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Abstract: In this paper a novel approach for output-feedback model predictive control of
discrete-time linear stochastic systems is presented, allowing for the presence of unbounded
noise. The satisfaction of probabilistic constraints and the stability properties of the method are
guaranteed by imposing suitable constraints on the mean and the variance of the state variable.
A simulation example is presented, illustrating the effectiveness of the proposed control scheme.

1. INTRODUCTION

Robust model predictive control (MPC) algorithms have
been thoroughly studied in the past years (see, e.g., Magni
and Scattolini (2007); Raimondo et al. (2009); Mayne et al.
(2005), and the references therein), based on different
rationales, e.g., min-max and tube-based methods. These
methods prove to be very effective in case of bounded de-
terministic disturbances and for deterministic constraints.
However, in case stochastic disturbances affect the system
and chance constraints are required (i.e., constraints must
be satisfied in probability) different algorithms are called
for. Recently, two approaches have been explored in the
framework of probabilistic MPC. The first approach, in-
vestigated, e.g., in Calafiore and Fagiano (2013); Batina
(2004); Blackmore et al. (2010); Ono (2012) is based
on randomized and scenario-based methods, which are
nowadays rather computationally demanding for practical
implementations. The second approach is characterized by
the fact that the stochastic control problem and the prob-
abilistic constraints are formulated as deterministic ones
by exploiting the a priori known statistical description of
the noise or of the model uncertainty. This is investigated,
e.g., in Primbs and Sung (2007); Cannon et al. (2011,
2010); Hokayem et al. (2012). Interestingly, many of these
methods (e.g., the ones studied in Cannon et al. (2010);
Hokayem et al. (2012)) have been developed in an output-
feedback framework.
For systems affected by additive noise, a simple algorithm
has been proposed in Farina et al. (2013), whose main
features are: (a) the computational burden is only slightly
heavier than the one required by stabilizing MPC methods
for undisturbed linear systems, (b) the possibility to con-
sider unbounded noises, and (c) guaranteed recursive feasi-
bility and convergence under mild conditions. This method
relies on the Cantelli inequality to properly reformulate
chance-constraints into deterministic ones, and feasibility
is guaranteed by imposing suitable constraints to the mean
and the variance of the state variable. In this work we
extend the state-feedback approach taken in Farina et al.
(2013) to the output-feedback case, where the outputs are

assumed to be affected by stochastic noise.
The paper is organized as follows. In Section 2 the con-
trol problem is defined in the stochastic framework and
the probabilistic constraints are defined. In Section 3 we
introduce the main ingredients of the Stochastic MPC op-
timization problem and we state the main stability result.
Finally, in Section 4 we present an application example
and in Section 5 we draw some conclusions. For clarity
of exposition, the proof of the main theoretical result is
postponed to an Appendix.

2. PROBLEM STATEMENT

2.1 Stochastic systems and probabilistic constraints

The following discrete-time linear system is considered{
xt+1 = Axt +But + Fwt t ≥ 0
yt = Cxt + vt

(1)

where xt ∈ Rn is the state, ut ∈ Rm is the input,
yt ∈ Rp is the measured output and wt ∈ Rnw , vt ∈ Rp are
two independent, zero-mean, white noises with covariance
matrices W � 0 and V � 0, respectively, and a-priori
unbounded support.
We assume that the pair (A,C) is observable, and that

the pairs (A,B) and (A, F̃ ) are reachable, where matrix F̃

satisfies F̃ F̃T = FWFT .
Constraints on state and input variables of system (1) are
imposed in a probabilistic way, i.e., at time t it is required
that

P{bTr xt+k ≥ xmaxr } ≤ pxr ∀k > 0 r = 1, . . . , nr (2)

P{cTs ut+k ≥ umaxs } ≤ pus ∀k ≥ 0 s = 1, . . . , ns (3)

where P(φ) denotes the probability of φ, br, cs are constant
vectors, xmaxr , umaxs are bounds for the state and control
variables and pxr , p

u
s are design parameters. It is also

assumed that the set of relations bTr x ≤ xmaxr , r =
1, . . . , nr (respectively, cTs ut+k ≤ umaxs , s = 1, . . . , ns),
defines a convex and compact set X (respectively, U)
containing the origin in its interior.
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2.2 The observer and the control law

Denoting by x̂t the estimate of variable xt, we first define
an observer for (1), i.e.,

x̂t+1 = Ax̂t +But + Lt|t(yt − Cx̂t) (4)

where Lt|t is a time-varying gain whose choice is discussed
later in the paper. We want to design the control law

ut = ūt|t −Kt|t(x̂t − x̄t|t) (5)

where the feed-forward term ūt|t and the time-varying
gain Kt|t are defined in the sequel as the solutions to a
suitable MPC optimization problem. In (5), x̄t|t denotes
the expected value of the state xt at time t, i.e., x̄t|t =
E{xt}. Assuming x̄t|t as a priori information and recalling
that E{wt} = 0 for all t, the predicted values x̄t+k|t =
E{xt+k}, k = 1, 2, . . . can be computed using the equation

x̄t+k+1|t = Ax̄t+k|t +Būt+k|t k ≥ 0 (6)

where also ūt+k|t is known and will be clarified later on.
Letting

δxt+k|t = xt+k − x̄t+k|t k ≥ 0 (7a)

et+k = xt+k − x̂t+k (7b)

εt+k|t = x̂t+k − x̄t+k|t (7c)

from (7) we obtain that

δxt+k|t = et+k + εt+k|t k ≥ 0 (8)

Define also the vector σt+k|t =
[
eTt+k ε

T
t+k|t

]T
. According

to (1)-(5), we obtain that

σt+k+1|t =

[
A− Lt+k|tC 0
Lt+k|tC A−BKt+k|t

]
σt+k|t

+

[
F −Lt+k|t
0 Lt+k|t

] [
wt+k
vt+k

] (9)

Denote by Σt+k|t = E
{
σt+k|tσ

T
t+k|t

}
the covariance ma-

trix of the zero-mean vector σt+k|t. Assume that at time
t the matrix Σt|t is known. Then, according to (9) it is
possible to compute its evolution as

Σt+k+1|t = E
{
σt+k+1|tσ

T
t+k+1|t

}
=

[
A− Lt+k|tC 0
Lt+k|tC A−BKt+k|t

]
Σt+k|t

×
[
A− Lt+k|tC 0
Lt+k|tC A−BKt+k|t

]T
+

[
F −Lt+k|t
0 Lt+k|t

] [
W 0
0 V

] [
F −Lt+k|t
0 Lt+k|t

]T
(10)

By definition, also the variable δxt+k|t, k ≥ 0, has zero
mean. Its covariance matrix is denoted by Xt+k|t and is
derived from Σt+k+1|t as follows

Xt+k|t = E
{
δxt+k|tδx

T
t+k|t

}
= [I I] Σt+k|t

[
I
I

]
(11)

Finally, define δut+k|t = ut+k − ūt+k|t = −Kt+k|t(x̂t+k −
x̄t+k|t), k ≥ 0, which is also a zero-mean variable, with
covariance Ut+k|t, derived from Σt+k+1|t, i.e.

Ut+k|t =E
{
Kt+k|tεt+k|tε

T
t+k|tK

T
t+k|t

}
=
[
0 Kt+k|t

]
Σt+k|t

[
0

KT
t+k|t

]
(12)

3. MPC ALGORITHM: FORMULATION AND
PROPERTIES

According to the standard procedure in MPC, at any time
instant t a future prediction horizon of length N is con-
sidered and a suitable optimization problem is iteratively
solved. In the remainder of the paper, the variables x̄t+k,
ūt+k, and σt+k will be used to denote the expected values
of xt+k and σt+k starting from arbitrary values x̄t, ūt...t+k,
and σt while, in the previous section, x̄t+k|t and σt+k|t are
computed starting from the values x̄t|t, ūt...t+k|t, and σt|t
(optimal with respect to the MPC problem defined below),
respectively. Similarly, Xt+k, Ut+k, and Σt+k will be used
to denote the covariances of xt+k, ut+k, and σt+k, starting
from arbitrary initial values Xt, Ut, and Σt.
The main ingredients of the optimization problem are now
introduced.

3.1 Cost function

Our aim is to minimize a cost function of the type

J = E

{
t+N−1∑
i=t

‖xi‖2Q + ‖ui‖2R + ‖xt+N‖2S

}
(13)

where Q, R, and S are positive definite, symmetric ma-
trices. Define the nominal input sequence ūt...t+N−1 =
{ūt, . . . , ūt+N−1} and the gain sequences Kt...t+N−1 =
{Kt, . . . ,Kt+N−1} and Lt...t+N−1 = {Lt, . . . , Lt+N−1}.
The evolution of the expected value of x is computed as

x̄t+k+1 =Ax̄t+k +Būt+k (14)

Also, let ut+k = ūt+k − Kk(x̂t+k − x̄t+k), and Σt+k =
E
{
σt+kσ

T
t+k

}
, which evolves according to (10). In view of

these terms, the cost function (13) results to be the sum
of two components accounting for the expected value and
the variance of the state variable, respectively

J = Jm(x̄t, ūt...t+N−1) + Jv(Σt,Kt...t+N−1, Lt...t+N−1)
(15)

where

Jm =

t+N−1∑
i=t

‖x̄i‖2Q + ‖ūi‖2r + ‖x̄t+N‖2S (16)

Jv = E
{ t+N−1∑

i=t

‖xi − x̄i‖2Q + ‖ui − ūi‖2R

+ ‖xt+N − x̄t+N‖2S
}

(17)

In this paper we adopt the following approximation of Jv,
obtained by formally separating the components related
to the estimation error et and the control error εt, i.e.,

Jv = E
{
t+N−1∑
i=t

‖xi − x̂i‖2Q + ‖xt+N − x̂t+N‖2SL

}
+

E
{
t+N−1∑
i=t

‖x̂i − x̄i‖2Q + ‖ui − ūi‖2R + ‖x̂t+N − x̄t+N‖2S
}

(18)
where different weights SL and S have been introduced
for adding more degrees of freedom in the problem for-
mulation. In particular, they must be selected in order to
satisfy the following inequality

diag(Q,Q+ K̄TRK̄)− diag(SL, S) + ΦTdiag(SL, S)Φ � 0
(19)
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where

Φ =

[
A− L̄C 0
L̄C A−BK̄

]
and K̄, L̄ are stabilizing gains, whose choice is discussed
more in details in the sequel.
Remark that equation (19) is a rather standard Lyapunov-
like inequality where the unknown matrix has a fixed
block-diagonal structure. Therefore, it can be solved using
standard tools for the solution of LMIs. Also note that, in
principle, the choice SL = S is more consistent with the
original cost function (13), but it is not strictly required
in the following. Equation (18) results in

Jv =
∑t+N−1
i=t tr

{[
Q 0
0 Q+KT

i RKi

]
Σi

}
+tr

{[
SL 0
0 S

]
Σt+N

} (20)

Recalling (14) and (10), note that Jm depends on
ūt...t+N−1 and on the initial condition x̄t of the mean
value, while Jv depends on Kt...t+N−1, Lt...t+N−1, and on
the initial condition Σt of the variance. Therefore, when
minimizing (15), the aim is to drive the mean value of
the state to zero in an optimal way by acting on the
nominal input component ūt...t+N−1; on the other hand,
the variance of xt is minimized by acting on the free
gainsKt...t+N−1 and Lt...t+N−1. Furthermore, also the pair
(x̄t,Σt) will be accounted for as an argument of the MPC
optimization, as later discussed.

3.2 Reformulation of the constraints

In this section we derive deterministic, but tighter, con-
straints from the probabilistic ones (2) and (3), with the
aim of including them in the MPC optimization problem
defined below. By resorting to the Cantelli lemma and to a
linearization procedure, according to Farina et al. (2013),
one obtains the linear state constraints, for all k ≥ 0

bTr x̄t+k ≤ (1− 0.5αx)xmaxr − 1− pxr
2αxxmaxr pxr

bTr Xt+kbr (21)

cTs ūt+k ≤ (1− 0.5αu)umaxs − 1− pus
2αuumaxs pus

cTs Ut+kcs (22)

with r = 1, . . . , nr and s = 1, . . . , ns, where αx ∈ [0, 1] and
αu ∈ [0, 1] are design parameters.

3.3 Terminal constraints

As usual in MPC with guaranteed stability, see e.g. Mayne
et al. (2000), also in the algorithm proposed here some
constraints must be imposed at the end of the prediction
horizon for both the mean value x̄t+N and the variance
Σt+N . Specifically, the terminal constraints are

x̄t+N ∈ X̄f (23)

Σt+N � Σ̄ (24)

The set X̄f is a positively invariant set satisfying

(A−BK̄)x̄ ∈ X̄f ∀x̄ ∈ X̄f (25)

while Σ̄ is the steady-state solution of the Lyapunov
equation (10), i.e.,

Σ̄ =ΦΣ̄ΦT + ΨΩ̄ΨT (26)

where

Ψ =

[
F −L̄
0 L̄

]
and Ω̄ = diag(W̄ , V̄ ), obtained by considering noise vari-
ances W̄ � W and V̄ � V , and assuming constant gains
K̄ and L̄.
The following coupling conditions include both X̄f and Σ̄
at the same time, i.e.,

bTr x̄ ≤ (1− 0.5αx)xmaxr − 1− pxr
2αxxmaxr pxr

bTr X̄br (27a)

−cTs K̄x̄ ≤ (1− 0.5αu)umaxs − 1− pus
2αuumaxs pus

cTs Ūcs (27b)

for all r = 1 . . . nr, s = 1 . . . ns, and for all x̄ ∈ X̄f , where

X̄ = [I I] Σ̄

[
I
I

]
(28a)

Ū =
[
0 K̄

]
Σ̄

[
0
K̄T

]
(28b)

3.4 Statement of the stochastic MPC (S-MPC) problem

In this section we formulate the main S-MPC problem, to
be solved online according to the receding horizon princi-
ple. A preliminary discussion, concerning the initialization,
is due.
In order to use the most recent information available on
the state, at any time instant it would be natural to set the
current value of the nominal state x̄t|t to x̂t (i.e., letting
x̄t|t be the a posteriori optimal conditional expectation
value, in view of the estimated data x̂t). This corresponds
also to setting Σt|t to diag(Σ11,t|t−1, 0), where Σ11,t|t−1 is
the prediction error covariance obtained using (4).
However, since we do not exclude the possibility of un-
bounded disturbances, this choice could in some cases lead
to infeasible optimization problems, and the fundamental
property of recursive feasibility would be lost. On the other
hand, and in view of the terminal constraints (23), (24), it
is quite simple to see that recursive feasibility is guaranteed
provided that the considered mean is updated according
to the prediction equation (6), which corresponds to a
variance update given by (10). These considerations justify
the choice of accounting for the initial conditions (x̄t,Σt)
as free variables. Accordingly, we have identified two al-
ternative strategies.
Strategy 1 - Reset of the initial state: in the MPC opti-
mization problem set x̄t|t = x̂t, Σt|t = diag(Σ11,t|t−1, 0)
Strategy 2 - Prediction: in the MPC optimization problem
set x̄t|t = x̄t|t−1, Σt|t = Σt|t−1.
The S-MPC problem can now be stated as follows.

S-MPC problem: at any time instant t solve

min
x̄t|t,Σt|t,ūt...t+N−1,Kt...t+N−1,Lt...t+N−1

J

where J is defined in (15), (16), (18), subject to the
initialization constraint, corresponding to Strategies 1 and
2, i.e.,

(x̄t|t,Σt|t) ∈ {(x̂t,diag(Σ11,t|t−1, 0)), (x̄t|t−1,Σt|t−1)}
(29)

to the dynamics (14) and (10), to the linear con-
straints (21), (22) for all k = 0, . . . , N − 1, and to the
terminal constraints (23), (24). �
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Denoting with ūt...t+N−1|t = {ūt|t, . . . , ūt+N−1|t},
Kt...t+N−1|t = {Kt|t, . . . ,Kt+N−1|t}, Lt...t+N−1|t =
{Lt|t, . . . , Lt+N−1|t}, and (x̄t|t,Σt|t) the optimal solution
of the S-MPC problem, and according to the receding
horizon principle, the feedback control law actually used is
then given by (5) and the state observation evolves as (4).
We define the S-MPC problem feasibility set as Ξ :=
{(x̄0,Σ0) : ∃ū0...N−1,K0...N−1, L0...N−1 such that (21),
(22) hold for all k = 0, . . . , N − 1 and (23), (24) are veri-
fied}. Note that, in view of the compactness of X, see (2),
the set Ξ results to be compact. The recursive feasibility
and convergence properties of the resulting control system
are discussed below. However, some preliminary comments
are in order.

- At the initial time t = 0, the algorithm must be initialized
by setting x̄0|0 = x̂0 and Σ0|0 =diag(Σ11,0, 0). In view of
this, feasibility at time t = 0 amounts to (x̂0,Σ0|0) ∈ Ξ.

- According to the problem statement, feasibility of S-MPC
at time t > 0 amounts to
{(x̂t,diag(Σ11,t, 0)), (x̄t|t−1,Σt|t−1)}

⋂
Ξ 6= ∅.

- The binary choice between Strategies 1 and 2 for the
initialization of x̄t|t, Σt|t, see constraint (29), requires to
solve at any time instant two optimization problems.

- A sequential procedure can be adopted to reduce the
average overall computational burden. The optimization
problem corresponding to Strategy 1 is first solved and, if
it is infeasible, Strategy 2 must be used. On the contrary,
if it is feasible, it is possible to compare the resulting value
of the optimal cost function with the value of the cost us-
ing the sequences {ūt|t−1, . . . , ūt+N−2|t−1,−K̄x̄t+N−1|t},
{Kt|t−1, . . . ,Kt+N−2|t−1, K̄}, {Lt|t−1, . . . , Lt+N−2|t−1, L̄}.
If the optimal cost with Strategy 1 is lower, Strategy 1 can
be used without solving the MPC problem for Strategy 2.
This does not guarantee optimality, but the convergence
properties of the method stated in the result below are
recovered and the computational effort is reduced.

Now we are in the position to state the main result (the
proof is given in the Appendix).

Theorem 1. If, at time t = 0, the S-MPC problem admits
a solution, the optimization problem is recursively feasible
and the state and input probabilistic constraints (2) and
(3) are verified for all t ≥ 0. Furthermore, if there exists
ρ ∈ (0, 1) such that the noise variance Ω verifies

(N + β
α )

α
tr(STΨΩΨT ) < min(ρσ̄2, ρλmin(Σ̄)) (30)

where σ̄ is the maximum radius of a ball, centered at the
origin, included in X̄F , and

α = min{λmin(Q),
1

2
tr{Q−1}−1} (31a)

β = max{λmax(S), tr{ST }} (31b)

then

dist(‖x̄t‖2 + tr{Σt|t}, [0,
1

ρα
(N +

β

α
) tr(STΨΩΨT )])→ 0

as t→ +∞, where dist(ζ,Z) := inf{‖ζ − η‖, η ∈ Z} is the
point-to-set distance from ζ to Z. �

4. EXAMPLE

In this section an application of the proposed technique is
presented. The system under control represents a point-

mass moving in a two dimensional space, subject to a
random disturbance and to a noise on the measure of each
state variable. In particular the system is of type (1) with

A =

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , B =


1
2 0
0 1

2
1 0
0 1

 , C = I4, F =

0.1 0
0 0.1
0 0
0 0


The control objective is to drive the state of that system
to the origin while constraining it within a rectangle of
vertices (±6,±6), with bounded input ‖u‖∞ ≤ 2. The
disturbances wt and vt are zero mean white noises with
covariance matrices respectively W = 5I2 and V = 0.1I4.
For the MPC control problem we choose a prediction
horizon of length N = 8 and weights Q = 10−2I4, R = I2,
and, for the computation of the terminal constraints, we
set W̄ = 2W and V̄ = 2V . The gains K̄ and L̄ are in
turn obtained as the solution of an LQG control problem.
The initial state of the system is set to x0 = [3.5, 0, 2, 4]T

and the probabilistic constraints are defined by pxr = 0.2,
pus = 0.1, and αxr = αus = 0.2 r = 1 . . . nr, s = 1 . . . ns.
Figure 1 shows the results of application of the proposed
strategy.
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Fig. 1. Simulation results with px = 0.2 and pu = 0.1.

5. CONCLUSIONS

In this paper a novel approach for output-feedback model
predictive control of discrete-time linear stochastic sys-
tems is proposed. The main advantages of the presented
algorithm are that it allows for the presence of possibly
unbounded additive disturbances acting on the state and
on the measurements, and that recursive feasibility and
convergence are guaranteed under mild conditions.
The main concern related to the proposed method lies
in the implementation issues: while corresponding state-
feedback the algorithm (see Farina et al. (2013)) requires
the solution to a computationally lightweight quadratic
program including suitable linear matrix inequalities
(LMIs), the problem to be solved online in this paper
involves nonlinear matrix inequalities. This problem can
be overcome by introducing simple matrix approximations
allowing for a reformulation of the constraints as LMIs and
for a dramatic reduction of the computational load. This
issue will be subject of future work.
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Appendix A

A.1 Proof of recursive feasibility

Assume that, at time instant t, a feasible solution of
S-MPC is available, i.e., (x̄t|t,Σt|t) ∈ Ξ with optimal
sequences ūt...t+N−1|t, Kt...t+N−1|t, and Lt...t+N−1|t. We
prove that, at time t + 1, at least a feasible solution to
S-MPC exists, i.e., (x̄t+1|t, Xt+1|t) ∈ Ξ with admissible se-

quences ūft+1...t+N |t = {ūt+1|t, . . . , ūt+N−1|t,−K̄x̄t+N |t},
Kf
t+1...t+N |t = {Kt+1|t, . . . ,Kt+N−1|t, K̄}, and Lft+1...t+N |t =

{Lt+1|t, . . . , Lt+N−1|t, L̄}.
Constraint (21) is verified for all pairs (x̄t+1+k|t, Xt+1+k|t),
k = 0, . . . , N − 2, in view of the feasibility of S-MPC at
time t. Furthermore, in view of (23), (24), (28a), and the
condition (27a), we have that

bT x̄t+N |t ≤ (1− 0.5ε)xmax − 1−px
2εxmaxpx b

T X̄b

≤ (1− 0.5ε)xmax − 1−px
2εxmaxpx b

TXt+N |tb

i.e., constraint (21) is verified.
Analogously, constraint (22) is verified for all pairs
(ūt+1+k|t, Ut+1+k|t), k = 0, . . . , N − 2, in view of the
feasibility of S-MPC at time t. Furthermore, in view of
(23), (24), (28b), and the condition (27b), we have that

−cT K̄x̄t+N |t ≤ (1− 0.5ε)umax − 1−pu
2εumaxpu c

T Ūc

≤ (1− 0.5ε)umax − 1−pu
2εumaxpu c

TUt+N |tc

i.e., constraint (22) is verified.
Let Ω =diag(W,V ). In view of (23) and of the invariance
property (25) it follows that x̄t+N+1|t = (A−BK̄)x̄t+N |t ∈
X̄f and, in view of (24)

Σt+N+1|t = ΦΣt+N |tΦ
T + ΨΩΨT

� ΦΣ̄ΦT + ΨΩ̄ΨT = Σ̄

hence verifying both (23) and (24) at time t+ 1.

A.2 Proof of convergence

In view of the feasibility, at time t + 1 of the possibly

suboptimal solution ūft+1...t+N |t, K
f
t+1...t+N |t, L

f
t+1...t+N |t,

and (x̄t+1|t,Σt+1|t), we have that the optimal cost function

computed at time t+1 is J∗(t+1) = J∗m(t+1)+J∗v (t+1) 1 .
In view of the optimality of J∗(t+ 1)

J∗(t+ 1) ≤ Jm(x̄t+1|t, ū
f
t+1...t+N |t)

+ Jv(Σt+1|t,K
f
t+1...t+N |t, L

f
t+1...t+N |t) (A.1)

Note that

Jm(x̄t+1|t, ū
f
t+1...t+N |t) =

Jm(x̄t|t, ūt...t+N−1|t)− ‖x̄t|t‖2Q − ‖ūt|t‖2R+

‖x̄t+N |t‖2Q + ‖K̄x̄t+N |t‖2R − ‖x̄t+N |t‖2S+

‖(A−BK̄)x̄t+N |t‖2S (A.2)

In view of (19)

‖x̄t+N |t‖2Q + ‖K̄x̄t+N |t‖2R − ‖x̄t+N |t‖2S+

‖(A−BK̄)x̄t+N |t‖2S ≤ 0 (A.3)

1 For brevity, we denote J∗(xt, x̄t|t−1,Σt|t−1) with J∗(t),
J∗m(xt, x̄t|t−1,Σt|t−1) with J∗m(t), and J∗v (xt, x̄t|t−1,Σt|t−1) with
J∗v (t)

Furthermore, note that

Jm(x̄t|t, ūt...t+N−1|t) = J∗m(t) (A.4)

Now consider Jv. Denote, for better clarity, ST =
diag(SL, S), QT =diag(Q,Q+ K̄TRK̄). We compute that

Jv(Xt+1|t,K
f
t+1...t+N |t, L

f
t+1...t+N |t)

= Jv(Xt|t,Kt...t+N−1|t, Lt...t+N−1|t)

− tr{
[
Q 0
0 Q+KT

t|tRKt|t

]
Σt|t}+ tr{QTΣt+N |t (A.5)

+ STΦΣt+N |tΦ
T + STΨΩΨT − STΣt+N |t}

Recall the following properties of the trace: tr(A + B) =
tr(A) + tr(B), tr(AB) = tr(BA), being A and B matrices
of suitable dimensions. In view of this, and recalling (19):

tr{QT Σt+N|t + ST ΦΣt+N|tΦ
T − ST Σt+N|t} =

tr{(QT + ΦTST Φ− ST )Σt+N|t} ≤ 0 (A.6)

From (A.1)-(A.6) we obtain

J∗(t + 1) ≤ J∗(t)− (‖x̄t|t‖2Q + ‖ūt|t‖2R)

−tr{
[
Q 0
0 Q + KT

t|tRKt|t

]
Σt|t}+ tr(ST ΨΩΨT )

(A.7)

Furthermore, from the definition of J∗(t) we also have that

J∗(t) ≥ ‖x̄t|t‖2Q + ‖ūt|t‖2R

+ tr{
[
Q 0
0 Q+KT

t|tRKt|t

]
Σt|t} (A.8)

Now, denote ΩF = {(x̄,Σ) : x̄ ∈ X̄F ,Σ � Σ̄}. Assuming
that (x̄t|t,Σt|t) ∈ ΩF we have that J∗(t) ≤ Jauxm (t) +
Jauxv (t), where

Jauxm (t) =
∑t+N−1
k=t ‖(A−BK̄)t−kx̄t|t‖2Q

+‖K̄(A−BK̄)t−kx̄t|t‖2R + ‖(A−BK̄)N x̄t|t‖2S
since {−K̄x̄t|t, . . . ,−K̄(A − BK̄)N−1x̄t|t} is a feasible
input sequence. Therefore, recalling (19),

Jauxm (t) ≤ ‖x̄t|t‖2S (A.9)

Similarly, and recalling the properties of the trace and
(19), we obtain that Jauxv (t) is equal to∑N−1

k=0
tr{QT [ΦkΣt|tΦ

T (k) +
∑k−1

i=0
ΦiΨΩΨT ΦT (i)]}

+tr{ST [ΦNΣt|tΦ
T (N) +

∑N−1

i=0
ΦiΨΩΨT ΦT (i)]}

= tr{[
∑N−1

k=0
ΦT (k)QT Φk + ΦT (N)ST ΦN ]Σt|t}

+tr{[
∑N−1

k=1

∑k−1

i=0
ΦT (i)QT Φi +

∑N−1

i=0
ΦT (i)ST Φi]ΨΩΨT }

≤ tr{ST Σt|t}+ tr{[ST +
∑N−1

k=1
(ΦT (k)ST Φk)

+
∑N−1

i=1
ΦT (i)QT Φi]ΨΩΨT }

≤ tr{ST Σt|t}+ tr{[ST +
∑N−1

i=1
ST ]ΨΩΨT }

Therefore

Jauxv (t) ≤ tr{STΣt|t}+Ntr{STΨΩΨT } (A.10)

Combining (A.9) and (A.10) we obtain that, for all
(x̄t|t,Σt|t) ∈ ΩF

J∗(t) ≤ ‖x̄t|t‖2S + tr{STΣt|t}+N tr{STΨΩΨT } (A.11)

From (A.7), (A.8) and (A.11) it is possible to derive robust
stability-related results.

Before to proceed, recall that tr{STΣt|t} = tr{S
1
2T

T Σt|tS
1
2

T }
where S

1
2

T is a matrix that verifies S
1
2T

T S
1
2

T = ST . There-

fore tr{STΣt|t} = tr{S
1
2T

T Σt|tS
1
2

T } = ‖Σ
1
2

t|tS
1
2

T ‖2F . On the

other hand, denoting QT |t =diag(Q,Q + KT
t|tRKt|t), it

follows that tr{QT |tΣt|t} = ‖Σ
1
2

t|tQ
1
2

T |t‖
2
F . Recall that the
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sub-moltiplicativity property holds also for the Frobe-
nius norm, implying that ‖AB‖F ≤ ‖A‖F ‖B‖F and
that ‖AB‖F ≥ (‖A−1‖F )−1‖B‖F . In view of this, it fol-

lows that tr{STΣt|t} ≤ ‖Σ
1
2

t|t‖
2
F ‖S

1
2

T ‖2F = tr{ST }tr{Σt|t}
and that, also considering the matrix inversion Lemma,

tr{QT |tΣt|t} ≥ (‖Q−
1
2

T |t‖
2
F )−1‖Σ

1
2

t|t‖
2
F ≥

tr{(diag(Q,Q))−1}−1tr{Σt|t} = 1
2 tr{Q

−1}−1tr{Σt|t}.
Define V (x̄t|t,Σt|t) = ‖x̄t|t‖2 + tr{Σt|t} and ω =

tr{STΨΩΨT }. In view of this, we can reformulate (A.7),
(A.8) and (A.11) as follows.

J∗(t+ 1) ≤ J∗(t)− αV (x̄t|t,Σt|t) + ω (A.12a)

J∗(t) ≥ αV (x̄t|t,Σt|t) (A.12b)

J∗(t) ≤ βV (x̄t|t,Σt|t) +Nω (A.12c)

If (x̄t|t,Σt|t) ∈ ΩF then, in view of (A.12c), (A.12a)

J∗(t+ 1) ≤J∗(t)(1− α

β
) + (

α

β
N + 1)ω (A.13)

Denote b = 1
ρ (N + β

α ) with ρ ∈ (0, 1). If J∗(t) ≤ b ω, and

provided that inequality (30) is verified, then one can prove
that (x̄t|t,Σt|t) ∈ IΩF , where IΩF denotes the interior of
ΩF . In fact, J∗(t) ≤ b ω implies that, in view of (A.12b)

V (x̄t|t,Σt|t) ≤
b

α
ω

This, considering (30), implies that

‖x̄t|t‖2 < σ̄2 (A.14a)

tr(Σt|t) < λmin(Σ̄) (A.14b)

In view of (A.14a), then x̄t|t ∈ X̄F . Furthermore, (A.14b)

implies that λmax(Σt|t) < λmin(Σ̄), which in turn implies

that Σt|t ≺ Σ̄. Therefore, recalling (A.13), if J∗(t) ≤ b ω,
then J∗(t+ 1) ≤ b ω and the positive invariance of the set

D = {(x̄,Σ) : J∗(t) ≤ b ω} (A.15)

is guaranteed. From this point on, the proof follows simi-
larly to Magni et al. (2006); Raimondo et al. (2009).
For (x̄t|t,Σt|t) ∈ ΩF \D, it holds that J∗(t) > bω which,
in view of (A.12c), implies that

V (x̄t|t,Σt|t) >
1

α
ω

Therefore, considering (A.12a) we infer that

J∗(t+ 1)− J∗(t) < 0 (A.16)

On the other hand, there exists constant c̄ > 0 such
that, for all xt with (x̄t|t,Σt|t) ∈ Ξ\ΩF , there exists
xΩ with (x̄Ω,ΣΩ) ∈ ΩF \D such that −αV (x̄t|t,Σt|t) ≤
−αV (x̄Ω,ΣΩ) − c̄. This, in view of (A.12a) and (A.16),
implies that, for all xt with (x̄t|t,Σt|t) ∈ Ξ\ΩF

J∗(t+ 1)− J∗(t) < −c̄ (A.17)

This implies that there exists T1 > 0 such that xt+T1 is
(x̄t+T1|t+T1

,Σt+T1|t+T1
) ∈ ΩF .

If, on the one hand (x̄t+T1|t+T1
,Σt+T1|t+T1

) ∈ D, in view of
the positive invariance of D, (x̄t+k|t+k,Σt+k|t+k) ∈ D for
all k ≥ T1. If, on the other hand, (x̄t+T1|t+T1

,Σt+T1|t+T1
) ∈

ΩF \D, recalling (A.13), (1), and (A.12b)

J∗(t+ T1 + 1)−J∗(t+ T1)

≤ −(1− ρ)
α

β
J∗(t+ T1) (A.18)

≤ −(1− ρ)
α2

β
V (x̄t+T1|t+T1

,Σt+T1|t+T1
)

In view of (A.17)-(A.18) there exists T2 ≥ T1 such that,
for all ε > 0

J(t+ k) ≤ ε+ b ω

for all k ≥ T2 which, from (A.12b), proves that
dist(αV (x̄t|t,Σt|t), [0, bω])→ 0 as t→ +∞.
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