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Abstract: Block-oriented models are often used to model nonlinear systems. They consist
of linear dynamic (L) and nonlinear static (N) sub-blocks. This paper proposes a method to
generate initial values for a Wiener-Hammerstein model (LNL cascade). The method starts from
the best linear approximation (BLA) of the system, which provides an estimate of the product
of the transfer functions of the two linear dynamic sub-blocks. Next, the poles of the BLA are
assigned to both linear dynamic sub-blocks. The linear dynamics are then parameterized in
terms of rational orthonormal basis functions, while the nonlinear sub-block is parameterized
by a polynomial. This allows to reformulate the model to the cascade of a parallel Wiener (with
parallel LN structure) and a linear dynamic system, which is bilinear in its parameters. After
a bilinear optimization, the parallel Wiener part is projected to a single-branch Wiener model.
The approach is illustrated on a simulation example.
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1. INTRODUCTION

Although nonlinear distortions are often present, many
dynamical systems can be approximated by a linear model.
When the nonlinear distortion level is too high, a linear
approximation is insufficient, and a nomnlinear model is
needed.

One possibility is to use block-oriented models [Billings
and Fakhouri, 1982, Giri and Bai, 2010|, which are built
up by linear dynamic and nonlinear static (memory-
less) blocks. Due to this highly structured nature, block-
oriented models offer insight about the system to the user.
The simplest block-oriented models are the Wiener model
(linear dynamic block followed by a nonlinear static block),
and the Hammerstein model (linear dynamic block pre-
ceded by a nonlinear static block). They can be generalized
to a Wiener-Hammerstein model (nonlinear static block
sandwiched between two linear dynamic blocks, see Fig. 1).

Several identification methods have been proposed to iden-
tify single-branch Wiener-Hammerstein systems. Early
work can be found in Billings and Fakhouri [1982]
and Korenberg and Hunter [1986]. The maximum likeli-
hood estimate is formulated in Chen and Fassois [1992].
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The recursive identification of error-in-variables Wiener-
Hammerstein systems is considered in Mu and Chen
[2014]. Some other methods start from the best linear
approximation (BLA) [Pintelon and Schoukens, 2012] of
the Wiener-Hammerstein system [Sjoberg et al., 2012,
Westwick and Schoukens, 2012]. These methods will be
discussed in more detail in Section 3.

This paper presents a method to generate starting val-
ues for single-branch Wiener-Hammerstein systems. The
method starts from the BLA of the system. Next, the poles
of the BLA are used to construct generalized orthonormal
basis functions (GOBFs) [Heuberger et al., 2005] that pa-
rameterize both the front and the back dynamics. Using a
multivariate polynomial to describe the static nonlinearity,
the model is reformulated to the cascade of a parallel
Wiener and a linear dynamic system, which is bilinear in
its parameters. After a bilinear optimization, the parallel
Wiener part is projected to a single-branch Wiener model.
This results in the initial estimate of the single-branch
Wiener-Hammerstein system.

The rest of this paper is organized as follows. The basic
setup is described in Section 2. Section 3 gives a brief
overview of the BLA, and discusses three related identifi-
cation methods. Section 4 presents the proposed approach,
which is illustrated on a simulation example in Section 5.
Finally, the conclusions are drawn in Section 6.
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2. PROBLEM STATEMENT

2.1 Setup
Consider the Wiener-Hammerstein system in Fig. 1, given
by
z(t) = R(q)u(t)
w(t) = f(x(t)) ; 1)
y(t) = S(q)w(t) + v(t)

where R(q) and S(q) are linear time-invariant (LTT)
discrete-time transfer functions in the backward shift op-
erator ¢! (¢ tu(t) = u(t — 1)), i.e.
Br(a) _ 215y brag™
Ar(e)  XZGarug!
S(g) = Bs(a) _ > bsiq”"
As(e)  Xkpasig
where f(x) is a static nonlinear function, and where v(t)
is additive output noise.

R(q) =
(2)

2.2 Assumptions

It is assumed that

(1) both R(q) and S(q) are proper, i.e. ng < mp, and
ns < msg,

(2) there are no pole-zero cancellations in the product
R(q)S(q),

(3) f(z) is non-even around the operating point,

(4) the input signal u(t) has a Gaussian amplitude dis-
tribution, and

(5) the output noise v(t) is a zero-mean filtered white
noise that is independent of the input signal u(t).

The reason for Assumption 4 is to obtain a good estimate
of the product of the underlying dynamics R(q) and S(q)
in (3). If Assumption 4 does not hold, a model error is
made in (3) that drops rapidly with the length of the
impulse response of R(q) [Wong et al., 2012, Tiels and
Schoukens, 2011].

2.8 Problem statement

The problem addressed in this paper is the following.
Given a data sequence {u(t),y(t)} for t=0,...,N —1,

find initial estimates R(q), f(x), S(q) such that the sim-
ulated output §(t) = S(q)f (]%(q)u(t)) is close to y(t) in
mean-square sense.

Remark 1. From only input/output data, the linear dy-
namics and the static nonlinearity can only be estimated
up to arbitrary non-zero scaling factors that can be ex-
changed between the linear dynamics and the static non-
linearity without affecting the input/output behavior, i.e.

$@)f (R@u®) = [n5(@)] 1F (& [¢B@]u®)).

3. THE BEST LINEAR APPROXIMATION OF A
WIENER-HAMMERSTEIN SYSTEM

3.1 The best linear approrimation

The BLA of a system is defined as the linear system whose
output approximates the system’s output best in mean-
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Fig. 1. A Wiener-Hammerstein system (R and S are linear
dynamic systems and f is a nonlinear static system).

square sense [Pintelon and Schoukens, 2012]. Due to Buss-
gang’s theorem [Bussgang, 1952], for a Gaussian excitation
u(t), the BLA of the considered Wiener-Hammerstein sys-
tem is equal to

Gpra(k) = cR(k)S(k) (3)
with ¢ a constant depending on the static nonlinear func-

tion f(x) and the power spectrum of the Gaussian excita-
tion u(t). This constant is non-zero under Assumption 3.

Under Assumption 2, it follows from (3) that the poles
(zeros) of the BLA are equal to the poles (zeros) of both
R and S. To obtain initial estimates for R and S, the poles
and zeros of the BLA should be split over the individual
transfer functions R and S.

8.2 Related initialization methods for Wiener-Hammerstein
systems

Several methods have been proposed to make this split.
Here we briefly discuss three of them, namely the brute-
force and the advanced method in Sjéberg et al. [2012], and
the QBLA method in Westwick and Schoukens [2012].

The brute-force method in Sjdberg et al. [2012] scans all
possible splits. For each of these splits, the static nonlin-
earity is estimated via a linear least-squares regression.
The obtained initial models are then tested on the data,
and the best performing model is retained for further
optimization. The drawback of this method is that the
number of possible splits grows exponentially in the model
order. This method can thus require a large computation
time.

The advanced method in Sjoberg et al. [2012] uses a basis
function expansion for R, based on the poles of the BLA,
and a basis function expansion for the inverse of S, based
on the zeros of the BLA. Like this, the poles of R and the
zeros of S are fixed to those of the BLA. Hence, the model
order of R and S is too large. By expressing the static
nonlinearity in terms of two multivariate polynomials, the
estimation of the remaining model parameters (the polyno-
mial coefficients) is formulated linearly-in-the-parameters.
Next, the model orders of R and § are reduced by perform-
ing several scans. In each scan, the effect of removing one
basis function is verified, and the best performing model
in terms of rms error is retained as an initial model. After
each scan, one basis function is permanently removed.The
initial models are then ranked with respect to their rms
error. Typically, the rms error makes a strong jump when
a necessary basis function was removed.

The method described in Westwick and Schoukens [2012]
not only uses the BLA from the input «(¢) to the output
y(t), but also the so-called quadratic BLA (QBLA), which
is a higher order BLA from the squared input u?(¢) to the
output residual y,(t) = y(t) — Gpra(q)u(t). It is shown
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that the poles and zeros of the first linear dynamic system
R(q) shift in this QBLA, while the poles and zeros of the
second linear dynamic system S(¢) remain invariant. This
allows to spit the poles and zeros of the BLA over R and S.
Due to the higher order nature of the QBLA, however, the
estimation of the QBLA is difficult. A long measurement
time is needed to obtain an accurate estimate.

4. THE PROPOSED METHOD

The proposed method is related to the advanced method
in Sj6berg et al. [2012]. The main differences are the use
of a basis function expansion for S, based on the poles
of the BLA, rather than a basis function expansion for
S~! based on the zeros of the BLA, and the use of only
one MIMO (multiple input multiple output) polynomial to
describe the static nonlinearity instead of two MISO (mul-
tiple input single output) polynomials. Like this, the pro-
posed model structure is able to describe parallel Wiener-
Hammerstein systems as well, but for now, the focus will
be on single-branch Wiener-Hammerstein systems.

4.1 Bastc idea

The basic idea is to use basis function expansions for R,
f,and S

ng

R(q) = Z/@R,jGj(Q) : (4)

R D
f(z) = Z%‘xl ; (5)
1=0
S(q) = Zﬁs,jGj(Q) , (6)

where {G1(q),...,Gn,-1(q)} are generalized orthonormal
basis functions (GOBFs) [Heuberger et al., 2005] based on
the poles of the BLA. One extra OBF, namely G, = 1,
is used that enables the estimation of a feed-through
term and as such also enables the estimation of static
systems [Tiels and Schoukens, 2011]. The basis function
expansion for the static nonlinearity is here assumed
polynomial for simplicity reasons. As a polynomial basis
function expansion is used, the Wiener part described
by (4) and (5) can be rewritten as a parallel Wiener
system that is linear in its parameters (see e.g. Tiels and
Schoukens [2011]). This results in the model structure
shown in Fig. 2 that is described by

pi(t) = G;(q)u(t), j=1,...,n5
2 (t) = g (pa (1), ... =1, 00

20 = Y520

yPng (1)),

y(t) = ZﬁjGj(Q)Z(t) +9pc

where each gl/l(py, . .. ,Pny) is a monomial of the multiple
input multiple output (MIMO) polynomial g(p1, ..., Png,)
with corresponding coefficient ;. The constant term that
corresponds to 7o in (5) is not included in g, but is

estimated at the output of the model (gjpc in Fig. 2).
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In principle, the MIMO static nonlinear mapping could be
described by any basis function expansion that is linear-in-
the-parameters, but this is out of the scope of this paper.

First, the polynomial coefficients o and the coefficients

B £ Bg of the basis function expansion of S will be
estimated. Next, the parallel Wiener part between u(t) and
z(t) will be projected to a single-branch Wiener system.

4.2 Estimation of B and «

In the case that S(q) can be exactly written as a linear
combination of the basis functions {G1(q),...,Gn,(q)}
(the true poles are known), the output spectrum at fre-
quency k is given by

Y (k) = S(k)Z (k)

b1 Z (k)
e and |

~ [Ga(k) - ; ;
ﬁng Zna (k)

GnB(k)}
=G(k)o2" (k)
(8)
Applying the "vec* operation on the last equation results
in
vec (Y (k)) =Y (k)
= (2(k) @ G(k)) vec(d) . (9)
= K(k)vec(9)
Note that IC(k) is a row vector. Collecting (9) at all
measured frequencies k results in
Y = Kvec(6)
The matrix K can be easily obtained as
K= (Z ® Jl,n/i) o (JLna ® g) ) (11)

where J,, , is an n by m matrix containing all ones, and o
is the Hadamard product (element-wise matrix product).

(10)

In a first step, vec(#) in (10) is estimated via a linear least-
squares approach. Next, the singular value decomposition
(SVD) of the obtained parameter matrix fpgs in (8) is
taken, and is truncated to its first term to obtain estimates
for aw and B. This corresponds to the over-parametrization
method in Bai and Liu [2005].

From numerical simulations, we have observed that the
matrix K € CNX"s" has rank nq(ng — 1) + n,, where

% + 1. The matrix K is thus rank-
I(ng—1)!
deficient as soon as ng > 1. Therefore, the over-parameter-
ization method is not convergent in this case, as the first
step does not converge to the true 6 = Ba”. Let vec(#™)
be in the null space of K. Then 6 is just one of the
infinitely many solutions 04y = 01,5 + Zfirfmk(lc) ;0 to
the least-squares problem in (10). To find the true 6, one
would need to find the \;’s such that 0,; is of minimal
rank. This is known as the MinRank problem [Faugere
et al., 2008], which is hard to solve. Nevertheless, the over-
parameterization method can be used to obtain starting
values for the coefficients o and .

Ny = Ng —

It should also be noted that the model in (7) is too
complex, since both the parameterizations of R and S
in (4) and (6) use the pole estimates of both R and S. To
reduce the complexity of the model, the user can decide
to start a simplified scanning procedure. In each scan, one
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p(t) — z1(t)
Gi(q) & b
u(t) = _
) Lkl R ERU IS

Gi(q)

2(t)

Gns (9)

Fig. 2. Resulting intermediate model structure (G; and G are basis function expansions, based on the poles of the

BLA; g(p1, - - -, Pns) is a MIMO polynomial).

pole (or complex conjugate pole pair for complex poles)
is removed from the full-complexity model. The least-
squares estimate in (10) is calculated for the reduced-
complexity model. If the rms error on the simulated
output strongly deteriorates, the pole (or pole pair) is
kept, otherwise, it is removed from the final model. After
scanning, the over-parameterization method is applied to
the final model. This scanning procedure requires at most
2ng scans. Compared to the scanning procedures presented
in Sjoberg et al. [2012], where the number of scans grows
either exponentially (if no restrictions on properness of the
subsystems, etc. are imposed) or combinatorially with the
model order, this scanning procedure requires a number of
scans that is proportional with the model order.

Next, the estimates of the coefficients o and S are op-
timized using a normalized iterative least-squares ap-
proach [Bai and Liu, 2005]. In each iteration, either the
coefficients « or (8 are estimated via a linear least-squares
approach, while the other set of coefficients remains con-
stant. The norm of 3 is normalized to one in each iteration.

After this step, the estimate of S(g) in (6) is available. To
obtain estimates of R(q) and f(x), we need to project the
parallel Wiener system between u(t) and z(t) to a single-
branch Wiener system.

4.3 Returning to a single-branch model

First, the intermediate signals p;(t) and z(t) in (7) are
simulated using the measured input signal «(¢) and the
estimated model. The simulated intermediate signal z(t)
is an estimate of w(t) in the Wiener-Hammerstein system
shown in Fig. 1. The BLA from u(t) to w(t) is equal
to R(q), up to an unknown scale factor (special case
of (3)). Therefore, an estimate of R(g) can be obtained by
estimating the BLA from w(t) to z(¢). The nonparametric
and parametric estimation of this BLA are combined in
one step as

ng

=3 Brans®)],
j=1

where the parametrization in (4) is used for the parametric
estimation of the BLA.

Br = argmin Hz(t) (12)
Br

Approximate pole-zero cancellations in the estimates of
R(q) and S(q) are removed.

Next, the polynomial coefficients in (5) are estimated using
a linear least-squares approach.

Finally, the parameters of the single-branch Wiener-
Hammerstein model (its transfer function and polynomial
coefficients) can be further optimized using a Levenberg-
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Marquardt nonlinear optimization algorithm [Marquardt,
1963].

5. SIMULATION EXAMPLE

This section illustrates the approach on a simulation
example.

5.1 Setup

The linear dynamic systems R(q) and S(q) are second-
order Chebyshev filters, with a ripple of 10 and 20 dB,
and a 3 dB bandwidth of 0.05f; and 0.1fs respectively.
The sample frequency fs is normalized to 1. The static
nonlinearity is given by f(z) = atan(2z).

The system is excited with a random-phase multisine [Pin-
telon and Schoukens, 2012]

N/6 f

=A cos(2mk =2t +

kZ:l ( N Px)
containing N = 1024 samples. The amplitude A is chosen
such that u(¢) has rms value 1. The phases ¢ are in-
dependently uniformly distributed in the interval [0, 27].
Seven phase realizations and three periods of the multisine
are applied. The first period is removed to remove the
influence of the transients. A zero-mean white Gaussian
disturbance v(t) is added to the output, with a signal-to-
noise ratio SNR, = 60 dB.

(13)

5.2 Model estimation and results

First, the BLA of the system is estimated nonparametri-
cally

Pzp 1Y ’p](k)
Z

GBLA ) (14)

m=1

where YI™?l(E) is the DFT (discrete Fourier transform)
spectrum of the output corresponding to the m!" realiza-
tion and the p!* period of the input signal, and U™ (k)
is the DFT spectrum of the m!" realization of the input.
Next, a parametric transfer function model

Bpra(k) >0 bprage i@t (15)
Apra(k) YU apraje @kl

is estimated on the nonparametric BLA estimate, with
npra = mpra = 4. The roots of Agpa(k) are calculated
and used to construct the GOBFs. The nonlinearity is
modeled using a low-degree (D = 3) MIMO polynomial g
to limit the number of parameters a.

Starting values for the coefficients o and 3 are obtained
using the over-parameterization method (see Section 4.2).
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Fig. 3. True (full line) and estimated (dashed line) linear

dynamics (R in red and S in blue).

These coefficients are then bilinearly optimized (see Sec-
tion 4.2). Finally, the initial estimates for R(q) and f(z)
are obtained as described in Section 4.3. In this step, the
static nonlinearity is estimated with a higher-degree poly-
nomial (D = 5), as the number of polynomial coefficients
only increases proportionally with the degree as opposed
to the combinatorial increase for the MIMO polynomial g.

Fig. 3 shows the true and estimated linear dynamics, while
Fig. 4 shows the true and estimated static nonlinearity.
The estimates are normalized, such that the estimated
linear dynamic system R and the estimated static nonlin-
earity f match their true counterparts as well as possible in
mean-square sense. The remaining normalization factor is
taken into account in the estimate of S(q) (see Remark 1).
It can be observed that the estimates agree well with the
true dynamics and nonlinearity.

To see the effect of the scanning procedure described in
Section 4.2, the model estimation is repeated, this time
also including the scanning procedure. Table 1 shows
the results of the scanning procedure. It can be de-
duced that the estimated pole pair 0.8811 4+ 0.4275;5 should
be assigned to the back dynamics, while the pole pair
0.9404 + 0.21635 should be assigned to the front dynam-
ics. This is in good agreement with the true dynamics.
Whereas R(q) has a complex pole pair 0.9397 &+ 0.21627,
S(q) has a pole pair 0.8800 + 0.4275j. Figs. 5 and 6 show
the true and estimated linear dynamics and nonlinearity,
respectively. Again, good initial estimates are obtained,
but they are not as good as when the scanning procedure
was not applied. Fig. 5 only shows amplitude information,
but a phase error in the estimate of S(g) is present as
well. Although the initial estimates are not as good, the
scanning procedure allowed us to reduce the complexity
of the model before the bilinear optimization. Moreover,
both initial estimates converge to similar estimates after a
Levenberg-Marquardt optimization [Marquardt, 1963] (see
Figs. 7 and 8).

6. CONCLUSION

An attempt was made to use generalized orthonormal basis
functions for Wiener-Hammerstein system identification.
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Fig. 4. True (full line) and estimated (dashed line) static
nonlinearity.

Table 1. Normalized rms error (NRMSE) on

the simulated output in dB when a complex

conjugate pole pair is removed from the initial

model in (10). The NRMSE for the initial
model is equal to —24.9 dB.

pole estimates removal from

front dynamics back dynamics

—14.9 dB
—24.8 dB

0.8811+0.4275j
0.9404+0.2163;

—24.4 dB
—13.7 dB

|
—
o

Amplitude (in dB)
|
[\
S

[
w0
S

—40 ‘ ‘
0 0.05 0.1

Frequency (in Hz)

Fig. 5. True (full line) and estimated (dashed line) linear
dynamics (R in red and S in blue when the scanning
procedure is included).

The system was reformulated to the cascade of a parallel
Wiener and linear dynamic system, which is bilinear in
its parameters. After a bilinear optimization of the model
parameters, the parallel Wiener part was projected to
a single-branch Wiener system, resulting in an initial
estimate of the Wiener-Hammerstein system.

The method, as presented in this paper, still has problems
with high complexity systems. If the linear dynamics are
high-order, the proposed method has problems to con-
verge. The scanning procedure could however be simpli-
fied. Instead of an exponential or combinatorial increase
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Fig. 6. True (full line) and estimated (dashed line) static
nonlinearity when the scanning procedure is included.

|
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—40 ‘ ‘
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Frequency (in Hz)

Fig. 7. True (full line) and estimated (dashed (no scanning)
and dotted (scanning) line) linear dynamics (R in red
and S in blue) after optimization.

Fig. 8. True (full line) and estimated (dashed (no scanning)
and dotted (scanning) line) static nonlinearity after
optimization.
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of the number of scans with the model order, the number
of scans increases proportionally with the model order.
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