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Abstract: In this paper, a method for estimating physical parameters using limited sensors is
investigated. As a case study, measurements from an IMU are used for estimating the change in
mass and the change in center of mass of a ship. The roll motion is studied and an instrumental
variable method estimating the parameters of a transfer function from the tangential acceleration
to the angular velocity is presented. It is shown that only a subset of the unknown parameters
are identifiable simultaneously. A multi-stage identification approach is presented as a remedy
for this. A limited simulation study is also presented to show the properties of the estimator.
This shows that the method is indeed promising but that more work is needed to reduce the
variance of the estimator.
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1. INTRODUCTION

Many mechanical systems have physical properties that
change over time. These properties would cause a model
of the system to have time-varying parameters. By esti-
mating these parameters online, a higher model accuracy
can be achieved. This is important, for example, in model
based control, where the quality of the model governs the
controller performance. A low quality model requires the
controller to be robust against model errors which can re-
sult in sluggish performance (Skogestad and Postlethwaite,
2005). Two examples of this phenomenon are the total
mass of an oil tanker that changes over time due to oil
being pumped into its tanks and the change of mass due
to cargo being shifted onto a container ship in harbors.

Of course, varying physical properties affect the dynamic
behavior of the system and some properties might be
safety critical. For instance, the roll dynamics of a ship
are very sensitive to changes in the loading condition and
a worst-case scenario is that the ship will capsize (Fossen,
2011; Tannuri et al., 2003). In Fujiwara and Haraguchi
(2005) the authors investigate the dynamic influence of
water flooding the car deck of roll–on–roll–off passenger
ships, such as the disaster of the ship Estonia in 1994.
The authors show that both the roll damping and the roll
stiffness (metacentric height) change with the amount of
water on deck. This is a situation where online estimation
of the parameters could be used for a decision support
system that could aid the crew to operate the vessel.

In Perez (2005), the author thoroughly investigates meth-
ods for ship roll stabilization or ship roll reduction sys-
tems using model based control. The model used in the
approach is a linear maneuvering model where the param-
eters are assumed to be known. The effects of model errors
are not investigated, but due to the big change in the
ship roll dynamics shown in, for instance, Fossen (2011)
and (Tannuri et al., 2003), there are reasons to believe
that, for example, significant changes in mass will affect
the ship dynamics and that online estimation of the mass

would make it possible to increase the performance of the
controller.

Actually, the mass is one of the most influential parameters
in most mechanical systems. However, it is difficult to
uniquely determine the mass in many cases. For example,
the acceleration a of a particle with mass m, affected by
the force F and moving in a straight path is directly
proportional to F/m. If a is measured, there are still
multiple combinations of F and m that will solve the
equation. This ambiguity can be overcome with special
experiments where the force acting on the system is known,
or by measuring the force acting on the system. However,
doing special experiments are in many cases intractable or
too expensive.

Instead of focusing on a sensor-rich environment where all
possible signals on a ship can be measured, this article
investigates the case where only ship roll motion measure-
ments from an inertial measurement unit (IMU) together
with the rudder angle are available. The main benefit of
this approach is that it can be applied easily without
installing any expensive additional sensor systems on the
ship. However, the limited measurement setup makes it
critical to understand which parts of the roll dynamics
can be estimated. Here, these questions will be addressed
by doing an identifiability analysis of the approximate
dynamical physical model of the ship roll motion. Fur-
thermore, an instrumental variable approach will be used
on simulated data to verify the identifiability results.

The remainder of this paper is organized as follows: In
Section 2 the problem is formulated. Section 3 describes
the structural identifiability concept used in this paper.
In Section 4, the theory from Section 3 is applied to
the approximate model. Section 5 describes the suggested
instrumental variable approach. The method is applied to
a simulated data set in Section 6 and finally, in Section 7,
the paper is summarized with conclusions and suggestions
for future work.
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2. PROBLEM FORMULATION

The decoupled roll motion of a turning ship can be approx-
imated as a mass-spring-damper system with an external
force acting on its center of rotation (RC). Consider the
system in Fig. 1, which is a mass-less inverted pendulum
with a mass M attached a distance zg from the RC and
with an inertia Ix. The pendulum is hinged on a mass-less
cart that is disturbed by an external force which results
in the unknown acceleration ay. There are two torsional
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Fig. 1. Left: A ship performing a left turn creates an ac-
celeration ay. Right: A sketch explaining the approx-
imate model used to describe a ship with additional
mass. Note that this depicts the ship from the front,
i.e. a positive ay is equivalent to a left turn and a
positive φ means that the ship is leaning to the right.

torques acting on the pendulum, one linearly dependent
on the angle φ corresponding to the hydrostatic restoring
forces, and one linearly dependent on the angular velocity
φ̇ corresponding to damping due to hydrodynamic effects.

A mass m with inertia Ix,m is introduced a distance zm
from the RC, corresponding to an additional load such as
cargo. Finally, there is a disturbance torque v acting on
the RC.
The system is described by the differential equation

φ̈=

restoring torque︷ ︸︸ ︷
−

(k −Mgzg −mgzm)

I1
φ

damping︷ ︸︸ ︷
−
d

I1
φ̇

disturbances︷ ︸︸ ︷
+

(Mzg +mzm)

I1
ay +

v

I1

(1)

where I1 = Ix + Mz2
g + Ix,m + mz2

m and it is assumed that
φ is small, which is a common assumption when modeling
ships (Fossen, 2011). Note that all states and disturbances
are dependent on time t, but it is dropped to ease the
notation.
The torque disturbance v is not assumed to have any
specific distribution. The disturbance is an aggregate of
neglected coupling, waves, wind and other type of distur-
bances such as vibration from the engine.

2.1 Sensors – Inertial Measurement Unit (IMU)

It is assumed that the ship motion is measured by a two
degrees-of-freedom strap-down inertial measurement unit
(IMU) consisting of one accelerometer measuring the tan-
gential acceleration and one gyroscope measuring angular
velocity around the RC. Fig. 2 shows the IMU’s position in
relation to the RC and the accelerations affecting it. The
IMU is assumed to sense the angular velocity

y1 = φ̇+ e1 (2)

where φ̇ is the system’s angular velocity and e1 is white
zero-mean measurement noise.
Given small angles, the tangential acceleration sensed by
the IMU is

y2 = as + e2 = −zsφ̈+ gφ+ ay + e2 (3)
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Fig. 2. A conceptual sketch of the IMU’s position in the
system and the accelerations affecting it.

where the first term is the contribution from the angular
acceleration, the second term is due to gravity, the third
term is the acceleration of the RC in the world coordinate
system and the fourth term is white zero-mean measure-
ment noise. The parameter zs is the distance from the RC
to the IMU coordinate system.
2.2 Identification issues

One of the problems with identifying the system (1) – (3) is
the unknown and highly influential acceleration ay. Several
approaches are possible:

(A) ay could be seen as an input: x = [φ, φ̇], y = [y1, y2]
and u = ay, i.e. ay is known or measured. For
example, a normal prediction-error method (PEM)
or errors-in-variables method could be used (Söder-
ström, 1981).

(B) ay could be introduced as a state, which implies that
a model of ay is needed:
(a) x = [φ, φ̇, ay] and y = [y1, y2].
(b) If the lateral velocity was measured, for instance

using a GPS receiver, then x = [φ, φ̇, vy, ay] and
y = [y1, y2, vy] could be a feasible model since
vy implicitly supplies information about ay.

(C) ay is eliminated from the model, similar to a Luen-
berger reduced-order observer.

Here, alternative C is used since ay is unknown and no
model is known. Equation (3) is solved for ay and inserted
into (1) resulting in

φ̈ = −
k

I2
φ−

d

I2
φ̇+

(Mzg +mzm)

I2
as +

v

I2
(4)

where I2 = Ix +Mzg(zg − zs) + Ix,m +mzm(zm − zs) and as is
now treated as an input.
2.3 State-space representation
By choosing the states x =

[
φ φ̇

]T and inserting (1) into
(3), (1), (2) and(3) can be written as

ẋ=

[
0 1

− k−Mgzg−mgzm
I1

− d
I1

]
x+

[
0

Mzg+mzm
I1

]
ay +

[
0
v
I1

]
(5a)

y=

[
0 1

k−Mgzg−mgzm
Ĩ1

+g d
Ĩ1

]
x+

[
e1

Ĩ1−Mzg−mzm
Ĩ1

ay− v
Ĩ1

+e2

]
(5b)

where Ĩ1 = I1/zs. This will be referred to as the original
model. In the same way, (2) and (4) can be cast into the
state-space form

ẋ=

[
0 1
− k
I2
− d
I2

]
x+

[
0

Mzg+mzm
I2

]
as +

[
0
v
I2

]
(6a)

y=[0 1]x+ e1 (6b)
This will be referred to as the input model.

3. STRUCTURAL IDENTIFIABILITY

Structural identifiability concerns whether the parameters
in the model can be determined uniquely (Bellman and

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6455



Åström, 1970). In the general case, a linear model param-
eterized with parameter vector θ ∈ Rnθ can be written in
the state space form

ẋ = A(θ)x+B(θ)u

y = C(θ)x
(7)

where x ∈ Rn is the state vector, u ∈ Rm is the input,
y ∈ Rp is the output and the matrices are of suitable sizes.
Note that the parameterization might be nonlinear even
though the system is linear for a given parameterization.
Identifiability can be seen as observability of the extended
nonlinear system[

ẋ
θ̇

]
=

[
f(x, u, θ)

0

]
= g0(x, θ) + g(x, θ)u

y = h(x, θ) = [h1(x, θ) . . . hp(x, θ)]
T

(8)

(Walter, 1982). To show observability, i.e. that it is possible
to reconstruct the initial state given the data, for this
nonlinear system, the system of equations

y
(0)
1 = h

(0)
1 (x, θ)

y
(1)
1 = h

(1)
1 (x, θ, u1, . . . , um)

.

.

.
y

(K)
1 = h

(K)
1 (x, θ, u1, . . . , u

(K−1)
1 , . . . , um, . . . , u

(K−1)
m )

.

.

.
y

(0)
p = h

(0)
p (x, θ)

y
(1)
p = h

(1)
p (x, θ, u1, . . . , um)

.

.

.
y

(K)
p = h

(K)
p (x, θ, u1, . . . , u

(K−1)
1 , . . . , um, . . . , u

(K−1)
m )

(9)

has to be solved for x and θ, where y, u and their time
derivatives are assumed to be known (Diop and Fliess,
1991). Here, the notation (·)(k) means the kth derivative
of (·) with respect to time. For a general nonlinear system,
there is no upper limit on K and it might be infeasible to
solve this system of equations or difficult to analyze the
result.

Instead of solving the system of equations, it can be
linearized around the extended states and an analysis is
performed on the Jacobian (Hermann and Krener, 1977)
O(x, θ, u1, . . . ,u

(K−1)
p ) =

∂h
(0)
1

(x,θ)

∂(x,θ)

∂h
(1)
1

(x,θ,u1,...,um)

∂(x,θ)
.
.
.

∂h
(K)
1

(x,θ,u1,...,u
(K−1)
1

,...,um,...,u
(K−1)
m )

∂(x,θ)
.
.
.

∂h
(0)
p (x,θ)

∂(x,θ)

∂h
(1)
p (x,θ,u1,...,um)

∂(x,θ)
.
.
.

∂h
(K)
p (x,θ,u1,...,u

(K−1)
1

,...,um,...,u
(K−1)
m )

∂(x,θ)



(10)

which hereafter will be called the extended observability
matrix (for simplicity denoted O). The system is locally
weakly identifiable if O satisfies an observability rank
condition (Hermann and Krener, 1977).

In Section 4 and 5 of Anguelova (2007), the author shows
that assuming that the system is a rational function in
the states and parameters, it is enough to include the first
K = n + nθ − 1 derivatives of hj(x, θ), j = 1, . . . , p,
with respect to time. Weak local identifiability of the
system (8) is tested with a rank condition on O. It is
also shown that if rank(O) = q < n + nθ, it is enough

to form O using the first q − 1 derivatives with respect
time. This is useful if the dimension of the extended system
is large since the complexity of the rows of O increases
for high values of K. If the rank is less than n + nθ, one
can exclude columns from the observability matrix one-
by-one to identify the unobservable parameters or states.
Note that excluding a parameter in the extended system
is equivalent to dropping the corresponding column in
O. See Anguelova (2007) for a thorough discussion about
identifiability of systems that are rational in the extended
state vector.
4. IDENTIFIABILITY OF APPROXIMATE MODEL

In this section the identifiability analysis of the two sys-
tems (5) and (6) will be compared. The analysis is per-
formed using symbolic software. Both systems will be ex-
tended according to (8) and the parameters considered are
θT =

[
Ix M zg Ix,m m zm k d

]
and the remaining ones are

assumed to be known. In both cases, there are n = 2 states
and nθ = 8 parameters, i.e. the extended nonlinear system
has dimension 10. It is also assumed that all parameters
are non-zero unless otherwise stated.
The full O matrix for the general case is unfortunately not
possible to recite due to its size and complexity. Instead,
an illustrative special case will be presented in detail to
show the typical structure and then, conclusions about the
general case for both the original and the input model will
be given. The effects of measurement and process noise are
neglected in this section, i.e. e1 = e2 = v = 0.
4.1 Illustrative example – Special case
Here, an example will show identifiability of the param-
eters m, k and d in the original model (5) when the
additional mass has no inertia and is placed at the same
distance from RC as the IMU, i.e. Ix,m = 0 and zm = zs.
The output is y = φ̇ and the input u = ay, which for the
analysis is assumed to be known. For notational simplicity,
the parameters zg, Ix, g and zm are assumed to be equal
to 1. In this case, the extended observability matrix is

O=

 ∂h(x,θ)
∂x1

∂h(x,θ)
∂x2

∂h(x,θ)
∂m

∂h(x,θ)
∂k

∂h(x,θ)
∂d

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.∂h(4)(x, θ)

∂x1︸ ︷︷ ︸
Ox1

∂h(4)(x, θ)

∂x2︸ ︷︷ ︸
Ox2

∂h(4)(x, θ)

∂m︸ ︷︷ ︸
Om

∂h(4)(x, θ)

∂k︸ ︷︷ ︸
Ok

∂h(4)(x, θ)

∂d︸ ︷︷ ︸
Od

 (11)

and the corresponding columns are

Ox1 =

 0
−M̄k

dM̄k

M̄k(−d2 + M̄k)
dM̄k(d2 − 2M̄k)

 Ox2 =


1
−d

d2 − M̄k

−d(d2 − 2M̄k)
d4 − 3M̄kd

2 + M̄2
k

 (12a)

Om =


0

x1 + U1(0, 0, 0, u)
−dx1 + x2 + U1(0, 0, u, u̇)

(d2 − 2M̄k)x1 − 2dx2 + U1(0, u, u̇, ü)

(4M̄k − d2)dx1 + (3d2 − 2M̄k)x2 + U1(u, u̇, ü, u(3))

 (12b)

Ok =

 0
−x1

dx1 − x2

(−d2 + 2M̄k)x1 + 2dx2 − M̄u
(d2 − 4M̄k)dx1 − (3d2 − 2M̄k)x2 + 2M̄du− M̄u̇

 (12c)

Od =

 0
−x2

M̄kx1 + 2dx2 + U2(0, 0, u)
−2dM̄kx1 − (3d2 − 2M̄k)x2 + U2(0, u, u̇)

M̄k(3d2 − 2M̄k)x1 + (4d3 − 6dM̄k)x2 + U2(u, u̇, ü)

 (12d)

where M̄ = M +m, M̄k = k − M̄ and
U1(u1, u2, u3, u4) = −d(d2 + 4M̄ − 2k)u1 + (d

2
+ 2M̄ − k)u2 − du3 + u4

U2(u1, u2, u3) = −M̄(3d
2

+ 4M̄ − 2k)u1 + 2M̄du2 − M̄u3

(13)
Note the structure appearing in the columns due to the
recursive properties of the matrix.
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Non-zero informative input: Assuming that the input
is informative enough, the maximum rank of O is 5 for
almost all values of x and hence, it is possible to identify
all three parameters.
No input: Assuming that the input is zero but that
the output still contains information, then, the maximum
rank of O drops to 4. This occurs, for instance, if the
system is excited by perturbing it from its equilibrium and
releasing it. This decrease in rank indicates that at most
two parameters can be uniquely identified. For instance,
the drop in rank can be realized by noting that Om = −Ok
when there is no input and it can be seen in the row-
reduced (allowing division) form

O =


1 0 0 0 0
0 1 0 0 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0

 (14)

where the columns corresponding to m and k are linearly
dependent. Hence, it is only possible to identify two-
combinations of parameters consistently, unless these two
parameters are m and k.
4.2 Identifiability of the original model – general case

For the original model (5), the output is y = [φ̇, as] and
the input u = ay which for the analysis is assumed to be
known. This analysis is important as a basis for comparison
in Section 4.3.
Non-zero informative input: Assuming that the input is
informative enough, the O matrix formed for the general
case has rank 5, which implies that at most 3 parameters
can be uniquely identified. This is an expected result
since (5) is a second order system. There are a total
of 56 three-combinations and it is important to check if
there are certain combinations that create problems with
identifiability. To this end, sub-matrices of the form

O=


∂h(x,θ)
∂x1

∂h(x,θ)
∂x2

∂h(x,θ)
∂θ1

∂h(x,θ)
∂θ2

∂h(x,θ)
∂θ3

...
...

...
...

...
∂h(4)(x,θ)

∂x1

∂h(4)(x,θ)
∂x2

∂h(4)(x,θ)
∂θ1

∂h(4)(x,θ)
∂θ2

∂h(4)(x,θ)
∂θ3

 (15)

are created for each three-combination of parameters and
the rank condition is checked for each combination.
Firstly, each column corresponding to a parameter is
linearly independent of the columns corresponding to the
states and hence, if only one parameter is unknown, then
it is identifiable.
Secondly, except for combinations including both the pa-
rameters Ix and Ix,m, any two-combination of parameters
is identifiable.
Finally, the analysis reveals that any three-combination of
parameters is identifiable, except for any three-combination
of [Ix M zg Ix,m m zm] or any combination of parameters
where both Ix and Ix,m are in the set. For instance, this
means that if the entire system is known except for the
additional load, it is not possible to estimate its inertia,
mass and its center of mass at the same time.
No input: Assuming that the input is zero but that the
output still contains information, the maximum rank of
O drops to 4 and dropping column by column shows that
any two-combination of parameters is identifiable except
for the combination of Ix and Ix,m.
4.3 Identifiability of input model – general case

The results for the original model show what is possible
to estimate. However, as mentioned in Section 2.2, ay is
unknown and therefore the input model (6) is used. For the

input model, the output is y = φ̇ and the input u = as,
i.e. the measured tangential acceleration.
Non-zero informative ay: As in the previous section,
assuming that the input ay is informative enough, the
maximum rank of O is 5. Also the identifiable one-, two-
and three-combinations of the parameters are the same.
Hence, the identifiability properties of the original model
are retained when using the mathematical reformulation.
No input (ay = 0): An apparent advantage with the
reformulation (6) is that the unknown ay is replaced by
the measured acceleration as. As defined in Section 2.1,
the measured tangential acceleration is

as = −zsφ̈+ gφ+ ay
and if the system is perturbed from its equilibrium, then as
will be non-zero for almost all t even if ay is zero. At a first
glance, this might seem beneficial since it suggests that the
input as is informative even though ay is zero. However, it
is the input as that is used in the analysis and it is assumed
that the input can be chosen arbitrarily. The input is a
linear combination of ay and the states and is thus not
free to be chosen if ay is zero. By inserting the known
relation (3), the maximum rank of O is 4 as in Section 4.2,
again retaining the same identifiability properties as the
original model.
Hence, in an identifiability sense, nothing is gained or lost
by using the input model instead of the original model.

5. IDENTIFICATION PRELIMINARIES

In this section, an extended instrumental variable (IV)
method for estimation of the parameters is presented.
Firstly, the model will be discretized, then linear con-
straints will be introduced to ensure that the dependencies
amongst the parameters will be obeyed and finally, the
suggested extended IV approach will be introduced.

5.1 Discretization of input model
All measurements are taken at discrete time instances and
a discrete time model is needed to relate the measurements
to the parameters. The input model (6) can be written as
a transfer operator

Hc(p) =
β1p
−1

1 + α1p−1 + α2p−2
(16)

from the input as to the output φ̇, where α1 = d/I2, α2 =

k/I2, β1 = (Mzg+mzm)/I2, I2 according to Section 2.2 and p
is the differentiation operator. The transfer function (16)
can be discretized with the bilinear transform p ≈ 2

T
q−1
q+1

giving

Hd(q) =
β̄0(1− q−2)

1 + ᾱ1q−1 + ᾱ2q−2
(17)

where

ᾱ1 =
2α2T 2 − 8

Ī2
, ᾱ2 =

4− 2α1T + α2T 2

Ī2
, β̄0 =

2β1T

Ī2
, (18)

Ī2 = 4 + 2α1T + α2T 2 and q is the the shift operator.

5.2 Obeying nonlinear parameterization
As shown in Section 4, only a subset of all parameters
can be identified. The transfer function (17) has three free
parameters, i.e. three degrees of freedom to fit the model
to the data. This gives a model that is more flexible than
permitted when only one or two parameters are estimated
since the parameters in (17) are dependent through the
original nonlinear parameterization. Fortunately, for cer-
tain parameter combinations, it is possible to use linear
constraints together with (17) and still obey the original
nonlinear parameterization. Below, two of these linear
constraints will be presented for use in the next section.
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Ix and d unknown: Both α2 and β1 have known numer-
ators and the quotient

Mzg +mzm
k

=
β1

α2
=

2T β̄0

1 + ᾱ1 + ᾱ2
(19)

is thus known which gives the constraint[
−Mzg+mzm

k
−Mzg+mzm

k
2T
] [
ᾱ1 ᾱ2 β̄0

]T
=
Mzg +mzm

k
(20)

m and zm unknown: In the same way, the quotient
d

k
=
α1

α2
=

T (1− ᾱ2)

1 + ᾱ1 + ᾱ2
(21)

is known since both numerators of α1 and α2 are known
which gives the constraint[

d
k

d
k + T 0

] [
ᾱ1 ᾱ2 β̄0

]T
= T − d

k
(22)

5.3 Extended IV – using rudder angle as instrument

The instrumental variable (IV) method uses a sequence
of instruments ζt where each element is uncorrelated with
the process disturbance vt, and the measurement noises
e1,t and e2,t. In the general case, this can be achieved by
solving

θ̂ = argmin
θ
‖ΦNθ − YN‖22

s.t. Bθ = b
(23)

where

ΦN = [ζ1 . . . ζN ]

ϕT1...
ϕTN

, YN = [ζ1 . . . ζN ]

[
y1...
yN

]
(24)

andB and b are the matrices in either (20) or (22)(Söderstrom
and Stoica, 1989). To decrease the variance of the estimate,
an iterative method is used. After each iteration, the new
estimate θ̂i is used to simulate y and u from the rudder
angle r. The rudder angle r and the simulated signals ys
and us are then used as instruments in the next iteration.
The iteration is aborted if ‖θ̂i− θ̂i−1‖2 is below a threshold
or after a maximum number of iterations. The instruments
are chosen as
ζt = [rt . . . rt−nr ys,t . . . ys,t−ny us,t . . . us,t−nu ]

T (25)
where rt is the rudder angle at time t, ys,t and us,t are
the output and the input, respectively, simulated using
(1), (3) and the estimate θ̂i from the previous iteration.
Furthermore, nr, ny and nu are the number of time
lags included in ζt for the rudder angle, the input and
the output, respectively. For the first iteration, solely the
rudder angle is used as instrument.

5.4 Multi-stage identification

To estimate the changes in mass and the center of mass
on a real system, a multi-stage identification procedure can
be used. If no information is known about the system, this
is indeed necessary since a maximum of three parameters
can be identified simultaneously. The three stages are:
(1) The static parameters M , zg and k of the unloaded

ship are estimated in harbor by moving weight to
known locations of the ship using ballasting.

(2) The dynamic parameters Ix and d for the unloaded
ship are estimated with the method described in
Section 5.

(3) The changes in mass m and the CM zm are estimated
again using the method in Section 5.

6. EXPERIMENTAL VERIFICATIONS
To investigate the properties of the suggested method, it
has been applied to simulated data of a ship maneuvering

on open water without any waves affecting it, i.e. v is
zero. The dataset was synthesized with the approximate
model (1) – (3) where ay is formed by feeding the rudder
signal r through the transfer function F (s) = 1

0.2s+1 . The
true parameters are listed in Table 1. Two data sets were

Table 1. Parameters used in the simulation.
Note that the additional mass is less than 1 %

of the total mass.
M zg Ix d k m zm zs
22.04 0.018 0.1385 0.1067 10.39 0.2 0.274 0.218

created, one with nominal mass and one with additional
mass. Both have 150 000 data points, corresponding to
25 min of data and a sampling period of 0.01 s. White
zero-mean Gaussian measurement noise with a standard
deviation of 0.01 was added to the simulated signals, where
the amplitude of the noise was chosen to be similar to
a real IMU. The noisy signals were filtered through an
FIR equiripple low-pass filter of order 20 with a cut-off
frequency of 0.5 Hz. Fig. 3 shows the first 110 s of the
data set (with no additional mass) and Fig. 4 shows a
typical behavior of the system. The black boxes in Fig. 3
corresponds to the data shown in Fig. 4.
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Fig. 3. The no load data set that was used in the iden-
tification. The measured signal is shown in gray, the
true signal is blue and the measured signal after the
LP filter was applied is dashed red. The left plot
shows the angular velocity and the right plot shows
the acceleration measurement. The black boxes mark
the data shown in Fig. 4

The parameters are estimated using both the described IV
method and for comparison, a constrained least-squares
approach. In the IV method, F (s) = 1

0.1s+1 is used, i.e.
the time constant is different from the true one.

The results from the second stage, i.e. estimating Ix and d
can be seen in Fig. 5. The left plot shows Îx and the right
shows d̂. In both cases, the LS estimator has less variance
but is biased. However, note that the bias is in the order
of 10−3 for the Ix estimator and in the order of 10−2 for
the d estimator. These are both small relative to the true
values.
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Fig. 5. The histogram of a Monte Carlo experiment with
10 000 runs. The red line corresponds to the true
value, the blue bars correspond to the LS method, the
dashed blue line corresponds to the mean of the LS
estimator, the gray bars correspond to the IV method
and the dashed black line corresponds to the mean of
the IV estimator. The left plot shows the results for
Ix and the right plot shows the result for d.
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Fig. 4. A typical sequence of measurements. See Fig. 3 for explanation.
The results from the third and final stage, i.e. estimation
of m and zm, can be seen in Fig. 6. The left plot shows
the result for the mass m and the right plot shows the
result for the distance from the RC zm. In this stage, the
estimates, i.e. Îx and d̂, from the previous stage are treated
as known. Again, the IV estimator has a smaller bias than
the LS estimator for both m and zm but a larger variance.

According to theory, the estimated discrete-time linear
parameters in the IV method will tend to the true ones
as the number of data points goes to infinity (Söderstrom
and Stoica, 1989). With the suggested IV estimator and
the data length used, there is an obvious variation in the
estimated physical parameters. This is due to the variance
properties of the IV estimator and the sensitivity of the
nonlinear transformation from the discrete-time linear
parameters. This sensitivity and the required variance
properties of the IV estimator need further investigation.

It should however be noted that the increase in mass
is less than 1 % of the total mass and that the IV
estimator actually detects the mass within ±0.1 kg. It is
also interesting to note that even though the LS estimator
in the previous stage is biased, the estimator for mass and
center of mass has low bias and variance. In this limited
experiment, only measurement noise is considered and the
real benefit of the IV method is when both the input and
output are correlated with the same noise source.
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Fig. 6. The left plot shows the results for m and the right
plot shows the result for zm. See figure text of Fig. 5
for explanation.
7. CONCLUSIONS AND FUTURE WORK

In this paper, a method for estimation of physical parame-
ters using measurements from an IMU has been presented.
The roll motion has been studied and an instrumental
variable method for estimation of the parameters of a
transfer function from the tangential acceleration to the
angular velocity has been proposed. The identifiability
analysis has shown that only a subset of the unknown
parameters are identifiable simultaneously. As a remedy,
a multi-stage identification approach was suggested.

A limited simulation study was presented to show the
applicability of the method and the properties of the esti-
mator. The results are promising but, by no means perfect.

Future work includes investigation of better choices of
instruments and evaluation on real data. The real chal-
lenge lies in getting consistent estimators in situations with
severe process disturbances.
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