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Abstract: The paper deals with tracking problem for single-input single-output linear systems with
unstable zero dynamics under parametric and signal uncertainty of control plant and reference model
within the framework of the sliding mode techniques for feedback design, state observation and parameters

identification in real time.

1. INTRODUCTION

The tracking problem of the given trajectories by the outputs
of the control plant is the central problem in the theory of
automatic control. The necessary and sufficient conditions for
the solvability of tracking problem for linear systems were
formulated within the framework of the geometric approach
(Wonham, 1979) assuming that the reference signals are
generated by known linear dynamic system with unknown
initial conditions. For the technical feasibility of the tracking
system it is necessary to ensure the stability of the zero
dynamics, which requires knowledge of the parameters of
plant models and reference signals model (Shtessel
Y.B.,Tournes C. 1996).

The present paper offers a solution of the insufficiently
explored tracking problem for single-input single-output
linear systems under parametric uncertainty under the
assumption that only the output variables of the control plant
and reference model are measurable without noises. Among
the closest papers to the subject we note (Marino et al.,
2007), which considers the stabilization problem of linear
systems with parametric uncertainty in reference model. The
assumption of a parametric uncertainty in reference model
significantly expands the class of tracking systems. Note that
setting and solving the tracking problem in terms of
parametric and signal uncertainties still hasn’t been
fundamentally explored in control theory.

The tracking problem solution proposed in this paper is based
on the presentation of the original parametrically uncertain
system in canonical form with the state space expansion by
adding the dynamic compensator. This compensator
generates the control action derivatives (Utkin, V.A., 2001,
Utkin, A.V., 2007). The sliding mode observers (Krasnova et
al., 2001) are based on the canonical representation of control
plant and reference model. Then the problem of parameter
identification can be solved in real time using the estimates of
the state vector components (Utkin, V.I., 1992). Within the
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framework of the block approach (Drakunov et al., 1990;
Krasnova et al., 2011), the decomposition procedure of
feedback design in tracking problem under an unstable zero
dynamics is developed with the use of the estimates.

2. PROBLEM STATEMENT

Let us consider single-input single-output linear system
x=Ax+bu, y,=d"x, (1)

where x € R" is the state vector, y, € R is the output
(measured and controlled) variable, u € R is the control, pair
(4,b) is (d",A4) is observable,

controllable, pair

v = m_in[dTA("'”b]ﬂ— #0 is known relative degree. The
F =1,n

problem of a feedback design providing asymptotic
convergence of the output y, to the reference signal n,(¢) is

posed. Ensure

}Ege](t):(), e ) =y,)-n@) (2)
under the assumption that the reference signal is generated by
the following dynamic model

w=Ww,n, =r"w, 3)
where we R',n, € R, pair(r",W) is observable.

Let us give the known solution of tracking problem (2) for
system (1), (3) with known parameters and state variables.
Let us introduce the nonsingular transformation of variables

X¥=x-R,w, where X € R", matrix R, € R™' satisfies the

equation d" R, =r" , and writing system (1) in the form of

X = AX +bu+ AR,w—RWw, ¢, =d"x. (4)
The tracking problem comes down to stabilization of the
output variable of system (4). Select a control in the form

u=kyx+Ilw (5)
so that in closed system (4)—(5)
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X = AyX +bll w+ (AR, — RV )w (6)
matrix A, = (4+bk!) to bee Gurvits (with an arbitrarily
assignable spectrum due to the controllability of the original

system), elements of vector-line /, are defined next.

Represent the state vector of system (6) as a sum of
components X = X, + M ,w, where X, = 4,X, , matrix M, is
further defined, which implies

X =A%, +MWw, (7
and equation (6) becomes as

X = A, (X, + Myw)+ bl w+ (AR, — RV )w, @®)
e, =d" (x, +M,w). )

The selection of matrix M, and the row vector [,
satisfying a matrix algebraic equations obtained by equating
the terms of the equations (7) and (8) containing the state
vector of reference model (3), solves the tracking problem.

An additional condition is the identity matrix M, of the
kernel output display d” in equation (2.9), namely

A My +bl] +(ARy —RW) =M W , d"M,=0. (10)
If matrix equations (10) has a solution, it provides an

asymptotic solution convergence of tracking problem with
arbitrary rate of, defined by the matrix of the proper motions

Note that the above

results are easily extended to controlled system (1), which is
the general form of vector inputs and outputs.

of the closed system (6) X, = 4,X, .

This paper proposed a solution of a tracking problem with
parametric uncertainty as control plant (1) and reference
model (3) under the following assumptions: i) system (1) is
assumed controllable and observable with known relative
degree and the system (3) relies observed; ii) for
measurement are available only output variables y,and 7, in

the control plant and in the reference model, respectively.

In general, the feedback design providing (2) requires the
preliminary to solve the problem of state observation and
parameter identification of control plant (1) and reference
model (3). These tasks are not sufficiently studied in control
theory. At the same time only for systems in the canonical
form of "input-output" the problems solution of observation
and parameters identification is known, using the theory of
sliding modes. The proposed solution of the tracking problem
is based on the representation of the original parametric
uncertain system in the canonical form with expansion of the
state space due to the compensator, which generates control
action derivatives (Utkin, V.A., 2001; Utkin, A.V., 2007)
(Section 3). In Section 4 a decomposition procedure of
feedback design is developed for tracking in system with the
unstable zero dynamics and known parameters and state
variables of systems (1), (3) written in the canonical form
regarding the output variables. In Section 5 the sliding mode
observers and parameters identifiers are designed for control
plant and dynamic compensator. Section 6 presents the
simulation results confirming the effectiveness of the
developed algorithms.

3. TRANSFORMATION TO THE CANONICAL FORM OF
CONTROLLABILITY AND OBSERVABILITY

Let us show that any controllable and observable single-input
single-output linear system can be represented in the
canonical form of input-output with the expansion of the state
space by introducing a dynamic compensator

u=&,& =, i=Ln-v-1 & _ =i, (11)
where u is new control, v is relative degree of system (1).

Statement 1. Systems (1), (11) are controllable by new
control u .

Indeed, let us use a two-level decomposition to stabilize
system (1), (11). In the first step the local feedback design in
(D u=¢& =k'x
predetermined range of the matrix of a closed system

system using  control allows a

(A+bk™). In the second step we solve the stabilization

problem of error between the chosen and the real values of a
variable that has a solution due to canonical form of system

(11).

After differentiating the output variable of system (1) n
times using (11) we obtain a canonical representation of the
control plant (1) in the form

=d"Ax=y,,.,y, =d" A'x+d" A7'bE, =y, ..,
Vg =d A" x+dT(A'DE + A7DE,) = Py
y,=d A"x+d" (A"bE + ...+ A'DE, )+ by,

(12)

where is new coordinate basis

y = COl(yl J"'ayn) € R”
received by nonsingular transformation of variables

y=Hx+ A&, det H#0, where H e R™ is observability
matrix of system (1), b, =d" 4"'b =0,

dT
TA OVX n-v
H= d ,A _ (n-v) ,AE Rnx(n—v)’
A](n—v)x(n—v)
dTAn—l
d"4"7'b 0 0 0
d"4'b  d"47'b 0 0

A=

dTAn72b dTAn73b dTAn74b dTAvflb
Note. In the case of v =n derivatives with respect to the real

control of the system (11) are absent, and entering a dynamic
compensator (11) is not necessary.

Let us rewrite system (12) in compact form with dynamic
compensator (11) as

V. =vasi=ln-13, =a"y+g & +byu; (13)
5 §t+l7l _1 n—-v-— 1 én v b u 5 - CO1(§15§27 5/1—\/)’ (14)
where g =col(g,,....g, ), g =d A"'b, i=Ln-v.

Statement 2. In system (13) row vectors a’ and g’ are not

I,n

zero simultaneously.

Indeed, otherwise system (13), (14) is uncontrollable, as is
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the canonical two uncoupled subsystems without proper
motions with the same control, which contradicts statement 1.

The next result allows us to use a two-level decomposition
(see statement 1) for solving the tracking and stabilization
problem in system (13)—(14).

Theorem 1. System (13), (14) by non-singular transformation
of variables of the state vector of the dynamic compensator
reduces to

-1,y =ETy+gT_+bl7; 15
n 0

(16)

Vi = Vs i=ln
5,‘ ZEHI +Ciy19 i=19 n_v_l; Erﬁv =_gTé_+cn7vyl’
where & = col(&,,&,,...E, ).

Proof. Let us introduce a nonsingular transformation of
variables of the state vector of the dynamic compensator (14)
E=5+0y, &=¢
€ =6 =0T =y T =00l )
J_}: col(y,,-.,¥,), € ,C,, are row vectors of the matrix

CeR"™" are chosen on. This transformation transforms
only the coefficients in the last equation (13), but does not
transform its canonical structure that is reflected in (15).

—eyi=ln—v—1,

and by (15)

where

Write (16) in the new variables as

51‘ =§i+1_6i.)_;=é_i+l+5i+1y_5i.)_.}’ i=ln-v-1,

é_nfv = bOZ7 _En—v.)_-} _aTy _g (i_ + Cy) _bOZ7 =
= _gré_ + Ey - En—vj@
where ¢ =—-a” —g"C . The next choice

Cnfv :(CZ ,...,C,,)3C y_cnfvy :Cnfvyla

¢ =(CraareCinny) = €V =€ y= S84
leads converted subsystem of dynamic compensator (14) to
(16) namely,

g §,+1+Cy1>l_ln V- 1§nv__gT§_+cn—vyl‘
Controllability of system (16) with respect to virtual control
v, should controllability of the original system (13), (14).
Theorem 1 is proved.

Note that the stabilization problem of system (15), (16) has a
solution, due to its handling and, unlike the tracking problem,
does not cause any difficulties. Moreover, using a similar
procedure to statement 1, the stabilization problem of system
(15), (16) can be decomposed into two subproblems of
smaller dimension as follows. Let us write system (16) as

£=Gi+op, (17
and present the procedure of stabilizing feedback design for
system (15), (17). Let us consider a variable y, in system

(17) as a virtual control, introduce variables transformation
yi=y+f T& and rewrite the system (15), (17) in the form

;i =;i+1: i=lLn-1, y;n ZET;_Fng_'—bOE;

E=(G+oME+a,.

The choice of the elements of the row vector f’ is provided

the stability of the proper motions in the dynamic
compensator, and the subsequent selection of a stabilizing
control in the first subsystem solves the problem of
stabilizing system (15), (17). Thus, it is shown that the
system under parametric uncertainty can be reduced to the
form (15)-(16) suitable for further synthesis of tracking
system. In the next section a decomposition method for
tracking problem (2) for the reference signal generated by the
reference model (3) in relation to (15), (17) is designed,
assuming that the parameters and the state vectors of the
control plant (15), (17) and reference model (3) are known
and zero dynamics is unstable.

4. THE SOLUTION FOR THE TRACKING PROBLEM
UNDER UNSTABLE ZERO DYNAMICS
Let us write the reference model (3) in the variables 1, and
its derivatives in the canonical form under the assumption of
observability of pair (+", W)

(18)
PTW'H™, detH #0, H
is observability matrix of system (3), or in a convenient form
for further discussion as

n= Wn, n, =t'n,t" =col(l,0,...,0) . (19)

Let us write system (15), (17) in tracking mismatch

T] Tl,wl—” 1771—h71>
where 1 = col(n,,...n,) e R', h' =

e, =y, —n, and its derivatives e = col(e,,...,e,) follows
é=e,,i=ln-1,¢é =ae+g &+q'n+bi; (20)
E=GE +cle,+m). e2y)

The system (21) is interpreted as a subsystem of the internal
dynamics relative to the output variable e, . If it is stable, then

the tracking problem is solved directly by choice of a
stabilizing control in system (20). Next the decompositional
procedure developed by the authors for tracking problem
under assumption that the internal dynamics of the system
(21) is unstable is proposed. This procedure is using the
methodology of block approach (Drakunov et al., 1990),
(Krasnova et al., 2011). In the first step, let us introduce a
new variable

fo&—n'n, (22)
considering in system (21) e, as a virtual control. System

(20), (21) in the new variables (22) and its derivatives can be
represented as

_el

—le =a'e+g & +q/n+b; (23)

E=GE+cle + fE+(n" + ). (24)
In fact of controllability of original system by handling the

e =e,,i=1n

initial choice of the elements of the row vector f; we can
ensure the stability of the proper motions of the dynamic

compensator (24). The row vector n’ is determined in the

second step.

On the second step the stabilization problem will solve for
system (23) and hence of the output variable (22). In this case
the tracking problem (2) also will be resolved under the next
condition
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flE+nm=0. (25)
To solve the problem of ensuring equality (25) we introduce

a structure similar to that in section 2 in relation to the system

(24). Let us represent the state of system (24) as the sum of
two components

=& +Pn,

where the first
gs =GE,,G =(G+¢f). The matrix G is Hurwitz, and
matrix P (dim P = (n—v)x/) will be defined.
J3 & +P)+n"n=0
substituting (26) into (25) with respect a — 0 it can be

(26)

component satisfies

From relation obtained by

obtained the first matrix equation f; P+n’ =0, then

n'=—fP.

On the other hand, substituting (26) into (24) we obtain
E=GE +GPn+c(n’ +1" ) +ce. (28)
Let us write the differential equation for the variable (26)
E=GE +Piln. (29)
By equating the terms with the components of vector 717 in

@7

(28) and (29) we obtain the second matrix equation
GP+cn' =PW . Taking into account G = (G +cf;,’) after
the substitution of (27) we have

GP+ct" = PW . (30)
Thus, the combined solution of matrix equations (27), (30) is
reduced to the successive solution of system (30) and
substituting it into (27). Given the fact that the choice of the
elements of the row vector p provides a stability of the

proper motions of dynamic compensator (24), then we can
solve the stabilization problem of system (23) for this control,
for example, in the class of continuous functions
bit=—a'e-g'& —w'ny+k'e, (31)
where the choice of the elements of the row vector k'
provides the stabilization of closed system (23)

;_ . = _ T—
e =e,,i=ln-le =k'e.

i+l

Note that when using the discontinuous control type

bou = —Msign(s), 32)

where s=e¢,+p'e, , e, =col(e,..e,,), in sufficiently
large amplitude M >0, choice of vector elements in system
(23) provided steady sliding motion on sliding manifold
s =0 which is invariant to the unknown parameters and
reference signals and their derivatives. As seen from the
results of tracking problem design for unstable zero dynamics
it is necessary to have information about the components of
the state vector and parameters in control plant (20), (21) and
reference model (19).

In the following section, the problem of observation and
parameters identification is solved in control plant (13) and
reference model (18) using the sliding modes theory.

5. THE PROBLEMS OF STATE OBSERVATION AND
PARAMETERS IDENTIFICATION

Let us return to tracking problem (2) for system (1), (3) under
parametric uncertainties assuming that output y,(#) of

system (1) and output n,(¢) of system (3) are measured only.

As shown in section 3 the controllable and observable system
(1) can be represented in the form (13), (14). While in the
presence of parametric uncertainties the transformation itself
is unknown. Regarding to output y,(¢#) system (13) is

observed, and the state vector of dynamic compensator (14)
is known. Therefore, if the observation problem of the state
vector of system (13) will be solved, we can obtain the
estimates of parameters.

Further, using the estimates of parameters the system can be
transformed to (15), (16) and then to the system of
mismatches (20)-(21), the results of Step 4 can be used for
tracking problem with parameter certainty.

Thus, the successful synthesis of tracking problem under
parametric uncertainties requires the solution of following
subproblems : 1) to obtain estimates of the components of the
state vector of the system (13) and reference model (18); 2)
for parameter estimation of (13) and reference model (18) to
solve equations (30) and (27) for correlation (25); 3) to
transform system (13) and (14) to (15) and (16) using
parameter estimates; 4) to rewrite system (15) under new
variables (22) and its derivatives in the form (23); 5) to solve
the problem of stabilizing of system (4) by the choice
continuous control (31) or discontinuous (32) using the
estimates of the state vectors and parameters.

1. Let us consider the observation problem in system (13),
suggesting that variables y, and state vector £ of dynamic
compensator are known. This problem considers with using
sliding mode observer, which structure is similar to the
structure of system (13):

V=Y v, i=ln—L 3y =a 5+ g E+byi +v (33)

n2
where y = col(¥,,...,y,) € R" is the state vector of observer;

v, (i=1,n) are corrective action of observer, a, d,b are

evaluation of parameters
identification subsystem.

obtained using parameters

Taking into account (13), (33) let us write the system of
equations under mismatches € = y—y

. . L T AT — AT 5 —_
& =€,—Vpi=ln-lie, =ae+ay+g E+bu—v,, (34)

where d=a-d,$=g-g, b,=b,—b, are discrepancy
between the true parameters and their estimates which will be
obtain further. Let us describe briefly cascade design of

discontinuous corrective actions of observer (33) (Krasnova
etal., 2001).

In the first equation (34) selecting the discontinuous
correcting action v, = M signg,, |82| <M, =const>0 will
give rise to appearance of the sliding mode on the manifold
S, =1{g, =0} = y, =y, within a finite time # > 0. From the
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static equation we have the equivalent control
€& =0=>v, =¢,, whose value we will obtain from the
output of the filter w7, =—-1, +v,, lljrj)q () = V154 (1) = £, ().
In the second equation (34) selecting the discontinuous
correcting action v, =M,signt,, |e3| <M, =const >0 will
give rise to appearance of the sliding mode on the manifold
S, ={S,Ne, =0} = y, =y, within theoretically finite time
t, >t . From the static equation we have the equivalent
control &, =0= v, =&, , whose value we will obtain from

the output of the filter u,7, =—1, +v,, 1imor2 () = vy (1) =
Hy

=&,(1).

Continuing this procedure at the last step in the last equation
(34) selecting the discontinuous correcting action

v, =M signt a'e+a'y+g"E+bj|< M, =const >0

n—1>
will give rise to appearance of the sliding mode on the
manifold S, ={S, ,Ne, =0} = y, =y, within theoretically

finite time ¢, >¢, ;. From the static equation we have the

equivalent control &,=0=>v, =a'y+g"&+byi, whose

value we will obtain from the output of the filter
w,T,=-T,+v,, 1in%)rn (#) = Vyeq (7). Let us denote

M,
vncq :rhrza n,:lT :(éT:éT:bO)’ 22901(%&17)- (35)

2. Let us construct unknown parameters identifier using (35),
the state variables and assuming that m” = (a”,g",b,) =0,
then

= A" 2)z, (36)
where " =(a”,g",b,) is the state vector of the identifier,

A =const >0 . Then equation m =m —m becomes

(37)
To show the convergence of (37) we consider the Lyapunov

function V =

i =-A(h"2)z .

Lm"m , whose derivative by (37) has the form

V==Am" (m"2)z =-A(m"z)*. (38)
In certain assumptions of the linear independence of the
components of vector z and on the condition that the integral

[(m"z)*dt =0 diverges, we have lLimV =0, limm=0=

N
0 —0 t—0

limb, =0,

t—w

limg =0,

>0

= lima =0, which proves the

t—o0
asymptotic convergence of the state vector identity (36) m to
the real values of the parameter of vector m . Similarly one
can solve the problem of observation and parameters
identification in reference model (18).

In Steps 3-5 synthesis procedure for an extended model of
control plant (23), (24) and reference model (18) used the
received estimates. Solution of the tracking problem from
section 4 is to solve the matrix equation (30), (27) and control
design (31) or (32) using these estimates.

6. THE SIMULATION RESULTS

Let us consider the system under parametric uncertainty

)'c:Ax+bu,y]:de,xeRz,y]eR], (39)

b
A:(a” an}b:( l}drz(d] dz);
ay A4y b,

where pair (4, b) is controllable, pair (d”, 4) is observable,
v =1 is relative degree. The problem of feedback design
providing asymptotic convergence of the output y, to the
reference signal ¢/n, is posed. Reference signal is generated
by the exogenous system of second-order

0 1
Mo =W, na =110, 1, =(1,0),W, = - (40)
hel heZ

Let the test system with unstable zero dynamics has the form

X, ==X —Xx,+u, X, =2u, y, =x, 41)
M, =Ny,1, = -5, (42)
1. Let us present system (41)-(42) to the form (11), (12)
J>1:y2>y2:_y2_2§+17>§-:z7> V==X —x,+&. (43)
2. With & =& — v, =3y, system (43) takes the form
=D )'/2=—6y1—3y2—2§_+17, 5225‘*'6)’1» (44)
ie a, =-6,a,=-3,g=-2,b, =1.
3. Let us write system for ¢, =y, -1n,, e, =y, —n, with
respect to (44)
e =y, 1M, =€, =—6(e +1,) —3(e, +n,) -

_ = (45)
—2& +5n, +u,& =2& +6(e, +1,).
4. Let us write system for

e =e—f&—n'n (46)
and its derlvate with respect to (45)

e =e - foi -(n' +t()T)WoTI =e,,

e, =6, + fo& +(n" +1,)m]=3(&, + £, + @
+(n" +10)Won]- 25 ~1 077+u

E=2E 162+ f,& +(n" +1])m].

To stabilize the tracking error (46) is required to provide
foé_ +n'n =0 by choosing a row vector n’ as the solution
of the matrix equation

PW =GP+c(n” +t"), G=G+cf,, n" =—f,P

With ¢=-a,=6, G=2, t' =(0,]) u f,=-1 we obtain
obtain a numerical solution n,, =-1,333, n,, =—-0.666.

5. Let us introduce discontinuous control

u = —Msign(s), M =const>0, (48)
where s=¢e,+pe, p,=const>0, e =e¢ +&—n.n —

My My, € =€ =e,+& —m hn —nn,.

When we use a sufficiently large amplitude M = const >0
the sliding mode occurs on manifold s =0 that guarantees
asymptotic convergence to zero of variables e ,e, and

sustainability of variable & in system (47), namely
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g:—Ely1 —g&, g=2. Figure 1 shows the plot of the
tracking error for parametrically defined test system (43),
(48) under y,(0)=»,(0)=£&(0)=1, M =100, p, =0, f, =—1.

o.

t,sec

Fig. 1. The plot of tracking error ¢,, for test system (43)

In Figures 2-6 we can see the simulation results of the
tracking system (39), (40) with parametric uncertainty under
M =100, y,(0) = y,(0)=E(0) =1, p, =0, f, =-1LM, =30,
M, =10,7, =107,1, =5. To speed the identifying process
we used a high

6(t) =sin15¢ +0.5sin30¢ .

b,u, = —Msign(s"), where

frequency  sinusoidal  signal
The control is modified as

s'=e +ke, k>0, g =e—f.&—nmn —n, +50),

e, =y, + f.(ay +§§_)_n2eh1n1 = (my, +ny.h,)m, +5(t)-

a

_4 e W

-6 e} £

-85 4 6 8 10 12 14 16 18

t,sec

Fig. 2. The plot of identification of parameter q,
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Fig. 3. The plot of identification of parameter a,

Fig. 4. The plot of identification of parameter g
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Fig. 5. The plot of identification of parameter b,
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Fig. 6. The plot of tracking error e,
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