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1. INTRODUCTION 

The tracking problem of the given trajectories by the outputs 
of the control plant is the central problem in the theory of 
automatic control. The necessary and sufficient conditions for 
the solvability of tracking problem for linear systems were 
formulated within the framework of the geometric approach 
(Wonham, 1979) assuming that the reference signals are 
generated by known linear dynamic system with unknown 
initial conditions. For the technical feasibility of the tracking 
system it is necessary to ensure the stability of the zero 
dynamics, which requires knowledge of the parameters of 
plant models and reference signals model (Shtessel 
Y.B.,Tournes C. 1996). 

The present paper offers a solution of the insufficiently 
explored tracking problem for single-input single-output 
linear systems under parametric uncertainty under the 
assumption that only the output variables of the control plant 
and reference model are measurable without noises. Among 
the closest papers to the subject we note (Marino et al., 
2007), which considers the stabilization problem of linear 
systems with parametric uncertainty in reference model. The 
assumption of a parametric uncertainty in reference model 
significantly expands the class of tracking systems. Note that 
setting and solving the tracking problem in terms of 
parametric and signal uncertainties still hasn’t been 
fundamentally explored in control theory. 

The tracking problem solution proposed in this paper is based 
on the presentation of the original parametrically uncertain 
system in canonical form with the state space expansion by 
adding the dynamic compensator. This compensator 
generates the control action derivatives (Utkin, V.A., 2001; 
Utkin, A.V., 2007). The sliding mode observers (Krasnova et 
al., 2001) are based on the canonical representation of control 
plant and reference model. Then the problem of parameter 
identification can be solved in real time using the estimates of 
the state vector components (Utkin, V.I., 1992). Within the 

framework of the block approach (Drakunov et al., 1990; 
Krasnova et al., 2011), the decomposition procedure of 
feedback design in tracking problem under an unstable zero 
dynamics is developed with the use of the estimates.  

2. PROBLEM STATEMENT 

Let us consider single-input single-output linear system  
buAxx +=& , xdy T=1 , (1) 

where nRx ∈  is the state vector, Ry ∈1  is the output 
(measured and controlled) variable, Ru ∈  is the control, pair 

),( bA  is controllable, pair ),( Ad T  is observable, 

0][min
,1

)1( ≠=
=

−
nj

jT

j
bAdv  is known relative degree. The 

problem of a feedback design providing asymptotic 
convergence of the output 1y  to the reference signal )(1 tη  is 
posed. Ensure   

)()()(,0)(lim 1111 ttytete
t

η−==
∞→

 (2) 

under the assumption that the reference signal is generated by 
the following dynamic model  

wrWww T== 1, η& ,  (3) 

where RRw l ∈∈ 1,η , pair ),( WrT  is observable.  

Let us give the known solution of tracking problem (2) for 
system (1), (3) with known parameters and state variables. 
Let us introduce the nonsingular transformation of variables 

wRxx 0−= , where nRx ∈ , matrix lnRR ×∈0  satisfies the 

equation TT rRd =0 , and writing system (1) in the form of 

,00 WwRwARbuxAx −++=&  xde T=1 . (4) 
The tracking problem comes down to stabilization of the 
output variable of system (4). Select a control in the form 

wlxku TT
00 +=  (5) 

so that in closed system (4)–(5) 
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wWRARwblxAx T )( 0000 −++=&  (6) 

matrix )( 00
TbkAA +=  to bee Gurvits (with an arbitrarily 

assignable spectrum due to the controllability of the original 
system), elements of vector-line Tl0  are defined next. 

Represent the state vector of system (6) as a sum of 
components wMxx s 0+= , where ss xAx 0=& , matrix 0M  is 
further defined, which implies 

WwMxAx s 00 +=& , (7) 
and equation (6) becomes as 

wWRARwblwMxAx T
s )()( 00000 −+++=& , (8) 

)( 01 wMxde s
T += . (9) 

The selection of matrix 0M  and the row vector Tl0 , 
satisfying a matrix algebraic equations obtained by equating 
the terms of the equations (7) and (8) containing the state 
vector of reference model (3), solves the tracking problem. 
An additional condition is the identity matrix 0M  of the 

kernel output display Td  in equation (2.9), namely 
WMWRARblMA T

000000 )( =−++ , 00 =Md T . (10) 
If matrix equations (10) has a solution, it provides an 
asymptotic solution convergence of tracking problem with 
arbitrary rate of, defined by the matrix of the proper motions 
of the closed system (6) ss xAx 0=& . Note that the above 
results are easily extended to controlled system (1), which is 
the general form of vector inputs and outputs.  

This paper proposed a solution of a tracking problem with 
parametric uncertainty as control plant (1) and reference 
model (3) under the following assumptions: i) system (1) is 
assumed controllable and observable with known relative 
degree and the system (3) relies observed; ii) for 
measurement are available only output variables 1y and 1η  in 
the control plant and in the reference model, respectively. 

In general, the feedback design providing (2) requires the 
preliminary to solve the problem of state observation and 
parameter identification of control plant (1) and reference 
model (3). These tasks are not sufficiently studied in control 
theory. At the same time only for systems in the canonical 
form of "input-output" the problems solution of observation 
and parameters identification is known, using the theory of 
sliding modes. The proposed solution of the tracking problem 
is based on the representation of the original parametric 
uncertain system in the canonical form with expansion of the 
state space due to the compensator, which generates control 
action derivatives (Utkin, V.A., 2001; Utkin, A.V., 2007) 
(Section 3). In Section 4 a decomposition procedure of  
feedback design is developed for tracking in system with the 
unstable zero dynamics and known parameters and state 
variables of systems (1), (3) written in the canonical form 
regarding the output variables. In Section 5 the sliding mode 
observers and parameters identifiers are designed for control 
plant and dynamic compensator. Section 6 presents the 
simulation results confirming the effectiveness of the 
developed algorithms. 

3. TRANSFORMATION TO THE CANONICAL FORM OF 
CONTROLLABILITY AND OBSERVABILITY 

Let us show that any controllable and observable single-input 
single-output linear system can be represented in the 
canonical form of input-output with the expansion of the state 
space by introducing a dynamic compensator 

1ξ=u , uvni vnii =−−== −+ ξξξ && ;1,1,1 , (11) 
where u  is new control, v  is relative degree  of system (1). 

Statement 1. Systems (1), (11) are controllable by new 
control u . 

Indeed, let us use a two-level decomposition to stabilize 
system (1), (11). In the first step the local feedback design in 
system (1) using control xku T== 1ξ  allows a 
predetermined range of the matrix of a closed system 

)( TbkA + . In the second step we solve the stabilization 
problem of error between the chosen and the real values of a 
variable that has a solution due to canonical form of system 
(11). 

After differentiating the output variable of system (1) n  
times using (11) we obtain a canonical representation of the 
control plant (1) in the form 
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where n
n Ryyy ∈= ),...,(col 1  is new coordinate basis 

received by nonsingular transformation of variables 
ξΛ+= Hxy , 0det ≠H , where nnRH ×∈  is observability 

matrix of system (1), 01
0 ≠= − bAdb vT ,  
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Note. In the case of nv =  derivatives with respect to the real 
control of the system (11) are absent, and entering a dynamic 
compensator (11) is not necessary.  

Let us rewrite system (12) in compact form with dynamic 
compensator (11) as 

;,1,1, 01 ubgyayniyy TT
nii ++=−== + ξ&&  (13) 

ubvni nvnii =−−== −+ ξξξ && ;1,1,1 , ),,...,,(col 21 vn−= ξξξξ  (14) 

where ),,...,(col 1 vnggg −=  vnibAdg inT
i −== − ,1, .  

Statement 2. In system (13) row vectors Ta  and  Tg  are not 
zero simultaneously. 

Indeed, otherwise system (13), (14) is uncontrollable, as is 
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the canonical two uncoupled subsystems without proper 
motions with the same control, which contradicts statement 1. 

The next result allows us to use a two-level decomposition 
(see statement 1) for solving the tracking and stabilization 
problem in system (13)–(14). 

Theorem 1. System (13), (14) by non-singular transformation 
of variables of the state vector of the dynamic compensator 
reduces to 

;,1,1, 01 ubgyayniyy TT
nii ++=−== + ξ&  (15) 

111 ;1,1, ycgvniyc vn
T

vniii −−+ +−=−−=+= ξξξξ && , (16) 

where ),...,,(col 21 vn−= ξξξξ . 

Proof. Let us introduce a nonsingular transformation of 
variables of the state vector of the dynamic compensator (14) 

Cy+= ξξ , where ,1,1, −−=−= vniyciii ξξ  

,nvnvnvn yyc −−= −−− ξξ ),...,(col 11 −= nyyy  and by (15) 

),...,( 2 nyycoly =& , vni сс −,  are row vectors of the matrix 
nvnRС ×−∈ )(  are chosen on. This transformation transforms 

only the coefficients in the last equation (13), but does not 
transform its canonical structure that is reflected in (15). 

Write (16) in the new variables as 

,
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where Cgac TT −−= . The next choice  

11,12,1
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leads converted subsystem of dynamic compensator (14) to 
(16), namely, 

.,1,1, 111 ycgvniyc vn
T

vniii −−+ +−=−−=+= ξξξξ &&  
Controllability of system (16) with respect to virtual control 

1y  should controllability of the original system (13), (14). 
Theorem 1 is proved. 

Note that the stabilization problem of system (15), (16)  has a 
solution, due to its handling and, unlike the tracking problem, 
does not cause any difficulties. Moreover, using a similar 
procedure to statement 1, the stabilization problem of system 
(15), (16) can be decomposed into two subproblems of 
smaller dimension as follows. Let us write system (16) as  

1cyG += ξξ&  (17) 
and present the procedure of stabilizing feedback design for 
system (15), (17). Let us consider a variable 1y  in system 
(17) as a virtual control, introduce variables transformation 

ξTfyy += 11  and rewrite the system (15), (17) in the form 

;,1,1, 01 ubgyayniyy TT
nii ++=−== + ξ&&   

1)( yccfG T ++= ξξ& .  

The choice of the elements of the row vector Tf  is provided 

the stability of the proper motions in the dynamic 
compensator, and the subsequent selection of a stabilizing 
control in the first subsystem solves the problem of 
stabilizing system (15), (17). Thus, it is shown that the 
system under parametric uncertainty can be reduced to the 
form (15)-(16) suitable for further synthesis of tracking 
system. In the next section a decomposition method for 
tracking problem (2) for the reference signal generated by the 
reference model (3) in relation to (15), (17) is designed, 
assuming that the parameters and the state vectors of the 
control plant (15), (17) and reference model (3) are known 
and zero dynamics is unstable. 

4. THE SOLUTION FOR THE TRACKING PROBLEM 
UNDER UNSTABLE ZERO DYNAMICS  

Let us write the reference model (3) in the variables 1η  and 
its derivatives in the canonical form under the assumption of 
observability of pair ),( WrT   

ηηηη T
lii hli =−== + && ,1,1,1 , (18) 

where 1
1 ,),...,(col −=∈= HWrhR lTTl

lηηη , 0det ≠H , H  
is observability matrix of system (3), or in a convenient form 
for further discussion as  

)0,...,0,1(col,, 1 === TT ttW ηηηη& . (19) 
Let us write system (15), (17) in tracking mismatch 

111 η−= ye  and its derivatives ),...,( 1 neecole =  follows 

;,1,1, 01 ubqgeaeniee TTT
nii +++=−== + ηξ&&  (20) 

)( 11 ηξξ ++= ecG& . (21) 
The system (21) is interpreted as a subsystem of the internal 
dynamics relative to the output variable 1e . If it is stable, then 
the tracking problem is solved directly by choice of a 
stabilizing control in system (20). Next the decompositional 
procedure developed by the authors for tracking problem 
under assumption that the internal dynamics of the system 
(21) is unstable is proposed. This procedure is using the 
methodology of block approach (Drakunov et al., 1990), 
(Krasnova et al., 2011). In the first step, let us introduce a 
new variable  

ηξ TT nfee −−= 011 , (22) 
considering in system (21) 1e  as a virtual control. System 
(20), (21) in the new variables (22) and its derivatives can be 
represented as 

;,1,1, 01 ubqgeaeniee T
e

T
e

T
enii +++=−== + ηξ&&  (23) 

])([ 01 ηξξξ TTT tnfecG ++++=& . (24) 
In fact of controllability of original system by handling the 
initial choice of the elements of the row vector Tf0  we can 
ensure the stability of the proper motions of the dynamic 
compensator (24). The row vector Tn  is determined in the 
second step. 

On the second step the stabilization problem will solve for 
system (23) and hence of the output variable (22). In this case 
the tracking problem (2) also will be resolved under the next 
condition  
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00 =+ ηξ TT nf . (25) 
To solve the problem of ensuring equality (25) we introduce 
a structure similar to that in section 2 in relation to the system 
(24). Let us represent the state of system (24) as the sum of 
two components 

ηξξ Ps += ,  (26) 
where the first component satisfies 

ss Gξξ =& , )( 0
TcfGG += . The matrix G  is Hurwitz, and 

matrix P ( lvnP ×−= )(dim ) will be defined. 

From relation 0)(0 =++ ηηξ T
s

T nPf  obtained by 
substituting (26) into (25) with respect  0→sξ  it can be 

obtained the first matrix equation 00 =+ TT nPf , then 

Pfn TT
0−= . (27) 

On the other hand, substituting (26) into (24) we obtain  
.)( 1ectncPGG TT

s ++++= ηηξξ&   (28) 
Let us write the differential equation for the variable (26) 

ηξξ WPG s +=& . (29) 
By equating the terms with the components of vector η  in 
(28) and (29) we obtain the second matrix equation 

WPcnPG T =+ . Taking into account )( 0
TcfGG +=  after 

the substitution of (27) we have 

WPctGP T =+ . (30) 
Thus, the combined solution of matrix equations (27), (30) is 
reduced to the successive solution of system (30) and 
substituting it into (27). Given the fact that the choice of the 
elements of the row vector p  provides a stability of the 
proper motions of dynamic compensator (24), then we can 
solve the stabilization problem of system (23) for this control, 
for example, in the class of continuous functions 

ekwgeaub TTTT +−−−= ηξ0 , (31) 

where the choice of the elements of the row vector Tk  
provides the stabilization of closed system (23) 

ekeniee T
nii =−== +

&& ,1,1,1 . 
Note that when using the discontinuous control type 

)(sign0 sMub −= ,  (32) 

where ),...,(col, 1111 −−− =+= nnn
T

n eeeepes , in sufficiently 
large amplitude 0>M , choice of vector elements in system 
(23) provided steady sliding motion on sliding manifold 

0=s  which is invariant to the unknown parameters and 
reference signals and their derivatives. As seen from the 
results of tracking problem design for unstable zero dynamics 
it is necessary to have information about the components of 
the state vector and parameters in control plant (20), (21) and 
reference model (19).  

In the following section, the problem of observation and 
parameters identification is solved in control plant (13) and 
reference model (18) using the sliding modes theory. 

5. THE PROBLEMS OF STATE OBSERVATION AND 
PARAMETERS IDENTIFICATION 

Let us return to tracking problem (2) for system (1), (3) under 
parametric uncertainties assuming that output )(1 ty  of 
system (1) and output )(1 tη  of system (3) are measured only. 

As shown in section 3 the controllable and observable system 
(1) can be represented in the form (13), (14). While in the 
presence of parametric uncertainties the transformation itself 
is unknown. Regarding to output )(1 ty  system (13) is 
observed, and the state vector of dynamic compensator (14) 
is known. Therefore, if the observation problem of the state 
vector of system (13) will be solved, we can obtain the 
estimates of parameters. 

Further, using the estimates of parameters the system can be 
transformed to (15), (16) and then to the system of 
mismatches (20)-(21), the results of Step 4 can be used for 
tracking problem with parameter certainty.  

Thus, the successful synthesis of tracking problem under 
parametric uncertainties requires the solution of following 
subproblems : 1) to obtain estimates of the components of the 
state vector of the system (13) and reference model (18); 2) 
for parameter estimation of (13) and reference model (18) to 
solve equations (30) and (27) for correlation (25); 3) to 
transform system (13) and (14) to (15) and (16) using 
parameter estimates; 4) to rewrite system (15) under new 
variables (22) and its derivatives in the form (23); 5) to solve 
the problem of stabilizing of system (4) by the choice 
continuous control (31) or discontinuous (32) using the 
estimates of the state vectors and parameters. 

1. Let us consider the observation problem in system (13), 
suggesting that variables 1y  and state vector ξ  of dynamic 
compensator are known. This problem considers with using 
sliding mode observer, which structure is similar to the 
structure of system (13): 

,
~~~;1,1, 01 n

TT
niii vubgyaynivyy +++=−=+= + ξ&&  (33) 

where n
n Ryyy ∈= ),...,(col 1  is the state vector of observer; 

iv  ( ni ,1= ) are corrective action of observer, bda ~
,

~
,~  are 

evaluation of parameters obtained using parameters 
identification subsystem.  

Taking into account (13), (33) let us write the system of 
equations under mismatches yy −=ε  

,ˆˆˆ;1,1, 01 n
TTT

niii vubgyaaniv −+++=−=−= + ξεεεε && (34) 

where 000
~ˆ,~ˆ,~ˆ bbbgggaaa −=−=−=  are discrepancy 

between the true parameters and their estimates which will be 
obtain further. Let us describe briefly cascade design of 
discontinuous corrective actions of observer (33) (Krasnova 
et al., 2001).  

In the first equation (34) selecting the discontinuous 
correcting action 111 signεMv = , 0const12 >=< Mε  will 
give rise to appearance of the sliding mode on the manifold 

1111 }0{ yyS =⇒== ε  within a finite time 01 >t . From the 
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static equation we have the equivalent control 
21eq1 0 εε =⇒= v& , whose value we will obtain from the 

output of the filter 1111 v+−= ττµ & , ).()()(lim 21eq101

ttvt ετ
µ

==
→

 

In the second equation (34) selecting the discontinuous 
correcting action 122 signτMv = , 0const23 >=< Mε  will 
give rise to appearance of the sliding mode on the manifold 

22212 }0{ yySS =⇒== εI  within theoretically finite time 

12 tt > . From the static equation we have the equivalent 
control 32eq2 0 εε =⇒= v& , whose value we will obtain from 
the output of the filter ,2222 v+−= ττµ &  ==

→
)()(lim 2eq202

tvtτ
µ

 

).(3 tε=   

Continuing this procedure at the last step in the last equation 
(34) selecting the discontinuous correcting action 

1sign −= nnn Mv τ , 0constˆˆˆ 0 >=<+++ n
TTT Mubgyaa ξε  

will give rise to appearance of the sliding mode on the 
manifold nnnnn yySS =⇒== − }0{ 1 εI  within theoretically 
finite time 1−> nn tt . From the static equation we have the 

equivalent control ubgyav TT
n 0neq

ˆˆˆ0 ++=⇒= ξε& , whose 
value we will obtain from the output of the filter 

nnnn v+−= ττµ & , ).()(lim neq0
tvtn

n

=
→

τ
µ

 Let us denote  

zmv T
n ˆeq = , )ˆ,ˆ,ˆ(ˆ 0bgam TTT = , ),,(col uyz ξ= . (35) 

2. Let us construct unknown parameters identifier using (35), 
the state variables and assuming that 0),,( 0 == bgam TTT &&&& , 
then 

zzmm T )ˆ(~ λ=& , (36) 

where )
~

,~,~(~
0bgam TTT =  is the state vector of the identifier, 

0const >=λ . Then equation mmm ~ˆ −=  becomes  
zzmm T )ˆ(ˆ λ−=& . (37) 

To show the convergence of (37) we consider the Lyapunov 
function mmV T ˆˆ2

1= , whose derivative by (37) has the form 

2)ˆ()ˆ(ˆ zmzzmmV TTT λλ −=−=& . (38) 
In certain assumptions of the linear independence of the 
components of vector z  and on the condition that the integral 

∞=∫
∞

0

2)ˆ( dtzmT  diverges, we have ⇒==
∞→∞→

0ˆlim,0lim
tt

mV  

,0ˆlim =⇒
∞→

a
t

 0ˆlim =
∞→

g
t

, ,0ˆlim 0 =
∞→t
b  which proves the 

asymptotic convergence of the state vector identity (36) m~  to 
the real values  of  the parameter of vector m . Similarly one 
can solve the problem of observation and parameters 
identification in reference model (18). 

In Steps 3-5 synthesis procedure for an extended model of 
control plant (23), (24) and reference model (18) used the 
received estimates. Solution of the tracking problem from 
section 4 is to solve the matrix equation (30), (27) and control 
design (31) or (32) using these estimates. 

6. THE SIMULATION RESULTS 

Let us consider the system under parametric uncertainty  
1

1
2

1 ,,, RyRxxdybuAxx T ∈∈=+=& , (39) 
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where pair ),( bA  is controllable, pair ),( Ad T  is observable, 
1=ν  is relative degree. The problem of feedback design 

providing asymptotic convergence of the output 1y  to the 

reference signal e
T
et η  is posed. Reference signal is generated 

by the exogenous system of second-order 
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Let the test system with unstable zero dynamics has the form 
112211 ,2, xyuxuxxx ==+−−= && ,  (41) 

.5, 1221 ηηηη −== &&  (42) 
1. Let us present system (41)-(42) to the form (11), (12)  

uuyyyy =+−−== ξξ &&& ,2, 2221 , ξ+−−= 212 xxy . (43) 

2. With 12 3yy −−= ξξ  system (43) takes the form  

121221 62,236, yuyyyyy +=+−−−== ξξξ &&& , (44) 
ie 1,2,3,6 021 =−=−=−= bgaa . 
3. Let us write system for 111 η−= ye , 222 η−= ye  with 
respect to (44)  

).(62,52
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221122221
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eeeeye
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 (45) 

4. Let us write system for  
ηξ Tnfee −−= 011  (46) 

and its derivate with respect to (45)  
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=+−−=

&
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 (47) 

To stabilize the tracking error (46) is required to provide 
00 =+ ηξ Tnf  by choosing a row vector Tn  as the solution 

of the matrix equation 
)( TT tncPGWP ++= , 0cfGG += , PfnT

0−= . 

With 61 =−= ac , 2=G , )1,0(=Tt  и 10 −=f  we obtain 
obtain a numerical solution 666.0,333,1 21 −=−= ee nn . 
5. Let us introduce discontinuous control 

),(sign sMu −=  0const >=M , (48) 

where 12 epes s+= , 0const >=sp , −−+= 1111 ηξ enee  

22 ηen− , 21112212 ηηξ ee nhneee −−+== && .  
When we use a sufficiently large amplitude 0const >=M  
the sliding mode occurs on manifold 0=s  that guarantees 
asymptotic convergence to zero of variables 21,ee  and  
sustainability of variable ξ  in system  (47), namely  
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ξξ gya −−= 11
& , 2=g . Figure 1 shows the plot of the 

tracking error for parametrically defined test system (43), 
(48) under 1,0,100,1)0()0()0( 021 −====== fpMyy sξ . 

 

Fig. 1. The plot of  tracking  error 2ηε  for test system (43) 

In Figures 2-6 we can see the simulation results of the 
tracking system (39), (40) with parametric uncertainty under 

,100=M ,1)0()0()0( 21 === ξyy  ,30,1,0 10 =−== Mfps  

.5,10,10 5
12 === −

eM λτ  To speed the identifying process 
we used a high frequency sinusoidal signal 

ttt 30sin5.015sin)( +=δ . The control is modified as 
),(sign sMub ee ′−=  where  

,0,'1
'

1 >+=′ ss kekes &  )(22111
'

1 tnnfee eee δηηξ +−−−= ,  

)()()( 2221112112
'
2 thnnhngyafye eeee δηηξ &++−−++= .  

 

Fig. 2. The plot of  identification of  parameter 1a  

 

Fig. 3. The plot of  identification of  parameter 2a  

 

Fig. 4. The plot of identification of  parameter g   

 

Fig. 5. The plot of  identification of  parameter eb  

 

Fig. 6. The plot of tracking error 1e  
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