system, which is often not feasible in practice
Venkatasubramanian et al. [2003]. One way to circumvent
this difficulty is to use discrete time data based black-box
modelling and frequency response function (FRF) based
model analysis in which the main features of the FRF are
used for the characterization of faults in a system. The
well-known modal analysis based fault diagnosis for civil
and mechanical structural systems is, for example, a typ-
ical and widely applied approach in this category Cunha
et al. [2006].The basic principle behind this approach is
that any variations in the characteristics of physical sys-
tems can be reflected by the changes in the system FRFs.
Consequently, the changes in the system FRF can be

used to conduct system fault diagnosis. However, in most
practical cases where this approach is applied, underlying
systems are assumed to be linear. This is basically because
the FRF is a well-known linear system concept.

In order to extend the system modelling and frequency
analysis based fault diagnosis approach to the nonlin-
ear case, problems with nonlinear system modelling and
nonlinear system frequency domain analysis have to be
addressed. The black-box modelling for nonlinear systems
has been well studied. There are many methods that can
be used to identify so-called NARMAX (Nonlinear Auto-
Regressive Moving Average with eXogeneous input) mod-
els for nonlinear systems which include neural networks
and polynomial nonlinear system models Billings [2013].
The frequency domain analysis of nonlinear systems has
also been extensively studied. The direct extension of the
linear system frequency domain analysis to the nonlinear
case is based on the concept of Generalised Frequency
Response Functions (GFRFs) proposed by George [1959].
The GFRFs are an extension of the concept of FRF to
the nonlinear case under the assumption that the under-
lying nonlinear systems can be described by a convergent
Volterra series. This assumption is valid if so-called fading
memory condition - the system response is only depen-
dent on recent inputs but independent from inputs in the
remote past - is satisfied by the system Boyd and Chua
[1985], which is equivalent to that the nonlinear system
is stable about an equilibrium and therefore holds in very
general practical situations.
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The combination of the black box nonlinear system mod-
elling and GFRF based frequency analysis has been pro-
posed for many years and applied in studies in different
science and engineering areas including engineering system
fault diagnosis Billings [2013], Tang et al. [2010]. However,
due to the multi-dimensional nature of the GFRFs, the
GFRFs can only be fully displayed up to the second
order. This implies that the well-established Bode diagram
based linear system frequency domain analysis cannot be
generally extended to the nonlinear case using the concept
of GFRFs. Consequently, there is a real need to derive a
systematic approach that can be generally applied in prac-
tice to analyse an identified model of nonlinear engineering
systems in the frequency domain and then conduct the
system fault diagnosis using the frequency domain features
of the systems.

In order to resolve the difficulties with the practical appli-
cation of GFRFs and to achieve the objective of developing
a frequency analysis method that can be applied to a
wide range of nonlinear systems, researchers have made
considerable efforts Lang and Billings [2005], Lang et al.
[2007], Nuij et al. [2006], Pavlov et al. [2006], Feijoo et al.
[2004], Vazquez Feijoo et al. [2010]. Among these, the con-
cept of Nonlinear Output Frequency Response Functions
(NOFRFs) proposed by Lang and Billings [2005], has not
only provided a new extension of FRF to the nonlinear
case but, as having been demonstrated by a wide range of
recent studies Peng et al. [2011, 2007a,b], also has potential
to profoundly solve problems with the GFRFs etc avail-
able nonlinear frequency analysis methods. In addition, a
framework that combines the NARMAX modelling and
NOFRFs based frequency analysis has been proposed to
conduct engineering system fault diagnosis and the per-
formance of this basic idea has been demonstrated by
experimental data analysis Peng et al. [2011].

Under the framework of NARMAX modelling and NOFRF
based frequency analysis, the fault diagnosis for an engi-
neering system is conducted by analysing the frequency
domain features of an identified nonlinear model of the
system represented by the systems NOFRFs which rep-
resent the frequency characteristics of the system using a
series of one-dimensional functions of frequency. There are
many fundamental issues that have to be systematically
addressed before the ideas behind this framework can be
widely applied in engineering system fault diagnosis. These
include how to accurately determine the NOFRFs from an
identified nonlinear model of the system under inspection,
how to extract representative frequency domain features
of the system from the NOFRFs, and how to conduct
fault diagnosis for the system using the extracted system
frequency domain features.

The present study is concerned with the derivation of effec-
tive algorithms and methods to resolve these fundamental
issues associated with the application of the framework
of NARMAX modelling and NOFRFs based frequency
analysis to engineering system fault diagnosis, and to
demonstrate the effectiveness of these new algorithms and
methods in fault diagnosis applications by simulation stud-
ies.

The paper is constructed as follows. Section 2 introduces
the basic idea of fault diagnosis based on nonlinear system

modelling and frequency analysis. Section 3 is dedicated
to the derivation of a new algorithm for the determination
of NOFRFs, which is the key technique to the new fault
diagnosis method proposed in the present study. In Section
4, the detailed procedure of the new method is described
and necessary analyses and discussions are provided. Sec-
tion 5 is concerned with simulation studies. Finally the
conclusions are presented in Section 6.

2. FAULT DIAGNOSIS BASED ON NONLINEAR
SYSTEM MODELLING AND FREQUENCY

ANALYSIS

In engineering practice, faults can often be characterized as
disturbances to system physical parameters. In structure
health monitoring, for example, the condition of material
can be assessed by its Young modulus. However, directly
using these physical quantities is often not feasible, as they
may not be directly measurable. These problems can often
be addressed by evaluating the changes in a representation
such as, e,g., FRF of the system characteristics as the
changes in the representation can reflect the changes
in system parameters. This is why estimating natural
frequencies and mode shapes have proved to be more
convenient ways to determine the condition of structural
systems in mechanical and civil engineering.

Given input-output data of a system, measuring the sys-
tem FRF can be effectively carried out by linear system
modelling, for which a wide variety of techniques are
available. Once the FRF has been obtained, an automated
procedure, such as, e.g., comparison with a priori known
patterns of FRF can be applied to facilitate the assessment
if there are any changes in the system parameters.

The method above requires the systems to be linear, which
may not be the case in practice. When the effect of non-
linearities cannot be neglected, system modelling can be
achieved by using well known approaches such as the NAR-
MAX modelling Leontaritis and Billings [1985]. However,
the corresponding frequency analysis is more complicated,
as the FRF concept is no longer valid. Extensions of the
FRF concept to nonlinear cases have been widely studied,
but can only be applied to particular classes of nonlinear
systems using approaches such as describing functions Nuij
et al. [2006] and generalised frequency response functions
(GFRFs) George [1959].

The concept of NOFRFs were recently proposed to over-
come the problems with these available nonlinear system
frequency analysis approaches. Consider discrete time sys-
tems that can be described by the Volterra Series

y(t) =
∑
n

yn(t) (1)

yn(t) =

∞∑
k1=−∞

. . .

∞∑
kn=−∞

hn(kn)

n∏
i=1

u(t− ki) (2)

where yn(t) denotes the n-th order Volterra functional and
hn(kn) = hn(k1, . . . , kn) is known as the n-th order kernel.
Applying the Discrete Fourier Transform (DFT) to (2)
yields

Yn(ω) =
∑

. . .
∑

Hn(ωn)

n∏
i=1

U(ωi) (3)
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where the summations are computed over all frequencies
for which ω1 + . . . + ωn = ω. The n-dimensional function
Hn(ωn) = Hn(ω1, . . . , ωn) is the DFT of the n-th order
Volterra kernel and called n-th order GFRF.

The concept of NOFRFs was proposed in this context and
defined as Lang and Billings [2005]

Gn(ω) =
Yn(ω)

Un(ω)
, |Un(ω)| 6= 0 (4)

where Un(ω) is given by

Un(ω) = DFT{u(t)n} =
∑

. . .
∑ n∏

i=1

U(ωi) (5)

which can be called the generalised input spectrum where
the summations are computed in the same way as in (4).

For a given input, the NOFRFs of nonlinear system (1)-
(2) up to the n-th order provide a representation for
the system characteristics by a series of one-dimensional
functions of frequency. These functions of frequency are of
the nature similar to that of the FRF of linear systems
because of the following attractive properties, Lang and
Billings [2005]

• Gn(ω) is a one-dimensional function
• The frequency range of Gn(ω) is the same as that of
Yn(ω) and Un(ω)
• Yn(ω) can be described similarly to a linear system

output frequency response
• Gn(ω) is input dependent, but is the invariant to gain

changes in U(ω).

Consequently, a framework that combines the NARMAX
modelling and NOFRFs based frequency analysis has been
proposed to conduct engineering system fault diagnosis
Peng et al. [2007a]:

(i) Identifying a NARMAX model for the system under
inspection from the input output data

(ii) Determining the NOFRFs of the system from the
identified NARX model.

(iii) Extracting the frequency domain features of the
system from the determined NOFRFs, and

(iv) Conducting fault diagnosis for the system using the
extracted frequency domain features

and the effectiveness of the basic idea in each step has been
demonstrated by experimental data analysis.

However, the works reported in Peng et al. [2007a] are
preliminary feasibility studies. Comprehensive investiga-
tions on the algorithms/methods that can be applied to
implement each of the four steps are needed to literally
establish a methodology that can be directly applied to
the fault diagnosis of a wide range of engineering systems.

The present study is motivated by these needs. The works
are mainly concerned with deriving a new and more effec-
tive algorithm to determine the NOFRFs from an identi-
fied system NARMAX model for Step (ii), and developing
a systemic Principle Component Analysis (PCA) based
NOFRFs feature extraction method and a Neural Network
(NN) based fault diagnosis system for Steps (iii) and (iv).
These will be the focuses of Sections 3 and 4, respectively.

3. A METHOD FOR ACCURATE DETERMINATION
OF NOFRFS UP TO AN ARBITRARY ORDER

Because nonlinear system identification has been compre-
hensively studied and there are a wide range of algorithms
that can be applied to find the NARMAX model of a
nonlinear system, Step (i) in the general framework in-
troduced in Section 2 above can be relatively easily ad-
dressed. In Step (ii) of this framework, the NOFRFs of an
inspected system need to be determined from an identified
system. In Peng et al. [2011], this was achieved by using
a Least Squares based numerical approach, which relies
on a correct assumption for the maximum order of the
system Volterra series representation, easily suffers from
many numerical problems and, consequently, often cannot
be used to accurately determine the system NOFRF up
to any order. In order to address these problems, in this
section, a new algorithm for the determination of NOFRFs
is derived by exploiting the idea of Associated Linear
Equations (ALEs) Feijoo et al. [2004] and extending the
basic results of ALEs to the general NARMAX model.

Consider the NARX (Nonlinear Auto-Regressive with eX-
ougenous inputs) model of a nonlinear system described
by the following discrete-time polynomial model

Ay(t) = B u(t) +

M∑
m=1

cmFm(t) (6)

Fm(t) =

L∏
l=1

y(t− l)p(m,l) u(t− l)q(m,l) (7)

where A and B are linear, time-shifting operators and
p(m, l) and q(m, l) are non-negative integers such that
p(m, l) + q(m, l) ≥ 2. Model (6)-(7) can be obtained from
step (i) of the general framework by fitting a polynomial
NARMAX model to the system input-output data and
then setting the error terms to zero.

The basic idea of the new algorithm is to determine the
NOFRFs directly using definition (4). This requires de-
coupling the system n-th order output frequency response
Yn(ω) from the system output frequency response Y (ω).
For this purpose, the concept of ALEs is exploited. For
nonlinear systems described by NARX model (6)-(7), the
ALEs are linear difference equations with respect to yn(t)
whose right-hand sides depend only on u(t) and the system
nonlinear outputs of orders lower than n. Consequently,
yn(t) can be found by recursively solving these linear
deference equations, and the system NOFRFs can then
be determined using (4). However, available methods for
obtaining ALEs can only deal with a specific class of non-
linear systems Feijoo et al. [2004]. In order to extend the
ideas of formulating and solving ALEs to the much more
general NARX model (6)-(7), the following proposition is
derived.

Proposition 1. The n-th order ALE of system (6) can be
described as

Ayn(t) = B u(t) n = 1 (8)

Ayn(t) =

M∑
m=1

cm ψm(t)
∑
Sm

ρm φm(t) n ≥ 2 (9)

where
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ρm =

∏L
l=1 p(m, l) !∏L

l=1

∏Jm

j=1 r(m, l, j) !
(10)

ψm(t) =

L∏
l=1

u(t− l)q(m,l) (11)

φm(t) =

L∏
l=1

Jm∏
j=1

yj(t− l)r(m,l,j) (12)

Jm = n−
L∑

l=1

q(m, l) + p(m, l) + 1 (13)

and Sm is the set of all non-negative integer solutions of
the following Diophantine system

Jm∑
j=1

r(m, l, j) = p(m, l) 1 ≤ l ≤ L (14)

L∑
l=1

Jm∑
j=1

(j − 1) r(m, l, j) = Jm − 1 (15)

Proof. Omitted due to page limitation

According to Proposition 1, the n-th order ALE for system
(6)-(7) can readily be obtained by using the algorithm as
follows.

Algorithm for determining the n-th order ALE

• Step 1 Write down ψm(t), as in (11)
• Step 2 Build the associated Diophantine system (14)-

(15)
• Step 3 Find all solutions of the Diophantine system
• Step 4 For each solution found in Step 3, write down:

· Step 4.1 The coefficient ρm, as in (10)
· Step 4.2 The term φm(t), as in (12)
· Step 4.3 The product ρmφm(t)

• Step 5 Obtain the sum of all terms found in Step 4.3
• Step 6 Multiply the results of Step 5 and Step 1
• Step 7 Multiply the result of Step 6 by cm
• Step 8 Sum all terms found in Steps 1-7
• Step 9 Obtain the left-hand side of the n-th order

ALE as Ayn(t) and the right-hand side as the result
of Step 8

In order to demonstrate how the procedure works, consider
a specific case of system (6)-(7) where A, B and c1 are
arbitrary, M = 1, L = 2 and F1 = y(t− 1)2u(t− 1).

In this case, for n = 1, the ALE can be obtained as
Ay1(t) = B u(t) (16)

For n = 2, steps 1-4 yield:

• Step 1 ψ1(t) = u(t− 1)
• Step 2 See Table 1
• Step 3 See Table 1
• Step 4 Solutions do not exist, indicating this system

does not have a 2-nd order ALE

For n = 3:

• Step 1 ψ1(t) = u(t− 1)
• Step 2 See Table 1
• Step 3 See Table 1
• Step 4

· Step 4.1 ρ1 = 1

· Step 4.2 φ1(t) = y1(t− 1)2

· Step 4.3 ρ1φ1(t) = y1(t− 1)2

• Step 5 y1(t− 1)2

• Step 6 y1(t− 1)2u(t− 1)
• Step 7 c1y1(t− 1)2u(t− 1)
• Step 8 c1y1(t− 1)2u(t− 1)
• Step 9 Ay3(t) = c1 y1(t− 1)2u(t− 1)

Table 1. Diophantine systems of example

n Jm System Number of solutions

2 0
r(1, 1, 1) = 2

0
0 = −1

3 1
r(1, 1, 1) = 2

1
0 = 0

Once the ALEs up to order n are known, the system
NOFRFs can be readily computed for a given input, using
the following algorithm

Algorithm for determining the NOFRFs

• Step 1 Write down all ALEs up to order n
• Step 2 Solve the ALE system for yi(t), 1 ≤ i ≤ n
• Step 3 Determine the i-th order NOFRF Gi(ω) as

follows:
· Step 3.1 Compute Yi(ω) = DFT{yi(t)}
· Step 3.2 Compute Ui(ω) = DFT{u(t)i}
· Step 3.3 Compute Gi(ω) = Yi(ω)/Ui(ω)

It is worth pointing out that this algorithm can be used to
accurately determine the NOFRFs of a nonlinear system
up to an arbitrary order from the NARX model of the
system. Because there is no need to know the maximum
order of the system’s Volterra series representation, the
algorithm overcomes all the problems with the numerical
approach originally proposed in Lang and Billings [2005].
In the next section, by using the novel algorithm as the
core technique, a new fault diagnosis method under the
general framework of nonlinear systems modelling and
frequency analysis will be proposed.

4. A NEW FAULT DIAGNOSIS METHOD BASED ON
NONLINEAR SYSTEM MODELLING AND

FREQUENCY ANALYSIS

The general framework introduced in Section 2 indicates
that the fault diagnosis using nonlinear systems modelling
and frequency analysis include four steps. In this section,
a method will be proposed which includes specific proce-
dures for each of these steps and can therefore be literally
applied to conduct fault diagnosis for systems directly from
the input and output data.

Step (i) in the general framework can, as already men-
tioned above, be effectively addressed using well estab-
lished nonlinear system identification methods. In the
proposed method, the PRESS statistics based NARMAX
modelling approach Li et al. [2013] will be applied due
to its distinctive advantages of being able to integrate
modelling and model validation into one single procedure.

Step (ii) is concerned with the determination of NOFRFs
from an identified NARX model which will be imple-
mented using the effective algorithm proposed in Section
3 above.
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In order to implement Step (iii), the n-th order NOFRF
obtained from Step (ii) under a given input with band
width [0, b] are described as

Gn(ω) = αn(ω) exp (j θn(ω)) (17)
where αn(ω) and θn(ω) are real functions representing
the amplitude and phase of the n-th order NOFRF,
respectively. Define:

αT
n = [ αn(0) . . . αn(nb) ] (18)

θTn = [ θn(0) . . . θn(nb) ] (19)
to represent the information of the underlying system that
can be revealed from the nth order NOFRF. Consequently,
vector

xT =
[
αT

1 . . . αT
n θ

T
1 . . . θTn

]
(20)

provides all the information about the system represented
by the system NOFRFs up to the n-th order. The objective
of Step (iii) is to extract the features of the system from
all the information represented by the NOFRFs which is
completely contained in vector x. Considering the very
large dimension of x, the PCA (principal component
analysis) approach will be applied in the proposed method
to extract a lower dimensional feature vector z, such that

z = xTP (21)
where P needs to be determined via a training process for
the fault diagnosis.

Step (iv) is to conduct fault diagnosis. For this purpose,
a neural network will be used as a classifier with z deter-
mined from Step (iii) as the input and scores indicating
the membership to pre-defined fault classes as the output
as illustrated in Fig 1, where vector z is the NN inputs,
v = [v1 . . . vs] are the NN outputs, with vi, 1 ≤ i ≤ s
taking either 0 or 1 and s is the number of output classes
in the training data set. The neural network classifier
needs, as matrix P in Step (iii), to be established via
a training process before it can be used for the fault
diagnosis. According to the ideas introduced above, the
detailed procedures of the new fault diagnosis method
using nonlinear systems modelling and frequency analysis
can be summarised as follows.

(i) Fit a NARX model to the input and output data
from the system to be inspected using the PRESS
statistics based NARMAX modelling approach.

(ii) Determine the NOFRFs of the system from the
NARX model identified in Step (i) and build the full
frequency domain feature vector x of the system as
given in (20)

(iii) Extract a lower dimensional feature z of the system
by applying a priori trained PCA algorithm (PCA
transformation matrix P) to the full frequency do-
main feature vector x to yield z = xTP

(iv) Conduct the fault diagnosis for the system by ap-
plying a priori trained neural network classifier to
the lower dimensional feature vector z to produce a
score vector v = [v1 . . . vs] indicating the status of
the system under inspection.

Fig. 1. Neural network fault classifier

A diagram illustrating each step of the new method and
the relationships between all the steps is shown in Figure
2. Before this proposed method can be applied, training
is needed to determine the PCA transformation matrix P
for Step (iii) and to build the neural network classifier for
Step (iv).

Fig. 2. An illustration of the new method

In order to determine matrix P , a set of template systems
covering some a priori known cases of faulty conditions
need to be available. From the input and output data
of each of these template systems, the full frequency
domain feature vector xi, i = 1, . . . , d, corresponding to
these template systems can be obtained by using Steps (i)
and (ii) above, where d is the total number of available
template systems. Consequently, the matrix P can be
determined by applying PCA to a data matrix X whose
i-th row is xT

i .

For the purpose of building the neural network classifier,
a r-input and s-output neural network needs to be trained
by using z as input vector and v = [v1 . . . vs]

T as output
vector. Here, r is the dimension of z, s is the number of
fault classes covered by the template systems, and binary
values of v1, . . . , vs are determined by the fault class of
the system represented by z. For example, if z represents
the first of the s fault classes, then v = [1 0 . . . 0];
if z represents the second of the s fault classes, then
v = [0 1 . . . 0]. Thus, by using the mapping between
zi = xT

i P and vi = [v1i . . . vsi], i = 1, . . . , d, the
neural network classifier can be found for Step (iv) of the
proposed method.

In the next section, a simple simulation example will be
used to show how the proposed method works and to
demonstrate the effectiveness of the method in conducting
fault diagnosis for a system with four different fault classes.

5. SIMULATION STUDY

In this section, the new diagnosis method developed in
Section 4 is exemplified, by conducting fault diagnosis for
a nonlinear oscillator described as
ÿ(t) + ζ1ẏ(t) + ζ3ẏ(t)3 + k1y(t) + k3y(t)3 = u(t) (22)

This type of oscillator is useful for modelling practical sit-
uations where moderate nonlinear behaviour arises due to
damage or defects in engineering structures. For example,
the vibration of cracked structures can be described by
a second order oscillator where the stiffness term can be
modelled as a polynomial function Peng et al. [2007]. In
this context, (22) represents a particular case in which the
stiffness has been represented by the first and third order

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8282



terms only, which is an useful simplification for describing
nonlinear effects, while preserving the symmetry of the
oscillator restoring force.

System (22) is considered as normal when the parameters
take the following nominal values: ζ1 = 2ξωn, k1 = ω2

n,
ζ3 = 0.2ξωn, k3 = ω2

n, where ξ = 0.7 and ωn = 2π. Linear
parameters k1 and ζ1 are assumed to be fixed, i.e., free of
faults.

Training stage

As described in Section 4, a training stage from which
matrix P and the NN classifier are obtained, is required
prior to diagnosis operation. For this purpose, a simple
scenario with 4 fault classes was considered. Each fault
class consists of parameter k3 or ζ3 taking values different
from the ones corresponding to the system normal status.
The exact faulty parameter value can be any one within a
specific range, as demonstrated in Table 2.

Table 2. Fault classes

Fault Type
Parameter variation

k3 ζ3

Min. Max. Min. Max.

1 0.4ω2
n 0.6ω2

n 0.20ξωn 0.20ξωn

2 ω2
n ω2

n 0.08ξωn 0.12ξωn

3 1.4ω2
n 1.6ω2

n 0.20ξωn 0.20ξωn

4 ω2
n ω2

n 0.28ξωn 0.32ξωn

The training set consists of d = 40 template systems, 10
from each fault class that has been defined. Training data
was obtained following steps (i) and (ii) of the procedure in
section 4. For step (i), models with maximum delay L = 2
and nonlinear terms of degree 2 and 3 were identified.
For step (ii), NOFRFs were obtained according to the
algorithm presented in Section 3, using a sinc pulse with
bandwidth [0; 3] Hz as the probing input. Figures 3-5
show the magnitude of the NOFRFs up to 3-rd order.
Figure 3 show that the obtained nonlinear models have
different 1-st order NOFRFs, although the faulty states
are only related to nonlinearities. This is due to the biased
nature of parameter estimates associated with PRESS
statistics that was used as the data fitting criterion to
build the NARX model in step (i). However, as will
be demonstrated later on, this does not compromise the
diagnosis system performance, as these models still contain
relevant information about each faulty condition.
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Fig. 5. |G3(ω)| for each fault template

After that, NOFRFs are used for building the vectors xi,
1 ≤ i ≤ 40, as described in (20) and matrix X as

X =

 x
T
1
...
xT
40

 (23)

Then, PCA is applied to the covariance matrix of X for
yielding the transformation matrix P . The PCA revealed
that five components were sufficient for representing most
of the training data variance, therefore, the number of
inputs of the NN was set as r = 5. In addition, because
four fault classes were specified, the number of outputs of
the NN, i.e. the dimension of z, was set as s = 4.

The NN classifier consists of a fully connected MLP
(multi-layer perceptron) network with sigmoid activation
functions, trained with the standard back-propagation
algorithm. The number of hidden layers and neurons
was adjusted during the training process by verifying the
network performance. Finally, an optimal configuration
with one hidden layer of 5 neurons was found. This
classifier was able to correctly classify 100% of the training
data.

Testing stage

To verify the performance of the diagnosis system, testing
data was generated, consisting of 80 fault patterns differ-
ent from training cases, 20 from each fault type, where
the parameter disturbance was randomly chosen within
the corresponding parameter interval. Some classification
scores are shown in Table 3. The classifier was able to
correctly recognize 100% of all the 80 fault patterns. The
last row in Table 3 contains the classifier score obtained for
when the system is under the normal state, whose template
was not present in the training data. The decrease in scores
indicates that this is clearly a new pattern and additional
training should be carried out for accommodating the
corresponding new class.
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Table 3. Some classification results

Parameters Classifier score

k3 ζ3 v1 v2 v3 v4

0.4143ω2
n 0.2000ξωn 0.9991 0.0003 0.0000 0.0027

0.5875ω2
n 0.2000ξωn 0.9996 0.0001 0.0008 0.0000

1.0000ω2
n 0.0819ξωn 0.0008 0.9988 0.0010 0.0000

1.0000ω2
n 0.1197ξωn 0.0002 0.9994 0.0000 0.0006

1.4248ω2
n 0.2000ξωn 0.0002 0.0010 0.9990 0.0012

1.5868ω2
n 0.2000ξωn 0.0003 0.0004 0.9986 0.0008

1.0000ω2
n 0.2803ξωn 0.0000 0.0000 0.0006 0.9988

1.0000ω2
n 0.3177ξωn 0.0005 0.0011 0.0000 0.9998

1.0000ω2
n 0.2000ξωn 0.0000 0.0272 0.0000 0.8142

It is interesting to note that near optimal results can be
found for some NN configuration, including scenarios with
data vectors of reduced size. For example, a classifier with
12 neurons and a single hidden layer is able to classify
faults with 99% efficiency by using only magnitude data of
the NOFRFs. The same is true for a network whose input
is only based in phase of the NOFRFs, but with a slightly
different structure of 10 neurons. Notice that in all cases,
the classifiers had a very simple structure showing that
NOFRFs are efficient features for characterizing different
fault cases of a system.

6. CONCLUSION

Fault diagnosis for systems directly from input and output
data often involves system modelling and model frequency
analysis and has been used to address modal analysis based
structural health monitoring etc many practical engineer-
ing problems. In most of these applications, inspected sys-
tems are assumed to be linear, and linear system modelling
and FRF based frequency analysis are applied to reveal
changes in the system characteristics from the changes in
the system FRF.

In order to extend this approach to the more general
nonlinear case, issues with nonlinear system modelling and
nonlinear system frequency analysis have to be addressed.
Although nonlinear system modelling has been compre-
hensively studied, and many methods can be used to
identify NARMAX etc nonlinear system models, existing
GFRFs etc concept based methods for nonlinear frequency
analysis are difficult to be applied in practice to conduct
frequency analysis for the purpose fault diagnosis in a way
similar to the FRF based analysis for linear systems. In
order to solve this problem, the concept of NOFRFs was
recently proposed which provides a representation for the
frequency domain properties of nonlinear systems similar
to the FRF representation of linear systems. Moreover, a
framework that combines the NARMAX modelling and
NOFRFs based frequency analysis has been proposed to
conduct system fault diagnosis and the performance of this
idea has been demonstrated by experimental data analysis.

The present study is concerned with addressing several
fundamental issues associated with applying NARMAX
modelling and NOFRFs based frequency analysis to the
fault diagnosis of practical engineering systems. These
involve how to accurately determine the NOFRFs from an
identified nonlinear model of the system under inspection,
how to extract representative frequency domain features
of the system from the NOFRFs, and how to conduct

fault diagnosis for the system using the extracted system
frequency domain features. Effective algorithms and meth-
ods have been derived to address these problems. These
include a new algorithm that can accurately determine the
NOFRFs up to an arbitrary order from an identified sys-
tem NARX model, a systemic Principle Component Anal-
ysis (PCA) based NOFRFs feature extraction method, and
a Neural Network classifier for fault diagnosis. Simulation
studies have been conducted. The results verify the ef-
fectiveness of the proposed new algorithm and methods
and demonstrate the performance of these new techniques
when being applied to conduct nonlinear system modelling
and frequency analysis based fault diagnosis.

The study has established a comprehensive fault diagnosis
methodology based on nonlinear system modelling and
frequency analysis, which has the potential to resolve a
wide range of input output data based engineering system
fault diagnosis problems.
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