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Abstract: The paper suggests a new approach to Model Reference Adaptive Control (MRAC) design for 

stabilization of a class of uncertain nonlinear systems. The proposed MRAC design methodology is based 

upon a stable nonlinear reference model which is produced by a state feedback controller using the so-

called State Dependent Riccati Equation (SDRE) techniques. Based on states of the reference model, the 

designed stabilizer for the nonlinear reference model is then adapted for the nonlinear plant dynamics 

with a suitable adaptation mechanism, again by using the SDRE methodology. The proposed technique is 

illustrated to develop an optimal chemotherapy drug administration for cancer treatment using a tumor 

growth mathematical model. Simulation results show the effectiveness of the proposed SDRE-based 

MRAC method for the stabilization of nonlinear systems. 
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

1. INTRODUCTION 

Adaptive control methods are widely studied for linear time 

invariant (LTI), time varying and nonlinear systems to deal 

with plant uncertainty and/or time-varying plant parameters 

(Åström, & Wittenmark, 1995), (Ioannou & Sun, 1996). The 

methods may be classified under two main streamlines; 

Model Reference Adaptive Control (MRAC) and Self-Tuning 

Regulators (STR). In the MRAC design, the objective is to 

push the response(s) of unknown plant to track the output of a 

reference plant asymptotically by adjusting controller gains 

recursively. MRAC has been proposed for continuous-time 

systems (Narendra & Annaswamy, 1988; Åström & 

Wittenmark, 1995; Ioannou & Sun, 1996; Tao, 2003) and 

extended for discrete-time systems (Goodwin et al., 1980; 

Goodwin & Sin, 1984; Tao, 2003; Akhtar & Bernstein, 2005; 

Hoagg et al., 2008). The adaptive control architecture has 

also been studied for various classes of nonlinear systems 

(Sastry & Bodson, 1989; Krstic et al., 1995). 

State Dependent Riccati Equation (SDRE) based control 

methods, on the other hand, have been investigated since 

SDRE strategy has emerged as a very attractive tool for the 

systematic design of nonlinear controllers. The SDRE 

methodologies provide an effective way for synthesizing 

nonlinear feedback controls by allowing nonlinearities in the 

system states while additionally offering great design 

flexibility through design matrices (Çimen, 2010). SDRE 

techniques are used in a wide variety of nonlinear control 

applications, such as autopilot design (Mracek, 2007), 

satellite and spacecraft control (Stansbery & Cloutier, 2000), 

robotics (Erdem & Alleyne, 2001), control of aeroelastic 

systems (Tadi, 2003) and optimal administration of drug in  
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Cancer treatment (Itik et al., 2010).       

In this paper, we propose a new MRAC design method for a 

class of nonlinear systems by extending the SDRE method to 

adaptive control. We consider a stable nonlinear reference 

model which is created by designing a sub-optimal control. 

The control for the reference model is designed by using 

SDRE method giving an “implicit adaptation rule” in such a 

way that the control is updated for the SDRE reference 

model. Then the control signal for the nonlinear plant is 

generated by using a recursive adaptation procedure such that 

the plant states tracks the states of nonlinear reference model. 

The plant dynamics is assumed to be nonlinear and have 

some uncertain parameters and plant nonlinear structure 

differ from reference model. The main objective here is to 

develop an adaptation mechanism for the MRAC of nonlinear 

systems which is based on the adaptation of SDRE model. 

The proposed method allows one to design a new adaptive 

control algorithm for a class of uncertain nonlinear systems. 

The method has a systematic structure combining the MRAC 

and SDRE control approaches. The proposed method is 

applied to a tumor growth model to determine the optimal 

administrated drug dose. 

The paper is organized as follows. Section 2 contains 

backgrounds of MRAC for LTI systems, and SDRE control 

methodology for nonlinear systems. The proposed SDRE 

based MRAC scheme for nonlinear systems is introduced in 

Section 3. An application of the proposed control 

methodology to develop a chemotherapy drug administration 

is given in Section 4. Section 5 gives the conclusions. 

2. BACKGROUND FOR MRAC AND SDRE CONTROLS 

In this section, basic backgrounds of MRAC and SDRE 

control methodologies are revisited for the sake of 

completeness. 
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2.1. MRAC Algorithm for Linear Time Invariant Systems 

The MRAC relies on a reference model whose desired output 

or state is taken as a reference trajectory for a plant (see 

Narendra & Annaswamy, 1988; Åström & Wittenmark, 

1995; Ioannou & Sun, 1996; Tao, 2003 for details). The 

objective of the control design is to adapt the reference model 

control command for the plant dynamics such that plant 

output tracks reference model output asymptotically. The 

controller gains are updated recursively based on the tracking 

error, reference command and output or state of the plant. 

Recursive estimation of controller gains is performed using 

an adaptive law which is, in general, developed from the 

Lyaponuv stability theorem. Therefore, similar to the stability 

synthesis of dynamical systems by using a positive definite 

Lyapunov function, parameter adaptation law is generated. 

2. 2. Problem formulation for tracking 

Consider the following reference LTI system 

 ̇                                       (1) 

where          is the state vector for the reference system, 
         and         are system matrices and    is 
Hurwitz.          is a bounded reference signal to be 
followed. The plant is also an LTI system described by 

 ̇                                              (2) 

where         is plant state vector,                  are 
possibly unknown constant system matrices while       are 
controllable.         is the control input for the plant which 
is to be designed such that the plant states     , track 
reference model desired states,      , as close as possible and 
the tracking error,                , approaches to zero 
asymptotically. Suppose that all states of the plant,     , are 
accessible for measurement. Then, the proposed adaptive 
control law for the linear system is in the form 

                          (3) 

where           and           are control gain matrices 
to be estimated recursively for the control of plant dynamics. 
Control gain matrices      and     , and therefore plant 
input vector      are to be updated in such a way that all 
signals in the closed loop plant system kept bounded and 
plant states track reference model states asymptotically. Then 
the plant closed loop system with the control is given by 

  ̇    (       )               . 

With known plant system matrices, A and B, Perfect Model 
Following is achieved if the algebraic equations       
           (which are termed as matching conditions) 
are satisfied. By satisfying the matching condition, the 
system matrices (therefore transfer functions) of the closed 
loop plant system and reference model are the same and 
states of the plant approach to the reference states 
exponentially. 

Remark 1. (Åström & Wittenmark, 1995; Ioannou & Sun, 
1996) There may not exist    and    for given  ,  ,    and 
   matrices. For the existence of    and    , the columns of 
   and        matrices must be the linear combination of 
  matrix and   and    must be linearly independent. For the 

existence of    and    for perfect model following, all  ,  , 

    and    matrices should be in canonical form. 

Since the plant matrices   and   are not known exactly, then 
     and      matrices, those are estimates of    and    

respectively, are used in control law (3). 

Assumption 1: There exists         and         

matrices so that the matching conditions are satisfied and the 
sign of    is known. 

The adaptation rule for estimating      and      matrices in 
each iteration can be derived by using the Lyapunov stability 
theory such that the error dynamics ( ̇   ) approaches to zero. 

The adaptation law for      and      are as follows (see 
Åström & Wittenmark, 1995 for details): 

 ̇                     
                         (4) 

  ̇                  
                                 (5) 

2.3. Model Reference Adaptive Stabilization Algorithm for 

Linear Time Invariant Systems with full State Feedback 

Now consider the following reference LTI system given by 

 ̇                                            (6) 

where          is the reference model state vector, 
         and         are system matrices. 

Assumption 2. The {     } pair is controllable.    may 
have positive eigenvalues and          is a bounded 
reference control input for the stabilization of closed loop 
reference system. 

      is a bounded state feedback control input (i.,e, 
              ) which is obtained by either using pole 
placement or optimal control methods such that    states in 
the closed loop system asymptotically approaches to zero. 
The closed loop system is given by 

 ̇                        
       (7) 

where      is now a Hurwitz matrix and all eigenvalues of 

    
 are in the open left half complex plane. Therefore the 

reference model with desired response will be characterized 
by  ̇         

                           In the reference 

model proposed by (6), contrary to (1), there is no external 
reference signal to be followed and        . Indeed 
unstable reference model given in (6) is changed to a stable 
linear autonomous system. 

On the other hand, the plant is also assumed to be an LTI 
system described by (2). Since there is no reference signal, 
the proposed control law for this linear system is in the form 
of             , where    is a state feedback gain matrix 
for the matching condition. Since A and B matrices are not 
known exactly, we use the estimate of    as follows 

                   (8) 

where           is the gain matrix to be recursively 
estimated for the control of plant dynamics. 

Assumption 3: There exists a       so that     
   

   . Also, there exists a known or unknown positive definite 

  matrix where       , so that  ̂     is known. 
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The following adaptation law is considered, 

 ̇                 ̂       (9) 

where   satisfies the following Lyapunov equation for the 
closed loop (stable) reference model (7) for some       . 

    

            

On the other hand, the following state and control parameter 
errors are considered 

                     ̃             (10) 

The error dynamics,  ̇   , is then, 

 ̇     ̇     ̇                ̃         (11) 

Theorem 1: If      and      for all     are bounded, then, 

parameter errors and state error vectors defined by (10) and 

(11) respectively, are stable at large. 
 

Proof. See Ioannou & Sun, 1996 for the proof of the 

theorem.      □ 
 

The block diagram of the model reference adaptive 

stabilization by state feedback is illustrated in Fig. 1. 

 

Fig. 1. Block diagram of model reference adaptive 

stabilization. 

Remark 2. It should be noted that the state feedback gain of 

the adaptive controller given by (8) is determined from (9) 

which uses the solution of Lyapunov equation giving a 

constant   matrix for LTI systems. Once the constant   

matrix is determined, then the adaptation is characterized by 

the error between the states of reference model and the plant. 

2.4. SDRE Based Control Algorithms for Nonlinear Systems 

SDRE based control methods are suggested for a class of 
nonlinear systems such that the system is described by the 
following type of nonlinear systems (Çimen, 2010); 

 ̇                               (12) 

where      is the state vector,            and     . 
Suppose that       , and          , then       can be 
factorized as           , where           which yields 
the following type of equations; 

 ̇                        (13) 

where      and      are State Dependent Coefficient (SDC) 
matrices. In fact, by evaluating the SDC matrices for a given 
state vector, the nonlinear system is regarded as an LTI one 
which is like a frozen system at the state vector. Therefore for 
each state vector, an LTI system is obtained allowing one to 
design the control input   with the well known approaches 
for LTI systems. For instance, a state dependent feedback 
control may be designed as                where      
     is the state dependent feedback gains and is designed at 
each instant to satisfy the local stability. It is clear that an 
optimal control design may also be achieved by solving 
algebraic state dependent Riccati equations. The details on 
how to design the controller as well as other issues related to 
stability are well documented in Çimen (2010). It should be 
noted that one of the basic assumptions about the SDRE 
based control design is, {         } pair should be point-wise 
controllable. 

3. SDRE BASED MRAC FOR STABILIZATION OF 

UNCERTAIN NONLINEAR SYSTEMS 

Consider now a nonlinear plant dynamics whose 
mathematical model is given by (13). The main objective 
here is to design a model reference adaptive controller for the 
plant where the reference model is also nonlinear and is given 
by 

 ̇                              (14) 

where        and        are SDC matrices of the reference 
model with proper dimensions. By assuming point-wise 
controllability, the stabilizing full state feedback control law 
for the reference nonlinear system may be designed as 
                   where        is the state dependent 
feedback gain matrix which may be determined by pole 
placement, LQR, etc. For the MRAC of unknown nonlinear 
plant dynamics defined by (13) and nonlinear reference 
model (14), we consider the following assumptions. 

Assumption 4: 

1. {         } and {             } pairs are point-

wise controllable, 

2. There exist a          so that     
         

          . There also exists a known or unknown 

positive definite matrix       , so that  ̂    

      is known. 
 

By applying full state feedback controller in (14) we have 
 

 ̇                                     (15) 

where         is a point-wise Hurwitz with desired 

(exponential) stability characteristics. Then, we propose the 
following controller for the uncertain/unknown nonlinear 
plant                 where      is a state dependent gain 
which is adjusted by the following adaptation rule; 

 ̇                     ̂                   (16) 

Adaptation laws structure is similar to that of LTI systems 
adaptation rule (which is defined by (9)). 

Remark 3. In the model reference adaptive stabilization of 
LTI case, we solve the differential equation (9) for a zero 
initial condition in order to determine the control gain matrix, 
 . On the other hand, in the SDRE based MRAC, the values 
of      at each evaluation is used as a new initial condition in 
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order to evaluate the new     . In point of fact initial 
conditions for      are updated at each step of iteration and 
      values are used as initial conditions for the evaluation 
process of        . Despite the classical MRAC approach, 
the state dependent         and       matrices are altered at 
each iteration and these matrices are evaluated at each 
iteration with the state vector of   . The       matrix is the 
solution of frozen Lyapunov equations giving one another 
adaptation (an implicit adaptation) for the adaptation of state 
feedback gain. 

The main objective of the proposed algorithm is to stabilize 

unknown/uncertain nonlinear plant dynamics based on 

stabilization process of nonlinear reference model, which has 

totally different structure and parameters. Indeed the 

proposed method eliminates twice effort for designing 

another stabilization controller for the nonlinear plant. 

4. SDRE BASED MODEL REFERENCE ADAPTIVE 

STABILIZATION IN CANCER TREATMENT 

4.1. Mathematical model of tumor growth 

We consider the cancer mathematical model, in the absence 

of therapy, proposed by de Pillis and Radunskaya (2003), 

which is compound from three components of             and 

    . 

 ̇                    (17) 

 ̇                         

  ̇    
   

   
          

where      ,     , and      denote the number of immune 

cells, tumor cells and normal cells at time t, respectively. The 

proposed mathematical model does not belong to any specific 

kind of cancer (see de Pillis and Radunskaya, 2003). It should 

be mentioned that in this model the effect of drug does not 

take into account in system and there is no chemotherapy. 

Considering the fact that chemotherapy kills all cells 

populations with different rate, the chemotherapy effects in 

the model is considered with an additional state      and 

control input      which denote drug concentration in the 

blood stream and external injected drug respectively. The 

model with chemotherapy which proposed by Itik et al. 

(2010) is as follows; 

  ̇                        (18) 

  ̇                            

  ̇    
   

   
               

  ̇           

The parameter sets and variation range of parameters which 

proposed by de Pillis and Radunskaya (2003), are given in 

Table 1. The parameter set may vary from one type of cancer 

to another type as well as for different patients. 

In the absence of chemotherapy, the cancer system has three 

different types of equilibrium points which are (1) Tumor-

free (no tumor cells), (2) Dead (no normal cells), and (3) 

Coexisting (both normal and tumor cells exist). In 

chemotherapy, we try to bring the system to the tumor-free 

equilibrium point     ⁄       ⁄     by determining the 

appropriate dose of drug in treatment period. In tumor-free 

equilibrium point with the given parameters in Table 1, we 

have the normal cells population of      ⁄    and 

immune cells population of      ⁄       with zero tumor 

cells population level,    , and zero drug concentration in 

blood,    . By employing the following error states, we 

shift the tumor-free equilibrium point     ⁄       ⁄     of the 

system to the origin as      
 

  
           

 

  
    

 . The new [             ]
   states denote the error states and 

system (18) can be defined in the new coordinates as follows. 

 ̇                
  

  
   

  

  
                       (19) 

 ̇                
   

  
 

  
  

                         

 ̇   
   

  

        
   

  

   
  

  

  

      
  

    

      
               

 ̇            

Table 1. Parameter values and their variation range (de 

Pillis and Radunskaya, 2003) 

Para- 

meters 
Description Value Considerations 

   Immune cell kill by chemotherapy 0.2 
         

         
   Tumor cell kill by chemotherapy 0.3 

   Normal cell kill by chemotherapy 0.1 

   Tumor cell carrying capacity 1.0 
  

     
   

   Normal cell carrying capacity 1.0 

   Immune cell kill by tumor cells 1.0 

     

 

   Tumor cell kill by immune cells 0.5 

   Tumor cell kill by normal cells 1.0 

   Normal cell kill by tumor cells 1.0 

   Death rate of immune cells 0.2  

   Death rate of chemotherapy drug 1.0  

   Tumor cells growth rate  1.5 
      

   Normal cells growth rate  1.0 

  Immune cells steady source rate 0.33         

  Immune threshold rate 0.3  

  Immune response rate 0.01         

 

We use the following pseudo-linear representation as SDC 

matrices for the system (19): 

     

[
 
 
 
 
 
 
               (   

 

  

)     (
 

  

   )

                (
   

  

 
  

  

)           

 
 (   

 
  

)

      
   (   

 

  

)          (   
 

  

)    

      

 

]
 
 
 
 
 
 
 

 

     [       ] .    (20) 

4.2. Optimal Control of Cancer Treatment 

For stabilizing (19), we take the parameters from Table 1 and 

use SDRE optimal control method suggested by Itik et al. 

(2010). For this purpose, the SDRE control is determined to 

minimize the following cost functional; 

     ∫                    
 

 
   (21) 

The weighting matrix      and control weighting      are 

state dependent. For simplicity, we use constant   and   

matrices in the simulations. The weighting matrices are 
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selected as       {       }       . Since the 

control input is the dosage of external injected drug, buy 

considering the fact that maximum dosage of injected drug 

should be limited in healthy amount, we apply constraint to 

the control signal as:             

 

Fig. 2. Response of the system with optimal control input. 

The simulation result for optimal control of reference model 

(with the parameter set of Table 1) is given in Fig. 2. 

4.3. SDRE Based Model Reference Adaptive Stabilization for 

Cancer Treatment 

In this section, in order to show the effectiveness of the 

proposed algorithm we consider two cancer patients. The first 

patient is described by (19) with known parameters (Table 

1.). The second patient, on the other hand, is described by a 

different nonlinear mathematical model with unknown 

parameters which is considered as the unknown patient. For 

the plant model, we consider the mathematical model 

proposed by de Pillis and Radunskaya (2003), as follows: 

 ̇                              (22) 

 ̇                                  

 ̇    
   

   
                     

 ̇           

By applying the same procedure for the reference model, we 

can rewrite the model in the state space form with new error 

states as follows; 

     

[
 
 
 
 
 
 
               (   

 

  

)  
   

  

(
 

  

   )  

                (
   

  

 
  
  

)           

 
 (   

 
  

)

      
   (   

 

  

)     
   

  

(   
 

  

)     

      

 

]
 
 
 
 
 
 
 

 

      [       ]     (23) 

where                

Different nonlinear dynamics are selected for “reference 

model” and “plant” in order to demonstrate the sufficiency 

and capability of proposed algorithm in stabilizing 

unknown/uncertain nonlinear plant dynamics based on 

reference model with different nonlinear structures and 

parameters. The main objective of the given algorithm is to 

generate the stabilization signal (administrated drug dosage) 

to the unknown patient (plant) based on the reference patient 

(model), for bringing tumor cells population to zero and 

normal cell population to healthy level with determined 

administrated drug value for the unknown patient. To 

determine the proper administrated drug dose for unknown 

patient, the gains of state feedback controller,  , is adjusted 

by using (16). In order to demonstrate the effectiveness of 

proposed algorithm, we consider the following scenario in the 

simulations. 

Parameters of reference patient are not equal to parameters of 

unknown patient. However initial conditions of reference 

patient are equal to initial condition of unknown patient. To 

show the effects of adaptation rate     on response of plant 

and administrated drug dose (control signal), we consider two 

different adaptation rates as        and     . Initial 

conditions and different model parameters for both models 

are given in Table 2 and Table 3 respectively. The parameters 

which are not given in Table 3, are equal to each other. These 

parameters are given as                                 
                     . 

Table 2. Initial conditions. 

 Normal cells Tumor cells Immune cells 

Reference patient 1 0.2 0.15 

Unknown patient 1 0.2 0.15 

 

Table 3. Parameters of reference and unknown patient. 
 

 Reference patient Unknown patient 

   0.2 0.1 

   0.3 0.5 

   0.1 0.06 

   0.5 0.58 

   1.5 1.7 

   1 1.3 

  0.3 0.5 

  0.01 0.06 
 

 

 

Fig. 3. Responses of reference and plant models. 
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The simulation results are shown in Figures 3-5. In Fig. 3, the 

stabilization of plant dynamics based on reference model is 

illustrated. The administrated drug dose for the unknown 

patient is determined by the adaptation of reference model 

sub-optimal controller. As shown, stabilization with      

gives faster convergence for the state vector      than the 

adaptation rate       . With big values of adaptation rate, 

dose of administrated drug increases without any tangible 

decreasing in stabilization time. Reference and adapted 

administrated drug dosages are illustrated in Fig. 4. Control 

signal for case with     is more than the case with      . 

Fig. 5 shows the control gain matrix,     , parameters for 

   . As indicated, the big value of   results in faster 

adaptation but causes more fluctuation in the gain matrix 

parameters and consequently in control signal. 

 

Fig. 4. Control signal (administrated drug) for reference and 

unknown plant models. 

 

Fig. 5. Controller parameters with    . 

 

5. CONCLUSIONS 

A new MRAC algorithm for the stabilization of uncertain 

nonlinear systems is proposed. The method is based on 

SDRE techniques and combines SDRE with MRAC such that 

plant states track a stabilized reference model states. With the 

design flexibility of SDRE, the adaptation rule is extended to 

nonlinear SDC matrices. At each step of evaluation, the 

nonlinear system is transformed into an LTI system by using 

the state values in SDC matrices. Then MRAC for LTI 

systems is used to design the adaptive controller. The 

proposed algorithm is used to determine chemotherapy 

administration of a patient whose tumor growth dynamics is 

unknown. Simulation results show that the algorithm 

successfully determines the proper drug dosage for another 

patient with uncertain/unknown plant model or parameters. 
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