
Robust Evolving Fuzzy Adaptive Control

With Input-domain Clustering
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Abstract: The paper proposes a fuzzy model reference adaptive control approach with evolving
antecedent part. The proposed algorithm has the possibility of controlling a plant with poorly
known and/or time-varying nonlinearity which is an advantage over approaches with fixed
antecedent part. It is intended for control of a large class of nonlinear plant models with the
dominant dynamics of the first order. Such plants occur quite often in process industries.
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1. INTRODUCTION

Over the past decade a lot of work has been done in
the field of adaptive fuzzy control. In general the schemes
can be divided into direct and indirect adaptive schemes.
The direct schemes approximate the ideal controller with
fuzzy logic (Wang, 1993; Kim et al., 1996; Lee et al., 1996;
Chen et al., 1997; Blažič et al., 2003; Labiod and Guerra,
2007; Tong et al., 2009, 2010; Blažič et al., 2012). The
indirect schemes use a fuzzy system to approximate the
plant dynamics (Wang et al., 2000, 2001; Chan et al., 2001;
Golea et al., 2003; Qi and Brdys, 2008; Precup et al., 2009;
Dovžan and Škrjanc, 2010). These approaches cope very
well with nonlinear plant dynamics. They are also quite
successful in controlling the plants with parasitic dynamics
and disturbances due to their robustness properties. Even
if slowly time varying systems are encountered, the results
are usually quite satisfactory as a result of the parameter
adaptation. The existing adaptive fuzzy schemes usually
apply only the adaptation of the sub-models’ parameters
(consequent parameters) while the membership functions
(premise parameters) are kept fixed. This results in two
major shortcomings of these approaches: 1) they have
problems with systems where the nonlinearity changes
with time, and 2) quite often it is hard to partition the
input space, i.e., to position the membership functions,
with a limited plant knowledge.

Some papers apply the adaptation of both, the mem-
bership functions and the consequent parameters. Singh
(1998) proposed a direct approach that uses triangular
membership functions and the adaptation of its centres.
Phan and Gale (2008) developed a direct algorithm that
also uses triangular membership functions. The algorithm
adds or replaces the membership functions depending on
the error threshold. A direct approach is also proposed by
Rojas et al. (2006). The approach uses triangular functions

and tries to find the membership function configuration
that distributes a certain performance criterion homoge-
neously throughout the operating regions. The approach
presented uses the squared error as a performance crite-
rion. The indirect adaptive approach is proposed by Qi and
Brdys (2008). The approach uses Gaussian membership
functions and adapts both the width and the centres. The
adaptation of the centres and the widths of the member-
ship functions is done using a gradient descent algorithm
and the adaptation of sub-models’ parameters is done
using recursive least squares. Dovžan and Škrjanc (2010)
proposed an adaptive fuzzy predictive control algorithm
based on adaptive fuzzy model. The adaptation of the
membership functions is done with the proposed recursive
fuzzy c-means algorithm. The local model parameters are
adapted using the recursive least squares method.

In recent years the on-line fuzzy learning has received a
great amount of interest. The advantage of on-line fuzzy
learning methods is that they are able to adapt a fuzzy
model or a fuzzy control algorithm to the current process
behaviour. This is useful especially for processes with
changing dynamics or for the controller tuning. Depending
on the learning abilities the on-line fuzzy learning methods
can be divided into: adaptive methods where the initial
structure of the fuzzy model must be given and the number
of space partitions/clusters doesn’t change over time, and
therefore only the membership functions’ and local models’
parameters are adapted; incremental methods where only
adding mechanisms are implemented; and evolving meth-
ods which, besides an adding mechanism, also implement
removing and some of them also merging and splitting
mechanisms. Some examples of these three groups are:
adaptive – ANFIS (Shing and Jang, 1993), rFCM (Dovžan
and Škrjanc, 2011b); incremental – DENFIS (Kasabov and
Song, 2002), eTS (Angelov and Filev, 2004), FLEXFIS
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(Lughofer and Klement, 2005); evolving – SAFIS (Rong
et al., 2006), eTS+ (Angelov, 2010), etc.

The control of a practically very important class of plants
is treated in this paper that occur quite often in process
industries. The class of plants consists of nonlinear time-
varying systems of arbitrary order but where the control
law is based on the first-order nonlinear approximation
where the nonlinearity is allowed to slowly change with
time. The dynamics not included in the first-order ap-
proximation are referred to as parasitic dynamics. The
parasitic dynamics are treated explicitly in the develop-
ment of the adaptive law to prevent the modelling error to
grow unbounded. The class of plant also includes bounded
disturbances.

2. THE CLASS OF NONLINEAR AND SLOWLY
TIME-VARYING PLANTS

The proposed control approach is intended for a class of
plants that include nonlinear time-invariant systems where
the model behaves similarly to a first-order system at low
frequencies. Such a class was treated in some earlier work
(Blažič et al., 2003, 2012) where the TS fuzzy model of
the first order was generalised by adding stable factor
plant perturbations (∆u(p) and ∆y(p), p is a differential
operator d/dt) and disturbances (d), which results in the
following model:

ẏp(t) = −(βββT (t)a)yp(t) + (βββT (t)b)u(t)−

−∆y(p)yp(t) + ∆u(p)u(t) + d(t) (1)

where a = [ a1 a2 . . . aN ]
T
and b = [ b1 b2 · · · bN ]

T
are

vectors of unknown plant parameters in respective fuzzy
domains (a,b ∈ R

N ), and βββ is a vector of normalised
degrees of membership functions. An important step in
obtaining a good TS model is the choice of antecedent
variables xf ∈ R

p and the construction of the membership
functions that map xf to βββ. Whether the membership
functions are chosen suitably is critically affected by the
position of nonlinearities in the system. In our earlier work
(Blažič et al., 2003, 2012) the mapping from xf to βββ was
fixed, i.e., the membership functions were chosen taken
into account some a priori knowledge about the plant.

The former approach is also suitable for slowly time-
varying systems. As long as the plant variation is due
to changes in unknown parameters a and b, the frozen-
time model is still suitable for the description of the plant,
and the terms due to parameter changes can be treated
as (bounded) disturbances. If the nature of changes is
such that the position of nonlinearities changes with time,
it is necessary that the membership functions also move
accordingly. This can be done by applying some evolving
mechanism to the antecedent part. Such a mechanism is
also very useful if a designer lacks a priori knowledge
about the position of a nonlinearity. In such case the
proposed approach automatically decides the number and
the position of membership functions.

3. ON-LINE CLUSTERING AND MEMBERSHIP
IDENTIFICATION

For on-line cluster identification the eFuMo method for
on-line learning of fuzzy model was used by Dovžan et al.

(2012). The method was used in the incremental mode
meaning that only the adding of clusters was enabled.
The first cluster is created when the first data sample
arrives. Then, if necessary, other clusters are added when
new data arrive. The method has two adding conditions
that must be satisfied in order for a new cluster to
be added: the distance conditions and the consequent
samples conditions. The consequent samples condition is
to prevent a new cluster being created based on outliers.
This condition means that several consecutive samples
must satisfy the distance adding condition before a new
cluster is added (Hartert et al., 2010). In our case at least
4 consecutive samples had to satisfy the distance adding
condition.

The distance conditions are based on the normalised
distance of the current data sample to the closest cluster.
In our case we used the normalised Mahanalobis distance
condition. The normalised Mahanalobis distance is given
by the following equation:

dinorm
(k) =

((xf (k)− vi)
TF−1

i (xf (k)− vi))
0.5

cn(sTinorm
F−1

i sinorm
)0.5

(2)

where xf (k) ∈ R
p is the clustering vector (data vector)

in k-th time instant, vi ∈ R
p is the i-th cluster centre

vector, Fi ∈ R
p×p is the fuzzy covariance matrix, cn

is the normalisation constant (in our case set to 4) and
sinorm

∈ R
p is defined as:

sinorm
=

[

√

Fi11

√

Fi22 ...
√

Fipp

]T

(3)

The Fijj are diagonal elements of the fuzzy covariance
matrix. If the normalized distance (2) to the closest cluster
is higher than one, the clustering vector (data sample)
satisfies the distance adding condition. The new cluster
centre and fuzzy covariance matrix are initialised as:

vnew = xf (k), (4)

Fnew =











σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

p











(5)

where σj is the variance calculated based on the distance
of the newly added cluster to the others. In each space
dimension the distance from the new cluster to the closest
cluster in that dimension is calculated:

d2j = (vnewj
− vij )

2 j = 1, ..., p (6)

where i is the index of the closest cluster centre. The
variance is then calculated as:

σ2
j = −

d2j
2 ln(ǫβ)

j = 1, ..., p (7)

where ǫβ represents the wanted membership degree of the
closest cluster to new cluster for each space dimension.
The value in our case was set to ǫβ = 0.15.

The cluster centre position and fuzzy covariance matrix
are calculated and adapted on-line using the recursive
Gustafson-Kessel (GK) algorithm (Dovžan and Škrjanc,
2011a). The equation for centre adaptation is given by the
following equation:

vi(k + 1) = vi(k) + ∆vi(k) (8)

∆vi(k) =
µi(k)

η (xf (k)− vi(k))

Si(k)
(9)
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where η is fuzziness factor (usually set to 2), µi is mem-
bership degree of the current clustering vector to the i-th
cluster, and Si(k) is the filtered sum of the past member-
ship degrees of the i-th cluster:

Si(k) = λcSi(k − 1) + µi(k)
η (10)

Factor λc was introduced as a forgetting factor to enable
the adaptation of centres. In the case of GK clustering the
membership degrees µi for all c clusters are calculated as:

µi(k) =



















1

∑c
j=1

(

di(k)
dj(k)

)
2

η−1

if xf (k) 6= vi; i = 1, ..., c

1 if xf (k) = vi

0 if xf (k) = vj ; i 6= j
(11)

where di(k) is defined as:

di(k) =
(

(xf (k)− vi(k))
T
det(Fi)

1
pF−1

i (xf (k)− vi(k))
)0.5

(12)
In order to calculate the distance in (12), the fuzzy
covariance matrix, its inverse and determinant must be
calculated recursively. The recursive update equation for
fuzzy covariance matrix is as follows:

Fi(k + 1) = γc
Si(k − 1)

Si(k)
Fi(k) +

µi(k)
η

Si(k)
DFi

(k)

DFi
(k) = (xf (k)− vi(k)) (xf (k)− vi(k))

T
(13)

where γc is the forgetting factor. The recursive update
equation for the inverse matrix is obtained by using the
Woodbury matrix identity lemma. The equation is as
follows:

[Fi(k + 1)]
−1

=
1

γc

Si(k)

Si(k − 1)

[

[Fi(k)]
−1

−
B

C

]

(14)

B = [Fi(k)]
−1

DFi
[Fi(k)]

−1 (15)

C = γc
Si(k − 1)

µi(k)η
+ dT

Fi
(k) [Fi(k)]

−1
dFi

(k) (16)

dFi
(k) = xf (k)− vi(k) (17)

The determinant is obtained using determinant lemma.
The recursive equation for determinant can be written as:

det (Fi(k + 1)) =

(

γc
Si(k − 1)

Si(k)

)p

det (Fi(k)) (1 +A)

(18)

A =
1

γc

µi(k)
η

Si(k − 1)

(

dT
Fi
(k) [Fi(k)]

−1
dFi

(k)
)

(19)

where p is the number of rows/columns of fuzzy covariance
matrix. The detailed derivations of equations are given in
Dovžan and Škrjanc (2011a).

4. ROBUST FUZZY ADAPTIVE ALGORITHM

The fuzzy model reference adaptive control is proposed in
the paper to achieve tracking control for the class of plants
described in the previous section. The control goal is that
the plant output follows the output ym of the reference
model. The latter is defined by a first order linear system
Gm(p):

ym(t) = Gm(p)w(t) =
bm

p+ am
w(t) (20)

where w(t) is the reference signal while bm and am are
the constants that define desired behaviour of the closed
system. The tracking error

ε(t) = yp(t)− ym(t) (21)

therefore represents some measure of the control quality.
To solve the control problem simple control and adaptive
laws are proposed in the following subsections.

4.1 Control law

The control law is the same as the one proposed in Blažič
et al. (2003):

u(t) =
(

βββT (t)̂f(t)
)

w(t) −
(

βββT (t)q̂(t)
)

yp(t) (22)

where f̂ (t) ∈ R
k and q̂(t) ∈ R

k are the control gain vectors
to be determined by the adaptive law. This control law
is obtained by generalising the model reference adaptive
control algorithm for the first order linear plant to the
fuzzy case.

4.2 Adaptive law

The adaptive law proposed by Blažič et al. (2012) is also
used here:
˙̂
fi =− γfibsignεwβi − γfiσ

′w2β2
i (f̂i − f∗

i ) i = 1, 2, . . . k

˙̂qi =γqibsignεypβi − γqiσ
′y2pβ

2
i (q̂i − q∗i ) i = 1, 2, . . . k

(23)

where γfi and γqi are positive scalars referred to as
adaptive gains, σ′ > 0 is the parameter of the leakage
term, f∗

i and q∗i are the a priori estimates of the control

gains f̂i and q̂i, respectively, and bsign is the sign of all the
elements in vector b. If the signs of all elements in vector
b are not the same, the plant is not controllable for some
βββ (βββTb is equal to 0 for this βββ) and the control is not
possible using this approach.

It is possible to rewrite the adaptive law (23) in the

compact form if the control gain vectors f̂ and q̂ are
defined. Then the adaptive law (23) takes the following
form:

˙̂
f =−ΓΓΓfbsignεwβββ −ΓΓΓfσ

′w2 diag(βββ) diag(βββ)(̂f − f̂∗)

˙̂q =ΓΓΓqbsignεypβββ −ΓΓΓqσ
′y2p diag(βββ) diag(βββ)(q̂ − q̂∗)

(24)

where ΓΓΓf ∈ R
k×R

k and ΓΓΓq ∈ R
k×R

k are positive definite
matrices, diag(x) ∈ R

k×R
k is the diagonal matrix with the

elements of vector x on the main diagonal, while f̂∗ ∈ R
k

and q̂∗ ∈ R
k are the a priori estimates of the control gain

vectors.

5. STABILITY ISSUES

In the previous work (Blažič et al., 2014) the stability
analysis has been presented for the case where fixed
membership functions are used while the adaptive law is
almost the same as in this work. Using the approach there
the following error model for the tracking error ε can be
obtained:

ε̇ = −amε−
[

(βββTb)(βββT q̂) + (βββTa)− am
]

yp+

+
[

(βββTb)(βββT f̂)− bm

]

w +∆u(p)u −∆y(p)yp + d (25)
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If ideal parameters for the consequent part are defined, the
total error can be defined as (Blažič et al., 2014):

E(t) = ηf (t)w(t) − ηq(t)yp(t)+

+∆u(p)u(t)−∆y(p)yp(t) + d(t) (26)

where ηf (t) and ηq(t) are bounded functions that arise be-
cause of the TS modelling error. The error E(t) represents
a disturbance of the control system in the consequent part.

The extension in this paper results in two new sources
that contribute to the error (26). The first one is due to

changes in plant parameters a and b. If ȧ(t) and ḃ(t) are
bounded, the resulting terms in the error E(t) are bounded
also. The second source is due to changes in membership
functions. Since the calculation of memberships does not
have any role in the stability analysis (the elements of
the vector βββ(t) are a priori bounded), it is possible to
conduct a similar stability analysis as in the previous paper
(Blažič et al., 2012). The proposed approach therefore
guarantee global stability in the sense that all the signals
are bounded. The tracking error converges to a residual set
whose size depends on the size of disturbances, the norm
of the parasitic dynamics, the size of the fuzzy modelling
error, and the term due to the plant parameter changes.

6. SIMULATION EXAMPLE

A simulation example will be given that illustrates the
proposed approach. A plant model used in the paper is
the same as in (Blažič et al., 2012). It is an extended form
of the model in (Rohrs et al., 1985) that can be rewritten
in state space form

ẏp = −yp + 2uf

u̇f = 229x1 − 30uf

ẋ1 = −uf + u

(27)

where the part of the system between the plant input u
and uf represents the parasitic dynamics while the first
equation in (27) describes nominal plant (the one used
for control design). The plant was made nonlinear by
adding extra terms to (27). Some properties of the original
system were preserved, namely linearised behaviour in the
nominal operating point (u = 0, yp = 0) and ’relative
order’ of the plant (meaning that u and x1 do not influence
ẏp directly even in the form of higher powers). The
resulting system used for simulations is

ẏp = −yp + 2uf + (−0.5yp + 0.1uf)
2 + (−0.6yp + 0.1uf)

3

u̇f = 229x1 − 30uf + 6x2
1 − 2x1uf − 0.1u2

f

ẋ1 = −uf + u+ 0.01u2 − 0.01uuf − 0.01u2
f

(28)

The design objective is that the output of the plant follows
the output of the reference model 3/(s+ 3) (Rohrs et al.,
1985). Two experiments were conducted, one with the
fuzzy adaptive model reference adaptive control with fixed
membership functions (Blažič et al., 2012) and one with
the proposed control algorithm. The reference signal was
the same in both cases. It consisted of a periodic signal,
followed by two big steps.

By analysing the plant (28) it can be seen that not only
the plant but also the parasitic dynamics are nonlinear.
The latter is a violation of the initial assumptions. This

means that the example will also test the ability of
the proposed control to cope with nonlinear parasitic
dynamics. The coefficients of the linearised system in
different operating points depend on u, x1, uf , and yp.
The approach here will be compared to the one in the
previous paper (Blažič et al., 2012). This is why only yp
will be used as an antecedent variable in the control law.
Although the proposed approach enables the positioning
of membership functions in a higher dimensional space, we
will use here a lower dimensional projection.

In the previous paper (Blažič et al., 2012) eleven triangular
membership functions were used that were distributed
evenly across all the operating region of the reference sig-
nal. In the current paper clusters define membership func-
tions. Usually Gaussian membership functions are used
since the parameters of the functions have straightforward
connection to the obtained cluster properties. The cluster
centres are used as centres of the Gaussian membership
functions and diagonal elements of the fuzzy covariance
matrix are used for defining the width of the member-
ship functions. This means that the j-th element of the
unnormalised degree of membership to the i-th cluster is
calculated by the following formula:

β0
ij
= e

−

(xfj
−vij

)2

2ηmFijj j = 1, 2, ...p− 1 i = 1, 2, ..., c (29)

where ηm is the overlapping factor usually set to 1. Note
that the vector βββ in (29) has only p− 1 elements while the
vector µµµ in (11) has p elements. This is due to the fact
that clustering is done in the space of two variables (u and
yp) while only yp is used as an antecedent variable in the
control law.

We used the following design parameters in both ap-
proaches: γf = 0.03, γq = 0.03, σ′ = 0.003. Figures 1 and
2 show the results of the approach with fixed member-
ship functions while the results of the proposed evolving
approach are shown in figures 3 and 4. The position of
clusters are shown by magenta dots in Fig. 5 where the
measured data are plotted with cyan colour. After pro-
jection of the clusters to the 1-D input (yp) unnormalised
membership functions are obtained. They are plotted in
Fig. 6 together with the normalised membership functions.

The results of both approaches are almost the same.
We should emphasise that the evolving approach was
initialised with cluster data empty. The system was able
to position the clusters correctly.

7. CONCLUSION

The paper proposed a fuzzy adaptive approach with evolv-
ing antecedent part which guarantees global stability. It
was shown in the example that the absence of any a
priori knowledge about the position of the nonlinearity
can be overcome since the approach is able to position
the membership functions properly. The usefulness of the
approach could be even more explicit if membership func-
tions of higher dimensions are used and/or the nonlinearity
changes with time.
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