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Abstract. Single-product inventory management model with both random and controllable demands and 
continuous input product flow with fixed uncontrolled rate under finite storage capacity is considered. 
We use the diffusion approximation of the stock level process. Optimal linear on/off control minimizing 
the variance of the stock level process in the steady-state case is investigated. The probabilities of the 
stock-out and overflow are controlled by the base stock-level, involving the storage capacity. The 
problem of minimizing the variance of the rate of delivering the product to outlets given the probability 
of the base-stock level exceeding is solved for nonlinear on/off control: continuous and discontinuous 
control is considered. 
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1. PROBLEM STATEMENT 

A systematic study of inventory models incorporated 
uncertainly and dynamics began in the early 50s from the 
works by Arrow, Harris, and Marschak (1951) and 
Dvoretzky, Kiefer, and Wolfowitz (1953). Nowadays a set of 
stochastic models are available to solve the inventory control 
problem under various conditions encountered in practice, for 
example, Ross (1992), Beyer, Cheng, Sethi, and Taksar 
(2010), Dolgui, and·Proth (2010), Chopra, and Meindl 
(2013).  

The feature of the system under consideration is exogenous 
(i.e., outside our control) input product flow.  

Our main contribution in this paper is in the field of a risk 
and its avoidance. Risk management has become an 
important field of supply chain management; see, for 
example, Tang and Musa (2010). Under uncontrolled input 
product flow shortages and overstocks are inevitable due to 
the uncertainty in the demand. Sometimes the impact of the 
overflow can have severe consequences, and we need to keep 
its possibility at some practically negligible level. The trade-
off between the probabilities of the overflow and stock-out 
are also of interest. 

The paper is also partly related to consignment stock policy 
which is increasingly studied as alternative to just-in-time 
inventory modeling, for more recent papers see Yi and Sarker 
(2014) and a critical survey by Sarker (2014).  

Consider the stochastic inventory model that involves only a 
few parameters. Let ( )tQ  be a stock level at time t, the 

product flow be continuous with fixed rate 0c , the demands 
be a Poisson process with constant intensity λ , the purchases 
values be independent identically distributed random 

variables with finite first and second moments equal 
respectively a1 and a2.  

If the inventory level ( )Q ⋅  is above some base-stock level 
we begin to deliver the product to outlets to prevent the 
overflow. The output flow is assumed to be continuous with a 
rate ( )*c Q .  

The variance of a stochastic process is a widely used measure 
of risk: the less the variance the more the stability of the 
system. Our aim is to stabilize of the system’s performance in 
the sense of minimum variance of 1) the stationary process 

( )Q ⋅  under controlled probabilities of the overflow and 
stock-out; 2) the rate of delivering the product to outlets 
given the probability of the base-stock level exceeding. 

The model can be applied, for example, for water supplies 
systems. 

Denote the rate of inventory movement due to non-random 
factors  

( ) ( )*
0c c Q c Q− = . 

We consider Marcovian process ( )Q ⋅  as diffusion process 
satisfying the following stochastic differential equation 

1 2( ) ( ( ) ) ( ),dQ t c Q a dt a dw t= − λ + λ  

where ( )w ⋅  is the Wiener process. 

Diffusion methods have been applied to inventory models in 
a variety of domains to begin with the papers by Bather 
(1966) and Puterman (1975). 
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Because of the boundedness of ( )Q ⋅  the stationary 
distribution exists 

( )1
2

2( ) exp ( )p x C c x a dx
a

 
= ⋅ − λ λ 

∫ , (1) 

where C is the normalization constant. 

We assume that the demands that occur during stock-out 
periods enter a pool of infinite capacity, it corresponds Q < 0. 

2. LINEAR ON/OFF CONTROL 

Let the storage capacity be bounded by maxQ , the base-stock 
level be 0max QQ − , and the rate of the output flow be 
proportional to the difference ( )0max QQQ −− :  

( )( )

0 max 0

0 max 0 max 0

, if ,
( )

, if ,

c Q Q Q
c Q

c Q Q Q Q Q Q

 < −
= 
 − β − − > −

 (2) 

and 0 1 , 0c a> λ β > . 

The condition 0 1c a> λ  means that if the inventory level is 
below the base-stock level, then the stock level is replenished 
in the mean, that is, the resources are accumulated. 

In view of (1) and (2) we get  

( )p x ( )( )0 1 max 0
2

2exp ( ) ,C c a x Q Q
a

 
= − λ − − λ 

 

 
max 0if ;x Q Q< −  

and 

( )( )( 0 1 max 0
2

2( ) exp ( )p x C c a x Q Q
a


= − λ − − − λ

 

( )( )2
max 0

max 0, if ,
2

x Q Q
x Q Q

β − − − > −

 

where  

( )( )
max 0

1
0 1 max 0

2

2exp ( )
Q Q

C c a x Q Q dx
a

−
−

−∞

 
= − λ − − + λ 

∫  

( )( )(
max 0

0 1 max 0
2

2exp ( )
Q Q

c a x Q Q
a

∞

−


+ − λ − − − λ

∫  

( )( ) ( )2 2
max 0 1 2 ( )exp

,
2 2

b b bx Q Q
dx

d

 − Φβ − − − =

 

0 1 2

2
0, 0,

c a ad b d
a
− λ λ

= > = − <
λ β ( )2( ) exp

b
b t dt

∞
Φ = −∫ . 

The expectation is ( )E Q =  

( )( )
max 0

0 1 max 0
2

2exp ( )
Q Q

C x c a x Q Q dx
a

−

−∞

 
= − λ − − + λ 

∫  

( )( )(
max 0

0 1 max 0
2

2exp ( )
Q Q

C x c a x Q Q
a

∞

−


+ − λ − − −

λ
∫  

( )( )
( ) (

2
max 0

max2

1
2 1 2 ( )exp

x Q Q
dx Q

b b b

β − − − = − − Φ

 

( )
2

2
0 max 0

1 2 ( )exp .
2 2

b bQ b Q Q b b
d d d

  
− − − − − Φ −      

 

The variance is 

( )
2

2
2 22

1 1 ( )( ) .
2 21 2 ( )exp

b g bVar Q b
d db b b

 
+ = + =  − Φ 

 (3) 

To obtain the value b giving minimal variance (3) we need to 
solve the following equation 

( ) ( )2 2 3 22 ( )exp( ) 1 2 ( )exp( ) 0b b b b b b bΦ + − + Φ = . 

It is easy to see that under condition b < 0 the unique root 0b  
exists.  

Numerical computations give the following results  

0 00.563, ( ) 0.734.b g b≈ − ≈       (4) 

Optimal value of parameter β is 

2
0 1 2

0 2
00

( )
.

d c a d a
bb

− λ λ
β = = −  
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Consider the probability of the overflow  

( )maxP Q Qα = > =  

( )( )(
max

0 1 max 0
2

2exp ( )
Q

C c a x Q Q
a

∞ 
= − λ − − − λ

∫  

( )( ) ( )
( )

22 0
max 0

2

2 exp
.

2 2 ( )exp 1

db b Q bx Q Q bdx
b b b

 Φ −  β − −   − = Φ −

    (5) 

We can control probability ( )0Qα = α  given b0 by choosing 
the value 0Q . We can find optimal value 0Q  given some 0α  

by using (5), and since ( )2 3 2
0 0 0 01 2 ( )exp 0b b b b− + Φ =  we 

get 

( )3 2
0 0 0 0 0

0
2 exp .db b Q b

b
 

Φ − = −α 
 

 

The probability (5) decreases monotonically and takes 
maximal value  

( )max 2
0 0 0

11
2 ( )exp 1b b b

α = +
Φ −

 

for 0 0.Q =   

We use (4) to compute max 0,68.α ≈  

Minimal value of α  under optimal control is  

( )3 2
min 0 0 max 0

0

0
max

2

2 exp

0.48 0.563 .

db b Q b
b

Q
a

 
α = − Φ − ≈ 

 

 β
≈ Φ − +  λ 

 

It follows that the storage capacity given desirable 0
minα  is 

( )( )0 0 2
max min

0
2.08 0.563

aQ α λ
≈ Ψ α +

β
, (6) 

where ( )Ψ ⋅  is the inverse function of ( )Φ ⋅ . 

Obtain the probability of the stock-out ( 0)P Qγ = < =  

( ) ( )( )
0

0 1 max 0
2

2expC c a x Q Q dx
a−∞

 
= − λ − − = λ 

∫  

( )( )
( )

max 0
2

exp 2
.

1 2 ( )exp

d Q Q

b b b

− −
=

− Φ
 

We can find optimal base-stock level given 0γ   

0 0
max 0

2 ln ln
.

2
b

Q Q
d
− γ

− =  

Maximal value of γ is  

( )max 2
0 0 0

1 0.316
1 2 ( )expb b b

γ = ≈
− Φ

 

for 0 maxQ Q= .  

Minimal value of γ is  

( )
( ) ( )max

min max2
0 0 0

exp 2
0.316exp 2

1 2 ( )exp

dQ
dQ

b b b

−
γ = ≈ −

− Φ
. 

It follows that the storage capacity given desirable 0
minγ is 

( )0
min0

max

ln 3.16
.

2
Q

d
γ

γ
≈ −     (7) 

Combining (6) and (7) we obtain the storage capacity 0
maxQ  

giving it possible to choose [ ]min ; 0.68α ∈ α  and 

[ ]min ; 0.316γ ∈ γ  

( )( ) ( )min0 2
max min

0

ln 3.16
max 2.08 0.563 , .

2
aQ

d

γ λ = Ψ α + − β 

 

Then, we need to compute the corresponding level 0Q . Our 
choice of the probabilities depends on some loss function 
defining our preferences. 

Note that the probability of overflow max 0.68α =  is more 
than twice the probability of stock-out max 0.316γ =  under 
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optimal control. So consider more complicated, nonlinear 
models, of controlled output flow. 

3. NONLINEAR ON/OFF CONTROL 

Let us assume that the density function of the stock level Q 
satisfies (1).  

Consider the problem of minimizing of the variance of the 
rate of delivering the product to outlets given the probability 
of the base-stock level exceeding  

0 1( )
( ( )) min given P(Q )

c Q
Var c Q Q→ > = π .       (8) 

Here we do not need to assume beforehand the boundedness 
of the storage capacity. 

The probability density function of Q is 

( )0 1 0 0
2

0

2exp ( ) , ,

( )
( ), ,

C c a s Q s Q
a

p s
Cg s s Q

 − λ − < λ= 
 >


 

where 
0

1
1 ( ) ,
2 Q

C g s ds
c

−
∞ 

= +  
 

∫


 0 1

2

,
c a

c
a
− λ

=
λ

   

( )
0

1
2

2( ) exp ( ) .
s

Q

g s c x a dx
a

 
= − λ  λ 

∫  

The expectation is 

0

1 0( ( )) , and ( ) ( )
Q

E c Q Ca P Q Q C g s ds
∞

= λ > = ∫ . 

Since 2
1

( )( )
2 ( )

a g sc s a
g s
′λ

= + λ  we get that 

0

2 2 2
1

2 2 2 2
2 2 20 2

1 2 1

( ( ))

( ) ( ) ( ) .
2 4 ( )Q

Var c Q C a

c a g sC a a g s a g s ds
c g s

∞

+ λ =

  ′ λ ′= + + λ + λ    
∫



 

So we have the following minimization problem 

0

2 2 2
2 2 22

1 2 1 ( )

( ) ( ) ( ) min
4 ( ) g s

Q

a g s a a g s a g s ds
g s

∞  ′ λ ′+ λ + λ → 


∫  

given 
0

( )
Q

g s ds
∞

∫ . 

The Euler equation is  
2 2 *

2 1
2 2
2

a
a
λ + λ′φ + φ =

λ
,   (9) 

where ( )
2 ( )
g s
g s
′

φ = , *λ  is a Lagrange multiplier. 

Clearly, if 
2 2 *
1

2 2
2

0
a

a
λ + λ

>
λ

 then function ( )g ⋅  satisfying both 

(9) and the constraint does not exist. 

Let 
2 2 *

21
2 2
2

a
a
λ + λ

= −β
λ

 then the solution of (9) is 

tg( ), 0,c sϕ = β − β β >  and  

2 1( ) tg( )c s a c s a= λβ − β + λ ,       (10) 

where c  is a constant. 

3.1 Continuous nonlinear control 

Consider the case of continuous control, that is, let us find the 
constant c  from condition 0 0( )c Q c= . We get 

0arctg cc Q= + β
β


, and maximal value of Q is 

max
/ 2cQ + π

=
β

1 arctg
2

c π
= + β β 



. 

Since 0( ) 1g Q =  function ( )g ⋅  is 

( ) ( )
2

2 2
02

0

cos ( )( ) 1 cos arctg
cos ( )

c sg s s Q
c Q

− β
= = + γ γ − β −  − β

, 

where /cγ = β . 

Then, we find 
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max max

0 0

2

2

( ) (1 cos 2( ))

1 arctg ,
2 2 1

Q Q

Q Q

g s ds c s ds= + − β =

 + γ π γ
= γ + + β + γ 

∫ ∫
 

and the constraint is  

( )2 2 1

1

1 (arctg / 2)
1

π
γ + γ γ + π + γ =

− π
.  (11) 

The equation has only one positive root 1
0

1

0
1

π
< γ <

− π
. 

So optimal rate of continuously controlled output flow is  

( ) ( )

( )

2 0
2 0 0*

max 0
0

0 0
0

tg1
( ) , .

1 tg

c s Qa c
c s Q s Q

c s Q

 
− λ + γ γ = > >

γ  
+ γ − γ 







 

Note that the needed storage capacity is 

0
max 0 0arctg

2
Q Q

c
γ π = + γ + 

 

. 

3.2 Discontinuous nonlinear control 

Let us find a constant c  in (10) from condition ( )0 1c Q c= .  

Denote 1 1 1
1 1

2

,
c a cc

a
− λ

= γ =
λ β



 , we get  

1
1 0 0

arctg / 2
arctg , ,c Q Q γ + π

= γ + β =
β

 

( )2 2
1( ) 1 cos ( )g s c s= + γ − β . 

The constraint is 

( )( )2 1
1 1 1

1

1 arctg / 2
1

π
γ + γ γ + π + γγ =

− π
. (12)  

The variance of ( )c s  is 

( )( )

2 2
1 1

2
1 1 12 2 2 2 2

1 0 1 2 2

( ( ))

1 arctg / 2
(1 ) 2 .

Var c Q a

c ca a a c

= λ π +

 + γ γ + π − γ
 + − π − λ + λ
 γ 

 

      (13) 

Obtain the minimal value of ( ( ))Var c Q  as the function of 1γ  
(we express γ  from (12) and substitute it into (13)). The task 
reduces to computation the minimum of the function  

( )22 2 2
1 1 1 1( ) 1 (arctg / 2)f γ = + γ γ + π − γ . 

Clearly, the function increases 
monotonically,

1
1and lim ( ) 1,33f

γ →−∞
γ ≈ . In order to satisfy the 

condition 1γ → −∞ , we take 1 1c a< λ  and require β tends to 
zero.  

Compute 

( )

( )( )

1 1

1 1 0 1
1 2 1

1

1
1 2 1 1 0

tg arctg ( ) /
lim ( ) lim

1 .

c s Q
c s a a c

a a c c s Q

γ →−∞ γ →−∞

−

γ − − γ
= λ + λ =

γ

= λ + λ + −





 

 

The equation (12) can be rewritten as 

( )( )2 2 1 1 1
1 1 1 1

1 0 1

1 arctg / 2
1

c a
c a

π − λ
γ + γ γ + π + γ =

− π − λ
. 

Compute the limit 

( )( )( )
1

2 2
1 1 1 1lim 1 arctg / 2 2 / 3

γ →−∞
γ + γ γ + π + γ = − , 

it follows that 1
1

2 11
3

c c
 

= − π 
  . 

So the optimal rate of controlled output flow is  

1
* 1

2 0 max 0
1

( ) 1 1.5 ( ) , .
1

c s a c c s Q Q s Q
−  π = λ − + − > ≥  π −  

   

The needed storage capacity is 
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1
max 0

1

1.5
(1 )

Q Q
c

π
= +

− π

. 

So abandoning the continuity we can reduce the variance of 
( )c Q  under the probability of the base-stock level exceeding 

being fixed. At the point s = Q0 we have the jump 

0 12

1 1

2 21 1
3 3

c aa c    − λλ
+ = +   π π   



. 

Given the probability of stock-out γ  

0

1

exp( 2 )
( 0)

1
cQ

P Q
−

< = = γ
− π


 

we get the base stock level 

1
0

ln(1 ) ln
2

Q
c

− π + γ
= −



. 
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