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Abstract: The aim of this work is to study of the numerical approximation of the controls
for the hinged beam equation. A consequence of the numerical spurious high frequencies is the
lack of the uniform controllability property of the semi-discrete model for the beam equation,
in the classical setting. We solve this deficiency by adding a vanishing numerical viscosity term,
which will damp out these high frequencies. An approximation algorithm based on the conjugate
gradient method and some numerical experiments are presented.
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1. INTRODUCTION

We consider the controlled transversal vibrations of a
beam with hinged ends, for which the model are given
by the following system

u′′(t, x) + uxxxx(t, x) = 0 (t, x) ∈ (0, T )× (0, 1)
u(t, 0) = u(t, 1) = uxx(t, 0) = 0 t ∈ (0, T )
uxx(t, 1) = v(t) t ∈ (0, T )
u(0, x) = u0(x) x ∈ (0, 1)
u′(0, x) = u1(x) x ∈ (0, 1),

(1)

where by ′ we denote the derivative in time and v is the
control acting on the extremity x = 1 of the beam.

By using multipliers techniques or Fourier series, the
following controllability property holds given T > 0 and

an initial data

(
u0

u1

)
∈ H = H1

0 (0, 1) × H−1(0, 1), then

there exists a control v ∈ L2(0, T ) with the property that
the solution of (1) verifies

u(T, x) = u′(T, x) = 0 (x ∈ (0, 1)). (2)

For more details, see Komornik and Loreti (2005).

In this paper we study the controllability of the semi–
discrete space approximation of (1). Let us consider the
equidistant partition of the interval (0, 1) with N+2 nodes,
for N ∈ N∗, x0 = 0 < x1 = h < ... < xk = kh < ... <
xN+1 = 1, where the mesh-size is h = 1

N+1 . In order

? The authors were partially supported by bilateral Grant Romania-
France, PN-II Capacităţi, Brancuşi, PN-II-CT-RO-FR 2012-1-1005,
No. 700, CF 128, of the Romanian National Authority for Scientific
Research, CNCS-UEFISCDI.

to discretize the boundary conditions, we consider two
additional points x−1 = x0−h and xN+2 = xN+1 +h. We
consider finite differences in order to obtain the classical
semi–discretization of (1), given by

u′′k = −uk+2 − 4uk+1 + 6uk − 4uk−1 + uk−2
h4

1 ≤ k ≤ N, t ∈ (0, T )
u0(t) = 0, uN+1(t) = 0 t ∈ (0, T )
u−1(t) = −u1(t), t ∈ (0, T )
uN+2(t) = h2vh(t)− uN (t), t ∈ (0, T )
uk(0) = u0k, u

′
k(0) = u1k 1 ≤ k ≤ N.

(3)

We remark that, our problem consists of solving N linear
equations with N unknowns u1, u2, . . . , uN . More pre-
cisely, uk(t) is the approximation of u(t, xk), the solution of

(1), if

(
u0k
u1k

)
0≤k≤N+1

approximates the initial data of (1).

If we consider initial data which are sufficiently regular, we
shall choose

u0k = u0(kh), u1k = u1(kh) (0 ≤ k ≤ N + 1). (4)

In this paper we address the following controllability

property for (3): for T > 0 and

(
u0k
u1k

)
1≤k≤N

∈ C2N , we

look for a control vh ∈ L2(0, T ) such that the solution(
uk
u′k

)
1≤k≤N

of (3) verifies

uk(T ) = u′k(T ) = 0 (1 ≤ k ≤ N). (5)
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If (5) is verified for every initial data

(
u0k
u1k

)
1≤k≤N

∈ C2N ,

we will say that (3) is null-controllable in time T . Note
that the above controllability problem is not a difficult
task and it can be easily constructed a sequence of discrete
controls (vh)h>0. Of course, it is difficult to prove that the
controls sequence (vh)h>0 is convergent to a control of a
continuous beam equation (1).

In fact, as it was shown in Leon and Zuazua (2002), this
is not necessarily true in the case of discretization (3). In-

deed, for any h > 0 there exist initial data

(
u0k
u1k

)
1≤k≤N

∈

C2N (converging to an initial data

(
u0

u1

)
∈ H when h

goes to zero) such that any sequence of discrete controls
(vh)h>0 for (3) diverges in L2(0, T ).

This deficiency appears because, the dynamics of the semi-
discrete model generate bad high frequencies oscillations.
In order to eliminate this deficiency two possibilities have
been proposed and analyzed in Leon and Zuazua (2002):

(a) to project the solution of (3) over a space in which
the high frequencies have been eliminated and this
projection is controlled to zero;

(b) to add an extra boundary control, which vanishes in
limit, appears in (3).

In this article, we study a third possibility, to introduce a
numerical viscosity term which vanishes in the limit. Since
this term damps out high frequencies we can expect that
it will improve the desired convergence properties of the
discrete controls. More precisely, we will prove the null–
controllability of the following different discretization of
(1)

u′′k +
uk+2 − 4uk+1 + 6uk − 4uk−1 + uk−2

h4
−

−ε
u′k+1 − 2u′k + u′k−1

h2
= 0 1 ≤ k ≤ N, t ∈ (0, T )

u0(t) = 0, uN+1(t) = 0 t ∈ (0, T )
u−1(t) = −u1(t), t ∈ (0, T )
uN+2(t) = h2vh(t)− uN (t) t ∈ (0, T )
uk(0) = u0k, u′k(0) = u1k 1 ≤ k ≤ N.

(6)

In (6), the ratio
u′k+1(t)−2u

′
k(t)+u

′
k−1(t)

h2 represents a viscous
term and the parameter ε which multiplies it depends on
the step size h as follows

lim
h→0

ε(h) = 0. (7)

We will choose the parameter ε sufficiently small in order
to preserve the convergence and the precision of the
numerical scheme but sufficiently large to improve the
observability properties.

The vanishing viscosity method was used in control prob-
lems for the wave equation in Micu (2008). Note that,
we want to obtain an uniform controllability result in
arbitrary small time. This is not possible for the wave
equation but it is perfectly realistic for the beam equation.

We are able to obtain a uniformly bounded family of
controls for the perturbed problem (8) with the property

that any weak limit of it is a control for the continuous
problem. More precisely, the following result holds (see
Bugariu et al. (2013)).

Theorem 1. Let T > 0 and

(
u0

u1

)
∈ H. There ex-

ist h0, c0 > 0 such that for any h ∈ (0, h0), ε ∈(
c0

1
T 2h

2 ln 1
h , c0h

)
and any initial data

(
u0k
u1k

)
1≤k≤N

∈

C2N (which weakly converges in `2 to

(
u0

u1

)
∈ H), there

exists a family of controls (vh)h>0 ⊂ L2(0, T ) for problem
(6) which converges to a null-control v for (1) in L2(0, T ).

Remark 2. To obtain the convergent result from Theo-
rem 1, the parameter ε has to be large enough (greater
than c0h

2 ln( 1
h )). This key condition makes the dissipation

mechanism efficient in our control problem but also intro-
duces an unbounded perturbation in the system which is
more difficult to analyse.

2. THE DISCRETE CONTROL PROBLEM AND THE
HUM APPROACH

In this section, we give the equivalent vectorial form
of (6) and we present our controllability problem as a
minimization problem. Firstly, we write (6) as an abstract
Cauchy form by using the matrices Ah, Bh ∈ MN×N (R)
given by

Ah =
1

h2



2 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0

0 −1 2 −1 . . . 0 0
...

...
. . .

. . .
. . .

...
...

0 0 . . . −1 2 −1 0
0 0 . . . 0 −1 2 −1
0 0 . . . 0 0 −1 2


, Bh = A2

h.

If we denote by

U0
h =


u01
u02
...
u0N

 , U1
h =


u11
u12
...
u1N

 ,

Uh(t) =


u1(t)
u2(t)

...
uN (t)

 , Fh(t) =
1

h2


0
0
...
0

−vh(t)

 ,

then system (6) may be written vectorially as follows:{
U ′′h (t) +BhUh(t) + εAhU

′
h(t) = Fh(t) t ∈ (0, T )

Uh(0) = U0
h , U ′h(0) = U1

h .
(8)

The system (8) is null–controllable in time T > 0 if for

any initial data

(
U0
h

U1
h

)
∈ C2N , there exists a control

vh ∈ L2(0, T ) such that the corresponding solution

(
Uh
U ′h

)
of (8) verifies
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Uh(T ) = U ′h(T ) = 0. (9)

For l = (lk)1≤k≤N ∈ CN , d = (dk)1≤k≤N ∈ CN we define
the following discrete inner products

〈l, d〉 = h

N∑
k=1

lkdk, (10)

(l, d)1 = 〈Ahl, d〉, (11)

with the corresponding norm ‖ · ‖1 and

(l, d)−1 = 〈A−1h l, d〉, (12)

with the corresponding norm ‖ · ‖−1.

Finally, we consider the discrete inner product in C2N〈
(l1, l2), (d1, d2)

〉
1,−1 = (l1, d1)1 + (l2, d2)−1 (13)

with the corresponding norm ‖ · ‖1,−1.

In order to prove the controllability properties of (8)
we study the properties of the homogeneous “adjoint”
backward problem{

W ′′h (t)− εAhW ′h(t) +A2
hWh(t) = 0 t ∈ (0, T )

Wh(T ) = W 0
h , W ′h(T ) = W 1

h ,
(14)

where the initial data

(
W 0
h

W 1
h

)
∈ C2N are given. Multiply-

ing system (14) with Uh, the solution of system (8) and if
we integrate in time we deduce the characterization of the
controllability property, given in the following theorem.

Theorem 3. Given T > 0, system (8) is null–controllable

in time T if and only if, for any initial data

(
U0
h

U1
h

)
∈ C2N ,

there exists vh ∈ L2(0, T ) which verifies∫ T

0

vh(t)
WN (t)

h
dt (15)

=
〈
U1
h ,Wh(0)

〉
−
〈
U0
h ,W

′
h(0)− εAhWh(0)

〉
where

(
W 0
h

W 1
h

)
∈ C2N and

(
Wh

W ′h

)
is the solution of (14).

For simplicity, we denote by

〈(U0
h , U

1
h), (Wh(0),W ′h(0))〉D

= −
〈
U1
h ,Wh(0)

〉
+
〈
U0
h ,W

′
h(0)− εAhWh(0)

〉
.

Given T > 0, let q ∈ C∞[0, T ] be a cut-off function such
that there exists a positive real number δ < T

2 with the
following properties

(i) supp(q) ⊂
(
δ
2 , T −

δ
2

)
,

(ii) 0 ≤ q(t) ≤ 1 for all t ∈ [0, T ],
(iii) q(t) ≥ 1/2 for all t ∈ [δ, T − δ].

(16)

The function q has the role to improve the numerical
approximations of the controls, avoiding incompatibility
between the initial data and the nonhomogeneous term at
the origin.

Let us consider a functional J : C2N → C given by

L(W 0
h ,W

1
h ) =

1

2

∫ T

0

q(t)

∣∣∣∣WN (t)

h

∣∣∣∣2 dt+
+〈(U0

h , U
1
h), (Wh(0),W ′h(0))〉D,

(17)

where (Wh,W
′
h) is the solution of the system (14).

Theorem 4. Given any T > 0 and (U0
h , U

1
h) ∈ C2N , then

there exists a unique (Ŵ 0
h , Ŵ

1
h ) ∈ C2N which is the unique

minimizer of the functional L, given by (17). If we consider
vh ∈ H1

0 (0, T ) defined by

vh = q
ŴN

h
, (18)

where (Ŵh, Ŵ
′
h) is the solution of (14) with initial data

(Ŵ 0
h , Ŵ

1
h ), then vh is a control for (8).

Proof. It is easy tot show that the map J from (18) is
continuous, strictly convex and coercive. Indeed, there
exists a constant C = C(T, h) such that

‖(Wh(0),W ′h(0))‖21,−1 ≤ C
∫ T

0

q(t)

∣∣∣∣WN (t)

h

∣∣∣∣2 dt. (19)

It follows that J has a unique minimizer. The optimality
condition for the minimizer and (15) show that vh is the
control for (8). 2

Remark 5. Obsrevability inequality (19) holds for (3) and
(6). If we want to obtain the result from Theorem 1,
the constant C should be uniformly bounded in h. This
property is true for (6) but, as shown in Leon and Zuazua
(2002), fails to hold for (3).

We define

b : C2N × C2N → C,

b((W 0
h ,W

1
h ), (ξ0h, ξ

1
h)) =

∫ T

0

q(t)

(
WN

h

)(
ξN
h

)
dt,

(20)

T : C2N → C,

T (W 0
h ,W

1
h ) = 〈(U0

h , U
1
h), (Wh(0),W ′h(0))〉D

(21)

where (W,W ′) and (ξ, ξ′) verifies (14) with initial data
(W 0

h ,W
1
h ) and (ξ0h, ξ

1
h) respectively.

Hence, we deduce that

L(W 0
h ,W

1
h ) =

1

2
b((W 0

h ,W
1
h ), (W 0

h ,W
1
h )) + T (W 0

h ,W
1
h ).

In the following sentences we present some remarks which
give the main ideas about the computation algorithm. We
consider the following steps.

i) We compute T (W 0
h ,W

1
h ).

Let (τ, τ ′) such that{
τ ′′(t) +A2

hτ(t) + δAhτ
′(t) = 0, t ∈ (0, T ),

τ(0) = U0
h , τ

′(0) = U1
h

(22)

where (W,W ′) verifies (14) with initial data (W 0
h ,W

1
h ).

Then we have that

〈(U0
h , U

1
h), (W0,W

′
0)〉D =

= 〈(τ(T ), τ ′(T )), (W 0
h ,W

1
h )〉D.

Moreover, for any (ξ0h, ξ
1
h), we have that

〈(τ(T ), τ ′(T )), (ξ0h, ξ
1
h)〉D = 〈((f0h , f1h), (ξ0h, ξ

1
h)〉)1,−1,
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where (f0h , f
1
h) are given by{

f1h = −Ahτ(T ),
f0h = A−1h (τ ′(T ) + δAhτ(T )) .

(23)

Hence,

T (W 0
h ,W

1
h ) = 〈((f0h , f1h), (W 0

h ,W
1
h )〉)1,−1, (24)

where (f0h , f
1
h) is given by (22)-(23).

ii) We compute b((W 0
h ,W

1
h ), (ξ0h, ξ

1
h)).

For any (W 0
h ,W

1
h ) and (ξ0h, ξ

1
h), we obtain that∫ T

0

q(t)

(
WN

h

)(
ξN
h

)
dt =

= 〈(z(T ), z′(T )), (ξ0h, ξ
1
h)〉D,

where (z, z′) verifies{
z′′ +A2

hz + δAhz
′ = F,

z(0) = 0, z′(0) = 0,
(25)

and F verifies

F (t) =



0
0
.
.
.
0

1

h3
qWN


.

Moreover,

〈(τ(T ), τ ′(T )), (ξ0h, ξ
1
h)〉D = 〈((f̃0h , f̃1h), (ξ0h, ξ

1
h)〉)1,−1,

where (f̃0h , f̃
1
h) is given by{

f̃1h = −Ahz(T ),

f̃0h = A−1h (z′(T ) + δAhz(T )) .
(26)

Hence,

b((W 0
h ,W

1
h ), (ξ0h, ξ

1
h)) = 〈((f̃0h , f̃1h), (ξ0h, ξ

1
h)〉)1,−1,

(27)

where (f̃0h , f̃
1
h) verifies (25)-(26).

iii) We compute the gradient of L.
Firstly, we obtain that

∇L(W 0
h ,W

1
h )(ξ0h, ξ

1
h) =

= b((W 0
h ,W

1
h ), (ξ0h, ξ

1
h)) + T (ξ0h, ξ

1
h) =

= 〈((f0h + f̃0h , f
1
h + f̃1h), (ξ0h, ξ

1
h)〉)1,−1.

Hence,
∇L(W 0

h ,W
1
h ) = (l0, l1), (28)

where (l0, l1) verifies{
l1 = −Ah(τ(T ) + z(T )),

l0 = A−1h (τ ′(T ) + z′(T ) + δAh(τ(T ) + z(T ))) .
(29)

where (τ, τ ′) and (z, z′) are the solutions of (22) and
(25) respectively.

3. CONJUGATE GRADIENT METHOD

We consider H a Hilbert space endowed with the inner
product ( · , · ) and the norm || ||.
In this show section we present the main steps of the
conjugate gradient method in H, in order to solve a
variational problem (see Glowinski et al. (1990)).

We try to solve the general variational problem: find v ∈ H
which verifies

b(v, ψ) + T (ψ) = 0, ∀ψ ∈ H, (30)

where b : H × H → R is bilinear, continuous, symmetric
and coercive and T : H → R is linear and continuous.

The above assumptions gives the existence and the unique-
ness of the solution v ∈ H of (30).

Let us consider L : H → R, defined as

L(ψ) =
1

2
b(ψ,ψ) + T (ψ).

Hence, for the problem

L(ψ̂) = min
ψ∈H

L(ψ) (31)

we infer the existence and the uniqueness of the solution

ψ̂ ∈ H, which is in fact v, the solution of (30).

Now, we need to approximate the solution ψ̂ for the
problem (31). In order to do that, we will use the conjugate
gradient method as in the following steps:

0. We consider ψ0 ∈ H.
1. We approximate the gradient l0 = ∇L(ψ0) ∈ H by

using

(l0, ϕ) = (∇L(ψ0), ϕ) = lim
h→0

L(ψ0 + hϕ)− L(ψ0)

h

= b(ψ0, ϕ) + T (ϕ), ∀ϕ ∈ H.
2. For ||l0|| ≤ δ we choose ψ̂ = ψ0 and stop.
3. For ||l0|| > δ we choose the descent direction d0 =
−l0.

Now, we assume the ψn, ln = ∇L(ψn) and dn are known
and we want to compute ψn+1, ln+1 and dn+1, as in the
following steps:

4. We evaluate

qn = − (ln, dn)

b(dn, dn)

By using the fact that (ln, lj) = 0, 0 ≤ j ≤ n− 1, we
obtain that

qn =
(ln, ln)

b(dn, dn)
.

5. Nextly, we approximate

ψn+1 = ψn + qndn.

6. The new gradient is evaluated as ln+1 = ∇L(ψn+1)
by taking into account the fact that

(ln+1, ϕ) = b(ψn+1, ϕ) + T (ϕ), ∀ϕ ∈ H
or, by using the fact that ψn+1 = ψn + qndn

(ln+1, ϕ) = (ln, ϕ) + qnb(dn, ϕ), ∀ϕ ∈ H.
7. For ||ln+1|| ≤ δ we choose ψ̂ = ψn+1 and stop.
8. For ||ln+1|| > δ we consider

dn+1 = −ln+1 +
||ln+1||2

||ln||2
dn.

9. Consider n = n+ 1 and go back to step 4.

Remark 6. To evaluate b(ψ,ϕ) it can be used the fact that,
for each ψ ∈ H there exists a unique ζ = ζ(ψ) ∈ H which
verifies

b(ψ,ϕ) = (ζ(ψ), ϕ), ∀ϕ ∈ H. (32)
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In order to evaluate qn at the step 4, note that

qn =
(ln, ln)

(dn, ζ(dn))

and in order to evaluate ln+1 at the step 6 note that

ln+1 = ln + qnζ(dn).

Remark 7. By using the Riesz identification we take into
account that ∇L(ψ0) ∈ H and ∇L(ψ0)(ϕ) = (∇L(ψ0), ϕ).

4. A NUMERICAL ALGORITHM

By using the conjugate gradient method as in Glowinski
et al. (1990) and Carthel et al. (1994) we present a
numerical algorithm which approximates the minimizer of
L given by (17) and the approximate control vh.

0. We consider (ψ0
0 , ψ

1
0) ∈ RN × RN .

1. We compute the gradient

(l00, l
1
0) = ∇L(ψ0

0 , ψ
1
0) ∈ RN × RN .

We consider the equations:{
W ′′ +A2

hW − δAhW ′ = 0 in (0, T )
W (T, · ) = W 0

0 , W ′(T, · ) = W 1
0 ,

(33){
z′′ +A2

hz + δAhz
′ = F in (0, T )

z(0, · ) = z′(0, · ) = 0,
(34){

τ ′′ +A2
hτ + δAhτ = 0 in (0, T )

τ(0, · ) = u0, τ ′(0) = u1,
(35){

l10 = −Ah(τ(T )− w(T )),
l00 = A−1h (τ ′(T ) + z′(T ) + δAh(τ(T ) + z(T ))

(36)
with

F =



0
0
.
.
.
0

1

h3
qWN


.

2. For ||(l00, l10)||1−1 ≤ δ we choose (ψ̂0, ψ̂1) = (ψ0
0 , ψ

1
0)

and stop.
3. For ||(l00, l10)||1,−1 > δ we choose

(d00, d
1
0) = −(l00, l

1
0).

Suppose that we have (W 0
n ,W

1
n), (l0n, l

1
n) = ∇L(W 0

n ,W
1
n)

and (d0n, d
1
n). Compute (W 0

n+1,W
1
n+1), (l0n+1, l

1
n+1) and

(d0n+1, d
1
n+1) as it follows:

4. Consider the equations:{
W ′′ +A2

hW − δAhW ′ = 0 in (0, T )
W (T, · ) = d0n, W ′(T, · ) = d1n,

(37){
z′′ +A2

hz + δAhz
′ = F in (0, T )

z(0, · ) = z′(0, · ) = 0,
(38){

l̃1n = −Ahz(T ),

l̃0n = A−1h (z′(T ) + δAhz(T )) ,
(39)

where

F =



0
0
.
.
.
0

1

h3
qWN


.

5. We compute the step descent,

qn = −〈((l
0
n, l

1
n), (d0n, d

1
n)〉)1,−1

b((d0n, d
1
n), (d0n, d

1
n))

=

=
||(l0n, l1n)||21,−1

b((d0n, d
1
n), (d0n, d

1
n))

=
||(l0n, l1n)||21,−1

〈((l̃0n, l̃1n), (d0n, d
1
n)〉)1,−1

.

6. We compute the next approximation

(ψ0
n+1, ψ

1
n+1) = (ψ0

n, ψ
1
n) + qn(d0n, d

1
n).

7. We consider

(l0n+1, l
1
n+1) = ∇L(ψ0

n+1, ψ
1
n+1),

taking into account the fact that

(l0n+1, l
1
n+1) = (l0n, l

1
n) + qn(l̃0n, l̃

1
n).

8. For ||(l0n+1, l
1
n+1)||1,−1 ≤ δ we choose (ψ̂0, ψ̂1) =

(ψ0
n+1, ψ

1
n+1) and stop.

9. For ||(l0n+1, l
1
n+1)||1,−1 > δ we evaluate

(d0n+1, d
1
n+1) = −(l0n+1, l

1
n+1)+

+
||(l0n+1, l

1
n+1)||21,−1

||(l0n, l1n)||21,−1
(d0n, d

1
n).

10. Consider n = n+ 1 and go back to step 4.

5. NUMERICAL RESULTS

We compute the approximation of the control of (1), by
using two numerical experiments based on (6) and the
algorithm from the above section.

In the algorithm several beam equations have to be solved.
The differential equations in t are solved by using New-
mark Method when the parameters γ = 0.5 and β = 0.25
(see Hughes (1987)).

Numerical example: In this example we take T = 1.5,
ε = h and the initial data to be controlled

u0(x) = 1− |2x− 1| , u1(x) = 0 (x ∈ (0, 1)).

The approximations of the control andof the corresponding
controlled solution, for N = 100 and ε = h, are presented
in Figures 1 and 2 . We remark that, in this case, we
have obtained a good approximationof the control and the
solution goes to 0 at time T .

In Figure 3 we present the evolution of the error in the
conjugate gradient method for N = 100 with and without
viscosity (ε = h and ε = 0 respectively). We remark that
the algorithm is clearly convergent only in the case in
which a viscosity is added.
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