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Abstract: Grey-box models give us a welcomed opportunity to combine our prior knowledge
with experimental data when a system is being identified. This benefit is redeemed by an
unattractive non-convex and nonlinear optimisation problem that ensue from the parameter
estimation. The article shows an efficient method how to speed up the arising iterative
optimisation algorithm in the case of continuous, time-invariant, grey-box models. The method
is based on a presented output-to-parameter sensitivity computation algorithm.
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1. INTRODUCTION

Models have became a basic part of many advanced
control systems. A typical example is the Model Predictive
Control (MPC) that uses models to find an optimal control
strategy. This work was originally motivated by the need
for suitable models for the MPC design, however, it can
be applied to a wide range of Linear Time-Invariant (LTI)
modelling problems as well.

Basically, there are three kinds of LTI models that are
used to describe the real system (see e.g. Ljung (1999)).
The well-known black box model in which only a degree of
the model is given a priori. On the opposite site, there is
a white-box model, which describes the behaviour of the
system using first principle knowledge. Finally, between
them, there is a Grey-Box Model (GBM) which combines
both approaches (we may know the model structure, but
we don’t know the exact values of parameters); see e.g.
Johansen (1996), Kristensen et al. (2004) and Bohlin
(2006).

This paper deals with the GBMs because they can be
exploited in industrial practice; especially when a de-
signer has only limited and usually insufficiently excited
input/output experimental data. However, the lack of in-
formation in data could be replaced by additional a priori
knowledge about the modelled process. This knowledge
can be easily incorporated just into the GBM (Tulleken
(1993)). The advantages of the GBMs are especially seen
in the case of Multiple-Input-Multiple-Output (MIMO)
systems, where the knowledge of the inner structure helps
to reduce the number of parameters to be estimated and
makes the identification more robust to errors in data.

The main aim of this work is to present a convenient
approach to GBM parameter estimation. The GBMs are
considered to be defined in the continuous-time domain,

whereas the discrete-time models, which are used by
optimisation algorithm, are effectively constructed by the
proposed algorithm.

The structure of the paper is as follows: In the next section
a GBM parametrisation will be introduced. In Section 3,
the Maximum Likelihood estimation of GBM parameters
will be briefly presented and the resulting criterion func-
tion and the corresponding gradient will be examined.
Section 4 deals with a new algorithm of a structural
exponential matrix computation. Finally, in Section 5, a
grey-box identification example will be presented. The last
section concludes the paper.

2. GREY-BOX MODEL DEFINITION

2.1 Grey-box model description

There are several ways how to define GBM. In our case,
the most suitable form is a state-space description, where
a physical insight into the modelled system can be easily
incorporated.

Let θc ∈ Rnp denote a vector of parameters. The
parametrised state-space description of the GBM is

ẋ(t) = A(θc)x(t) + B(θc)u(t), (1a)

y(t) = C(θc)x(t) + D(θc)u(t), (1b)

where x(t) ∈ Rnx is a state vector, u(t) ∈ Rnu and y(t) ∈
Rny are vectors of inputs and outputs, respectively. The
parametrised matrices have dimensions: A(θc) ∈ Rnx×nx ,
B(θc) ∈ Rnx×nu , C(θc) ∈ Rny×nx and D(θc) ∈ Rny×nu .

The prior knowledge about the modelled system has been
moved into the structure of these matrices and to the
expected values of parameters θc ∈ Θc. The goal is to
estimate an ”optimal” value of the parameter vector θ∗c
using a measured experimental data.
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2.2 Discrete-time GBM

The system is typically observed in discrete-time intervals.
It is thus convenient to transform the system (1) into its
discrete-time form.

Let yk = y(kTs) be a sampled output and let the
manipulated inputs be piece-wise constant between the
sampling intervals; i.e. u(t) = uk for t ∈ 〈kTs, (k + 1)Ts).
The corresponding discrete-time GBM has the following
form

xk+1 = M(θc, Ts)xk + N(θc, Ts)uk, (2a)

yk = C(θc)xk + D(θc)uk, (2b)

where the matrices M and N could be computed using a
matrix exponential (see Ljung (1999)) as(

M N
0 I

)
= exp

[(
A B
0 0

)
Ts

]
. (3)

2.3 Stochastic GBM

Both equations (1) and (2) define the GBM from the
deterministic point of view. The stochastic description of
disturbances affecting the model is usually unknown to
the designer and some general stochastic model should
be used to model them (for more information about the
estimation of stochastic parameters see e.g. Matisko and
Havlena (2013)). A suitable stochastic model is crucial
for a consistent estimation of the deterministic parameters
(Ljung (1999)).

To introduce a stochastic part to the GBM, we extend the
discrete-time version of the GBM as follows:

xk+1 = M(θc, Ts)xk + N(θc, Ts)uk + K(θK)ek, (4a)

yk = C(θc)xk + D(θc)uk + ek, (4b)

where ek ∈ Rny is a Gaussian white noise

ek ∼ N (0; R) , cov {ek, ek+j} = 0, j 6= 0. (5)

The model of this kind is sometimes referred to as a
”hybrid” GBM (Young et al. (2008)), because it combines
both domains, the continuous-time and the discrete-time.
The vector of parameters of the stochastic GBM is ob-
tained by completing the deterministic parameters θc by
parameters that describe the matrix K ∈ Rnx×ny and the
symmetric matrix R ∈ Rny×ny .

3. MAXIMUM LIKELIHOOD ESTIMATION

When the GBM is constructed and parametrised, the
next step is to estimate the optimal values of parameters
using experimental data. There are numerous estimation
methods that can be used. However, probably the most
common approaches are Prediction Error Method (PEM),
Least Squares Estimation (LSE), or Maximum Likelihood
Estimation (MLE). In this section the more general MLE
approach to the GBM parameter estimation will be intro-
duced.

3.1 Derivation of the criterion function

The goal of the MLE method is: for a given data sequence{
YN ;UN

}
= {y1, . . . ,yN ; u1, . . . ,uN}

and for a given model structure (4) find an argument θ∗

that maximises the likelihood function

L
(
θ|YN , UN

)
= p

(
YN |θ,UN

)
=

(
N∏
k=1

p
(
yk|Yk−1,Uk,θ

))
.

(6)

Assume that the data was generated by the stochastic
GBM (4) under the conditions (5) and let x0 be a deter-
ministic initial state. Then, the probability density func-
tion p

(
yk|Yt−1,U t,θ

)
is Gaussian; i.e.,

p (yk|·) = (2π)
−ny

2 det R− 1
2 exp

(
−1

2
εTkR−1εk

)
, (7)

where εk = yk − ŷk is a prediction error and ŷk is given
by a steady-state Kalman filter

x̂k+1 = (M−KC) x̂k + (N−KD) uk + Kyk, (8a)

ŷk = Cx̂k + Duk, (8b)

x̂1 = x0. (8c)

Lemma 1. Finding optimal arguments of the likelihood
function (6) is equivalent to minimizing the (log) deter-

minant of an estimated covariance matrix R̂

{θ∗c , θ∗K , x∗
0}= arg min

θc,θL,x0

1

2
log det

(
R̂
)
, (9a)

R̂ =
1

N

N∑
k=1

εkε
T
k . (9b)

Proof. Using the definition of the Gaussian pdf (7), the
transformed log-likelihood function becomes

logL (·) = const− N

2
log det (R)− 1

2

N∑
k=1

εTkR−1εk,

where the ”const” stands for parameter independent
terms. Maximising the previous log-likelihood function is
equivalent to minimising the following cost

V (·) =
N

2

[
log det (R) + trace

(
N∑
t=1

1

N
ε(t)ε(t)

T
R−1

)]
=
N

2

[
log det (R) + trace

(
R̂R−1

)]
.

(10)

Let θ =
[
θTc ,θ

T
L , xT0

]T ∈ Rn be a composed vector of
unknown parameters. The optimisation problem can be
rewritten as a nested optimisation

θ∗ = arg min
θ

[
min
R

V (θ,R)
]
. (11)

By using a necessary optimality condition

0 =
∂

∂R

(
N

2

[
log det (R) + trace

(
R̂R−1

)])
=
N

2

[
trace

((
I− R̂R−1

)
R−1

)]
and by using the fact that that R � 0, an optimal
argument of the inner optimisation becomes R∗ = R̂.

Note that in the previous derivations the following well
known equalities were used:
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∂

xi,j
log (det (X)) = trace

(
X−1 ∂

xi,j
X

)
, (12)

∂

xi,j
trace

(
X−1

)
=−trace

(
X−1

(
∂

xi,j
X

)
X−1

)
.(13)

Inserting the optimal argument into the equation (10) we
obtain

θ∗ = arg min
θ

N

2

(
log det

(
R̂
)

+ I
)
,

which is equivalent to minimisation of the cost (9). �

3.2 Gradient computation

The main drawback of the proposed GBM MLE method is
the resulting non-convex optimisation problem (9). Reach-
ing the global optima of this computationally cumbersome
task cannot be guaranteed and only a local optima is
searched.

In general, the minimisation must be done by an iterative
search

θ̂(j+1) = θ̂(j) + ∆θ̂(j), (14)

where θ̂(j) is an estimation in the j-th step and ∆θ̂(j) is
an iteration update. Several solvers were designed to solve
this problem and a basis of almost all of them is a gradient
function 1

Let E(θ) ∈ Rny×N denote a matrix of of residuals

E = [ε1, . . . , εN ] (15)

and let

Eθi =
∂

∂θi
E(θ) =

[
∂ε1
∂θi

, . . . ,
∂εN
∂θi

]
(16)

be a matrix of first order derivatives with respect to
parameter θi.

Lemma 2. The gradient of the criterion function (9) can
be evaluated as follows:

∇V (θ) =

[
∂V (θ)

∂θ1
, . . . ,

∂V (θ)

∂θn

]
, (17)

∂V (θ)

∂θi
= trace

((
EET

)−1
EET

θi

)
. (18)

Proof. Using the differentiation rule (12)

∂

∂θi
V (θ) =

∂

∂θi

(
1

2
log det

(
1

N
EET

))
=

1

2
trace

((
EET

)−1 ∂

∂θi

(
EET

))
and by exploiting the following properties of the trace

trace
(
EET

)
= trace

(
ETE

)
the result is obtained:

∂

∂θi
V (θ) = trace

((
EET

)−1
EET

θi

)
.

�

The problem of the gradient computation has been trans-
lated into the evaluation of the prediction error sensitivity
function

ϕk,i =
∂

∂θi
εk = − ∂

∂θi
ŷk.

1 More comprehensive description can be found e.g. in Fletcher
(1981).

3.3 Discrete-time output sensitivity

The iterations of the optimisation algorithm are based on
the cost and gradient evaluation, for which the prediction
errors εk and their sensitivities ϕk,i have to be rapidly
evaluated. In this section a recursive algorithm for com-
puting both, εk and ϕk,i, will be presented.

It is assumed that the GBM is defined in the continuous-
time domain (1). In order to evaluate the output sensitiv-
ity, it is necessary to compute the partial derivatives of the
discrete-time version of the GBM (2). Whereas computa-
tion of matrix derivatives of the continuous-time GBM is
relatively simple, just differentiating (1), the computation
of derivatives of the discrete-time matrices M(θ) and N(θ)
is not that straightforward. A solution to this problem is
given in the following lemma.

Lemma 3. Let the matrices A, B, Aθi and Bθi be defined
for the continuous-time GBM. The matrices M, N, Mθi
and Nθi of the discrete-time GBM can be computed as
follows(

M 0 N
Mθi M Nθi
0 0 I

)
= exp

[(
A 0 B
Aθi A Bθi
0 0 0

)
Ts

]
, (19)

where Xθi = ∂
∂θi

X is an element-wise first derivative

with respect to deterministic (continuous-time) parame-
ters θi, i = 1, . . . , np.

Proof. Let ξi(t) be a sensitivity of the continuous-time
state

ξi(t) =
∂

∂θi
x(t).

Using the state evolution equation (1), the time derivative
of ξi(t) is

d

dt
ξi(t) =

d

dt

(
∂

∂θi
x(t)

)
=

∂

∂θi

(
d

dt
x(t)

)
=

∂

∂θi
(Ax(t) + Bu(t)) ,

= Aθix(t) + Aξi(t) + Bθiu(t).

This can be rewritten using extended state as[
ẋ(t)

ξ̇(t)

]
=

(
A 0

Aθi A

)[
x(t)
ξ(t)

]
+

(
B

Bθi

)
u(t). (21)

The result (19) is obtained by using discretization formulae
(3) for the extended LTI system (21).

Note that these relations are not affected by the parame-
ters θK and x0. �

Obviously, the prediction error sensitivity can be com-
puted using the extended state as follows

ϕ(t) = − ( Cθi C )

[
x(t)
ξi(t)

]
−Dθiu(t), i = 1, . . . , n.

Finally, the discrete-time prediction errors εk and their
sensitivities ϕk,i, i = 1, . . . , n can be computed together
as follows
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[
εk
ϕk,i

]
=

[
yk
0

]
−
(

C 0
Cθi C

)[
x̂k
ξk,i

]
−
(

D
Dθi

)
uk[

x̂k+1

ξk+1,i

]
=

(
M 0
Mθi M

)[
x̂k
ξk,i

]
+

(
N
Nθi

)
uk+

+

(
K 0
Kθi K

)[
εk
ϕk,i

]
.

(22)
In the last equation, the innovation noise model (4) was
employed. θ is the composed vector of all parameters.
Obviously, the partial derivatives of matrices M, N, C
and D are null for θi being a Kalman gain or an initial
state parameter, and similarly, Kθi is non-zero only for θi
being a Kalman gain parameter.

The question that naturally arises is how complex the
computation of the matrix exponential (19) is, considering
that all np parameter sensitivities have to be evaluated
each time the θ is changed. The computational complexity
of the matrix exponential is generally ∼ m3. In our case
(19), the size of the matrix will be m = 2nx + nu. To
compute the derivatives with respect to all np parameters
the approximate computational cost will be ∼ np(2nx +
nu)3. This computational burden could be further reduced
by utilisation of a specific matrix structure as will be
described in the following section.

Remark 1. Defining GBMs in the continuous-time domain
is convenient and has another advantage comparing to the
discrete-time definition. That is a block-oriented design.
A complex modelled system could be usually divided into
simple parts; model blocks, which are mutually connected.
It is common that several possibilities of model structures
and/or blocks are tested and validated using a data.
Instead of redefining the necessary first derivatives of
the complete model, already defined model blocks can be
reused to build up the overall system definition.

Remark 2. The presented discrete-time prediction errors
and their sensitivities can be used in different settings,
such as LSE, to estimate the model parameters. Specially
for the LSE, the criterion function is defined as

θ∗ = arg min
θ

N∑
i=0

trace
(
EET

)
,

which can be solved by e.g. the Levenberg-Marquardt
alghorithm (Marquardt (1963)), The required Jacobian
matrix is given by J(θ) = [vec(Eθ1), . . . , vec(Eθn)] .

4. EFFECTIVE COMPUTATION OF THE
STRUCTURED EXPONENTIAL MATRIX

The exponential matrix can be computed in many ways
(see Moler and Van Loan (2003)). One of the preferable
methods is the scaling and squaring algorithm with Padé
approximation 2 (Higham (2005)). This method will be
closely examined and modified to fit better into our
structured matrix computation.

4.1 Scaling and squaring algorithm

Consider a matrix exponential function Ψ = eΩ The
scaling and squaring algorithm has the following steps:
2 The best approximation of a function by a rational function of a
given order.

(1) Scaling. The matrix Ω is scaled by power of 2, so
that its norm is less than 1/2

Ωs = Ω/2s. (23)

(2) Padé approximation Zq ≈ eΩs of an order q is
computed by solving

DqZq = Eq, (24)

where
Eq = I + c(1)Ωs + · · ·+ c(q)Ωq

s (25)

and

Dq = I− c(1)Ωs + · · ·+ (−1)qc(q)Ωq
s (26)

are Padé approximants (matrix polynomials of Ωs)
and c(i) are Padé coefficients, defined as

c(i+ 1) = c(i)
q − i+ 1

i(2q − i+ 1)
,

c(1) = 1/2.

(3) Squaring to undo the scaling

Ψ ≈ Ψq = Zsq. (27)

4.2 Structured scaling and squaring algorithm

The previous steps of the algorithm could be further
simplified when the specific structure of matrix Ω is
considered; i.e., when

Ω = Ts

(
A 0 B

Aθi A Bθi
0 0 0

)
. (28)

Lemma 4. Using matrix algebra, the powers of the scaled
matrix Ωs can be expressed as

Ωk
s =

(
Ts

2s

)k Ak 0 Ak−1B
Xi(k) Ak Yi(k)

0 0 0

 , (29)

where

Xi(k) =

k∑
i=1

Ai−1AθiA
k−i,

Yi(k) = Ak−1Bθi + Xi(k − 1)B.

�

Using the previous lemma and the definition of Padé
approximants (25) and (26), the structured version of (24)
can be expressed as(

D11 0 D13

D21 D11 D23

0 0 I

)(
Z11 0 Z13

Z21 Z11 Z23

0 0 I

)
=

(
E11 0 E13

E21 E11 E23

0 0 I

)
.

Exploring the structure of the previous equation shows:

• Solution to the Padé approximation (24) of the
derivative-independent terms is

Z11 = D−1
11 E11,

Z13 = D−1
11 (E13 −D13) .

As these matrices are independent on matrix deriva-
tives, they are computed only once.

• The derivative-dependent terms are

Z21 = D−1
11 (E21 −D21E11) ,

Z23 = D−1
11 (E23 −D21E13 −D23) .

These have to be computed with respect to each
parameter θi.
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Note that the approximants Dq and Eq are a q order
polynomials of Ωs, which is constructed using q order
matrix polynomials of the matrixA. The advantage of this
structured algorithm is that the powers of A have to be
computed only once for all i.

Finally the squaring have to be carried out. Let

M̄(0) = Z11, N̄(0) = Z13, M̄
(0)
θi

= Z21, N̄
(0)
θi

= Z13.

Solving

N̄
(j+1)
θi

= M̄
(j)
θi

N̄(j) + M̄(j)N̄
(j)
θi

+ N̄
(j)
θi

M̄
(j+1)
θi

= M̄
(j)
θi

M̄(j) + M̄(j)M̄
(j)
θi

N̄(j+1) = M̄(j)N̄(j) + N̄(j)

M̄(j+1) = M̄(j)M̄(j)

for j = 0 to s we obtain the desired matrices

M ≈ M̄(s), N ≈ N̄(s), Mθi ≈ M̄
(s)
θi
, Nθi ≈ N̄

(s)
θi
.

Before introducing the final example of model building and
identification, a short illustration shows the computational
savings of the presented structured exponential matrix
computation.

4.3 Example of computational savings

Consider a random matrices A ∈ Rnx×nx , B ∈ Rnx×nu

and Aθi ∈ Rnx×nx , Bθi ∈ Rnx×nu , i = 1, . . . , np. For
various values of nx, nu and np the computation times of
the standard discretisation method (given by (3)) and the
new, presented one, will be compared.

For each settings, 40 repeated simulations were done. The
median and the upper quartile of the computation times
are depicted in the table below.

Table 1. Comparison of computational times
[u50%, u75%] of the standard (a) and the struc-

tured (b) discretisation methods.

nx 5 25 65
nu 1 5 13

np = 5 a [0.927, 1.066] [4.709, 5.963] [46.99, 50.59]
[ms] b [0.678, 0.802] [2.609, 3.217] [17.90, 20.38]
rel. 26.85% 44.59% 61.89%

np = 30 a [4.77, 5.70] [27.07, 29.90] [265.6, 275.5]
[ms] b [3.60, 4.35] [15.41, 19.63] [95.97, 99.21]
rel. 24.5% 43.078% 63.86%

As can be seen from the results above, the new algorithm
is faster especially when the dimension of the problem
is getting bigger. This improvement is even more visible
when the discretisation algorithm is exploited iteratively
inside the optimisation routine.

5. IDENTIFICATION EXAMPLE

5.1 Model definition

Consider a system of a boiler feeding steam into a header
(Fig. 1). The input variables are the boiler fuel flow ff (t)
and header steam demand fD(t), the measured variables
are header pressure pH(t) and boiler-to-header steam flow

fs(t). More detailed description of boiler-header modelling
problem is given by Trnka et al. (2013).

u(t) = [ff (t), fD(t)]
T
, y(t) = [pH(t), fs(t)]

T
.

The simplified model has the following parts: The block
B1 transfers the input fuel into the generated steam, the
steam is accumulated in a drum (B2), from which it is
sucked through the valve (B3) to the header (B4) using a
drum-to-header pressure difference

fs(t) = KV

√
∆p(t) = KV

√
pD(t)− pH(t),

where KV is a boiler-header pipe conductivity. The non-
linear valve characteristic is linearised using a steady state
operation point definition fs(tss) = F0 as

fs(t) ≈
1

2

K2
V

F0
∆pH(t) +

1

2
F0 = k∆pH(t) + b.

List of all parameters and their expected values is denoted
in Tab.2.

Table 2. Parameters and their expected values.

param value description

KF (0; 1] Fuel-to-steam gain [-],
TF [10; 500] Fuel time constant [s],
VD [1e2; 5e5] Drum (volume) const.[kg/MPa],
VH [1e1; 1e5] Header (volume) const.[kg/MPa],
KV [20; 100] Valve const.[kg/s/MPa],
F0 [55; 65] Nominal steam flow [kg/s],
xD0 [9; 13] Initial state of B2 [MPa],
xH0 [9; 13] Initial state of B4 [MPa],
xB0 [55; 65] Initial state of B1 [kg/s].

The overall model description will be

A =


−

k

VD

k

VD

1

VD
k

VH
−

k

VH
0

0 0 −
1

TF

 , B =


0 0 −

b

VD

0 −
1

VH

b

VH
kF2S

TF
0 0

 ,

C =

(
0 1 0
k −k 0

)
, D =

(
0 0 0
0 0 b

)
,

where an augmented input vector ū(t) = [uT (t), 1]T has
been considered to cover the constant terms. The corre-
sponding state vector is x(t) = [xD(t), xH(t), xB(t)]T .

5.2 Simulation results

To preserve the industrial-like settings the following will
be considered: a) the excited inputs are limited to a several
successive steps; b) there is a bias in the system and model
structure (the system has the described non-linearity, the
B1 block has an input filter 1/(TF s+ 1)); c) the discrete-
time system state and the measured output are burdened
by additive Gaussian noises v(t) and e(t), respectively.

The Input/Output data and the resulting model fit is
depicted in Fig 2. The figure shows a noise-free and noisy
response of the system. Obviously, the effect of the noise in
the integrating (Pressure) channel is remarkable. In order
to evaluate the quality of the model multi-step (Np = 20)
output predictions were simulated and depicted.

Several noise realizations and initial estimates (randomly
sampled within the interval - see Tab 2) were considered.
The parameters were normalized by their initial values in
order to improve numerical properties (θn = θ/θ0) and
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Fig. 2. Trend plot. The noise-free system output (blue), the
noisy system output (black) and the 20-step-ahead
predictions (red).

a standard Interior-Point algorithm 3 was chosen to solve
the optimization problem (9). The algorithm takes from
10 to appx. 200 iterations in less then a couple of seconds.

6. CONCLUSION

A comprehensive description of the maximum likelihood
estimation of parameters of a continuous-time, grey-box
model was introduced. The approach exploits a novel al-
gorithm of a structured exponential matrix computation
that reduced the computational complexity. The practi-
cality of this method consists in defining the model in the
continuous-time domain, which is convenient for the grey-
box modelling. Once the continuous-time model is defined,
the discrete-time counterpart is rapidly evaluated, so that
the discrete-time prediction errors and their sensitivities
are computed in a numerically effective manner. The sen-
sitivities can be used to evaluate the gradient function of
the presented criterion function.

The method could be easily extended to a block-oriented
identification that simplifies the model creation and mod-

3 Matlab Optimization tlbx. R2013b.

ification, so that the particular sensitivities will be auto-
matically constructed using underlying block sensitivities.
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