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Abstract: The Hybrid Cybernetic Model (HCM) enables the simulation of metabolic fluxes by using 

Elementary Modes Analysis and taking into account of selected cellular regulations. These latter are 

represented by cybernetic control variables. In this study, a simplified metabolic network was established 

in order to isolate a subset of Elementary Modes, representative of the main phenotypic capabilities of the 

microorganism. An innovative classification of the modes was introduced in the dynamic model, which 

permitted the selection of the active modes based on the microbial kinetics. The case study presented here 

is a genetically modified strain of Cupriavidus necator, engineered to produce isopropanol. Available 

experimental data were used for identification of parameters in the dynamic model. This model can be 

used in order to predict the value of maximal and minimal product yields when other substrates will be 

tested. 

Keywords: Hybrid Cybernetic Model (HCM), Elementary Modes (EMs), Yield Analysis, Isopropanol 

production, Biofuel. 

 

1. INTRODUCTION 

This new century presents crucial environmental challenges 

such as decreased water supplies, global warming and limited 

fossil fuels. Carbon dioxide (CO2) emissions and fossil fuel 

usage for transportation are closely connected with 

greenhouse effects. 

Currently, ethanol is one of the two main biofuels used in 

Europe. However, it presents numerous technical problems: it 

has a lower energy content than gasoline, is corrosive 

towards ferrous metals, and is difficult to transport across 

traditional pipelines because it degrades elastomers and 

flexible transfer lines in fuel systems (Bruno et al. 2009). 

These problems could be vanquished by the adoption of 

higher alcohols as biofuels, since they are compatible with 

storage and transportation infrastructures and have higher 

energy content than ethanol. 

Among these higher alcohols, isopropanol is noteworthy 

because it has a very high research octane number (129) and 

is already being used as a gasoline and diesel additive 

(Peralta-Yahya and Keasling 2010). Moreover, isopropanol 

can be dehydrated to form propylene which is a petroleum-

based product (Inokuma et al. 2010). Propylene is currently 

used as a material in many industrial products and it is 

expected that the world demand for propylene will continue 

to increase in the future (Molenda 2004). 

Several microorganisms have been evaluated for isopropanol 

production. This work focuses on the genetically modified 

bacterium C. necator. This prokaryotic organism, also known 

as Ralstonia eutropha, is able to grow heterotrophically on 

multiple carbon sources and autotrophically on carbon 

dioxide. This microorganism is a natural producer of 

biopolymers (polyhydroxyalkanoates or PHAs) and the 

carbon flux towards PHAs can be diverted towards 

isopropanol after genetic modifications (Grousseau et al. 

2014). 

Since it is the first time that C. necator has been engineered 

to produce isopropanol, it is interesting to understand and 

quantitatively predict the phenotypic capabilities associated 

with the genetic modifications. Mathematical modeling 

enables one to assess the behaviour of a system by capturing 

its salient features (Song et al. 2013). In this way, it is 

possible under certain conditions to obtain predictive 

modeling results regarding the production system. 

This paper focuses on dynamic modeling, which aims to 

capture the temporal evolution of a system. Dynamic 

optimization of a biological process needs to use robust 

model components, with known parameters (i.e. yields, 
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growth constants, etc.). The first step was to establish a mass 

balance model of the process. Furthermore, the mass balance 

model needs information on the biological kinetics via a yield 

matrix or stoichiometric matrix. The approach for estimating 

the latter was based on a metabolic model and the use of a 

reduced set of Elementary Modes (EMs) (Provost et al. 

2007 ; Provost and Bastin 2004 ; Provost et al. 2006). An 

Elementary Mode is a set of non-decomposable pathways 

consisting of a minimal set of reactions that functions at 

steady state (Schuster et al. 2002). Elementary Mode 

Analysis has been used for: interpreting metabolic function 

networks, predicting gene expression patterns, and improving 

strain performance (Trinh et al. 2009). 

However, a striking simplification of the metabolic model is 

required. This can be achieved by introducing the quasi-

steady-state approximation for intracellular metabolites. 

Intracellular reactions usually show smaller time constants 

than extracellular reactions (Song et al. 2009). Thus, only 

parameters relative to external metabolites are considered, 

which constitute the basic postulate of Hybrid Cybernetic 

Model (HCM). However, the number of parameters remains 

important because it is directly linked to the number of 

Elementary Modes. The Elementary Modes Analysis shows a 

combinatorial explosion of the number of EMs (Schuster et 

al. 2002), which necessitates a step of metabolic network 

reduction.  

To overcome the problems addressed above, this work first 

proposes a rational simplification of the metabolic network of 

C. necator. Secondly, the reduction of the set of modes was 

carried out using Yield Analysis (Song and Ramkrishna 

2009) and the innovative modes classification based on the 

microbial kinetics of the available culture. Finally, model 

parameters were identified in order to affect a dynamic 

model, which enables a more realistic, mechanism-based 

simulation of cellular reactions. The advantage of using a 

reliable metabolic model of this engineered bacterium is to 

not only reduce the time, cost, and effort in experimental 

work, but also to find a breakthrough strategy for exceeding 

the existing limitations in the current biofuel production. 

 

2. MATERIAL AND METHODS 

2.1  Experimental data 

C. necator Re2133 (Budde et al. 2011) was used as the 

parent strain for isopropanol production since the genes 

coding for the synthesis of PHB from acetoacetyl-CoA 

(phaB1B2B3 and phaC) were deleted from the wild type 

strain H16. An inducible isopropanol production plasmid was 

constructed and incorporated in Re2133 resulting in the strain 

Re2133/pEG7c (Grousseau et al. 2014). 

Re2133/pEG7c was cultivated in a flask (100 mL in 1 L 

flask). The minimal medium used in this study was 

previously described by Lu et al. (2012) with addition of 

gentamycin (10 mg/L) and kanamycin (100 mg/L). 

Concentrations of 20 g/L for fructose and 0.38 g/L for NH4Cl 

were used as carbon and nitrogen sources respectively. The 

flask cultures were continuously shaken in a 30°C incubator 

at 200 RPM. Isopropanol production was induced with L-

Arabinose (0.1%) at 9 h of cultivation time (Grousseau et al. 

2014). 

The residual substrate and product concentrations were 

quantified by High Performance Liquid Chromatography 

(HPLC). Biomass growth was monitored by measuring the 

optical density at 600 nm (OD600nm) using a visible 

spectrophotometer. Culture results are detailed in Grousseau 

et al. (2014). 

The case study was a pure and mono-substrate batch culture ; 

experimental data are presented in Fig. 1. The culture can be 

divided into three phases: phase 0 (P0) of latency ; phase I 

(PI) where fructose, the carbon source, is converted to 

biomass and isopropanol simultaneously ; and phase II (PII) 

where fructose was still being consumed while the nitrogen 

source (Ammonium Chloride) was exhausted and therefore 

no new cells were produced. During the phase II, isopropanol 

was produced concomitantly with a low acetone excretion. In 

this study, the phase 0 (P0) was not taken into account and, 

will be subject of future work. 

 

Fig. 1. Experimental data (fructose, biomass, isopropanol, 

and acetone): (P0) latency, (PI) growth and isopropanol 

production, and (PII) isopropanol and acetone production. 

2.2  Metabolic Network 

In this study, the metabolic network of Franz et al. (2011) 

was used as an initial network, which included a fructose 

uptake pathway, glycolysis, gluconeogenesis, a detailed 

pentose-phosphate-pathway, the tricarboxylic acid cycle, and 

a PHB production and consumption pathways. 

Some characteristics of C. necator, which were not 

considered by Franz et al. (2011), were considered because 

they are necessary in order to implement complementary 

metabolic pathways. The existence of the enzyme named 

gluconate 6-phosphate dehydrogenase, which metabolizes 

“Glu6P” into “RI5P” (Table 1) has not been proven 

(Gottschalk et al. 1964). Thus, fructose is hypothesized to be 

catabolized via the Entner-Doudoroff pathway (Schlegel and 

Eberhardt 1972), which was added to the metabolic network 

by Grousseau et al. (2013). PHB production pathway was 
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deleted and replaced by the isopropanol production pathway, 

which has the same precursor as the production of PHB. 

Altogether, the network contains 48 metabolites (39 internal 

and 9 external species) and 40 reactions. All reaction 

equations are listed in Table 1. Note that stoichiometry 

coefficients are given in units of mmol, except for the 

biomass which is given in units of g. 

2.3  Mass Balance Model  

The culture was carried out in batch mode. The mass balance 

model can be written according to the equation system (1): 


























BrN
dt

dC

BrN
dt

dP

BrN
dt

dS

B
dt

dB

C

P

S





 (1) 

where B , S  and P  represent respectively the biomass, 

substrate and products ; C  is the intracellular metabolites 

vector ;   and r  (dim = 1Cn ) represent the constant 

specific growth rate and the intracellular specific reaction 

rates. The matrix SN , PN  and CN  are the stoichiometric 

matrix of the metabolic network for the substrate, the 

products and the internal metabolites (i.e. metabolic pathway 

of isopropanol production) with dimensions rS nn  , rP nn  , 

and rC nn  . If a quasi-steady-state for the intracellular 

metabolites is assumed (Stephanopoulos et al. 1998 ; 

Stephanopoulos 1999): 

0 BrN
dt

dC
C  , (2) 

furthermore rNC C  , then 0rNC . 

Having thermodynamic constraints on  , convex algebra can 

be used. The intracellular specific reaction rates can be 

expressed as a non-negative linear combination of the 

elementary vectors   : 

kkeeer   2211  with 0k . (3) 

Finally, by defining a stoichiometric matrix K  like 

  [ 
  

  
]    , where   is the reduced matrix of Elementary  

Modes (Provost et al. 2007 ; Provost and Bastin 2004 ; 

Provost et al. 2006). The classical dynamic model (for the 

substrate and products) can be represented as a function of 

metabolic flux as follows: 

 
 

  
[
 

 
]         (4) 

After determining the Elementary Modes matrix    and using 

the equation (4), the equation (5) is obtained: 

 

  
[
 

 
]  [ 

  

  
]          (5) 

External metabolites are decomposed in 

  [          ]
  and 

  [                                ] .    

represents the vector of fluxes. 

In this work, the oE
 
matrix will be reduced by using yield 

analysis. It is assumed in this study that this matrix is 

normalized with respect to a reference substrate. 

2.4  Cybernetic variables 

The Hybrid Cybernetic Model (HCM) aims to take into 

account, metabolic regulations (Song et al. 2009). Thus, the 

vector of fluxes    
 and the vector of inducible enzyme 

synthesis rates     
 through EMs are controlled by the 

cybernetic variables      and      respectively.      controls 

the enzyme activity and      controls the enzyme level. 

   
          

       

   , (6) 

    
          

   , (7) 

   
 is catalysed by a vector of key enzyme      determined 

from the following dynamic equation: 

     

   
          

                 ,  (8) 

where the four terms on the right hand side represent: the 

vector of constitutive enzyme synthesis     , the vector of 

inducible enzyme synthesis rates     
, the term           

represents the enzyme degradation, and the term        

represents the dilution rate induced by growth. 

    
    is the enzyme level relative to their maximum value 

    
    expressed as follows: 

    
    

    

    
    with     

    
            

        
   , (9) 

where   
         

   
  
   

    is the maximal growth rate of 

the     mode in which      

   
  

 represents the yield of biomass 

of the j
th

 mode. 

A general form of the cybernetic control laws (Young and 

Ramkrishna 2007)      and      is given by: 

   
  

∑  
         

  

        
 (10) 

where    is the return on investment which can be calculated 

from a metabolic objective function. In this study, it was 

assumed that the organism maximized carbon source uptake 

and    have been defined (Song and Ramkrishna 2009) as: 

            
       

    (11) 

where      is the vector of uptaken carbon units. 

2.5  Kinetic reactions 

Kinetic equations relative to the vectors of unregulated rates 

   

    and     

   , follow a Michaelis-Menten formalism 

             . A term dedicated to the isopropanol inhibitor 

effect                was included. Indeed, the toxicity of 
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this alcohol was presented in Nicolaou et al. (2010) and also 

proved experimentally (this work, data not shown).      is the 

affinity constant and      is the inhibition constant of the     

mode. 

   

    {
  

    
  

       
 

    

       
       

  
           

,  (12) 

    

    {
     

  

       
 

    

       
       

            
,  (13) 

where   
    is the rate constant and      is the enzyme 

synthesis rate constant of the     mode. 

Table 1.  Reactions of metabolic network for isopropanol 

production (= and => mean reversible and irreversible 

reactions respectively) 

v1 : FRU + PEP + ATP => F16P + PYR + ADP 

v2 : F16P => F6P 

v3 : F16P => 2 G3P 

v4 : AMC => NH3 

v5 : RI5P = R5P 

v6 : RI5P = X5P 

v7 : X5P + R5P = S7P + G3P 

v8 : S7P + G3P = E4P + F6P 

v9 : X5P + E4P = G3P + F6P 

v10 : F6P => G6P 

v11 : G3P + NAD + ADP = 3PG + NADH + ATP 

v12 : 3PG = PEP 

v13 : PEP + ADP => PYR + ATP 

v14 : OXA + ATP => PEP + ADP + CO2 

v15 : PYR => AcCoA + Form 

v16 : PYR + NAD => AcCoA + NADH + CO2 

v17 : AcCoA + OXA => ISC 

v18 : ISC + NADP => AKG + NADPH + CO2 

v19 : AKG + NAD => SucCoA + NADH + CO2 

v20 : SucCoA + ADP = SUC + ATP 

v21 : SUC + FAD = MAL + FADH 

v22 : MAL + NAD => OXA + NADH 

v23 : PYR + ATP => OXA + ADP 

v24 : ISC => SUC + GOX 

v25 : AcCoA + GOX => MAL 

v26 : NH3 + AKG + NADPH => GLUT + NADP 

v27 : GLUT + NH3 + ATP => GLUM + ADP 

v28 : 2 AcCoA = AcAcCoA 

v29 : AcAcCoA + SUC => CO2 + ACETONE + SucCoA 

v30 : ACETONE => ACETONEx 

v31 : SUC => SUCx 

v32 : 2 NADH + O2 + 4 ADP => 2 NAD + 4 ATP 

v33 : 2 FADH + O2 + 2 ADP => 2 FAD + 2 ATP 

v34 : 0.21 G6P + 0.07 F6P + 0.9 R5P + 0.36 E4P + 0.13 G3P + 1.5 3PG + 0.52 PEP + 2.83 PYR + 

3.74 AcCoA + 1.79 OXA + 8.32 GLUT + 0.25 GLUM + 41.1 ATP + 8.26 NADPH + 3.12 NAD 

=> BIOM + 7.51 AKG + 2.61 CO2 + 41.1 ADP + 8.26 NADP + 3.12 NADH 

v35 : G6P + NADP = GLU6P + NADPH 

v36 : GLU6P + NADP = RI5P + CO2 + NADPH 

v37 : GLU6P = KDG 

v38 : KDG = PYR + G3P 

v39 : ATP + RI5P + CO2 = ADP + 2 G3P 

v40 : NADPH + ACETONE => NADP + ISOP 

 

3. RESULTS AND DISCUSSION 

3.1  Metabolic Yield Analysis  

The stoichiometric matrix was obtained from the metabolic 

network. The next step was to calculate the set of Elementary 

Modes with the publicly program METATOOL 2005 (Kamp 

and Schuster 2006). A total of 865 EMs was obtained. As 

explained previously, the fluxes of Elementary Modes were 

normalized by the preferred substrate (fructose in this case), 

so that the yield space is a bounded convex hull in a two-

dimensional space. Theoretically, the yield space vertices are 

supposed to span the whole range of phenotypes. 

In this study, the EMs were classified into two groups, which 

correspond respectively to the two phases (PI) and (PII) 

identified in section 2.1. Since experimental data were 

available, it was possible to determine a reduced set of 

Elementary Modes. For each phase, yields of measured 

external metabolites (Table 2) were calculated by a linear 

regression. Yields are given in units of mmol/mmol except the 

biomass which is expressed in units of gBiomass/mmol. The 

considered biomass formula was C1H1.77O0.44N0.25, 4% ashes, 

MW=25.35 g/Cmole (Aragao 1996). 

Table 2.  Yields and uncertainties of experimental data 

Phase I Phase II 

RFRU,BIOM RFRU,ISOP RFRU,ACETONEx RFRU,ISOP 

(g/mmol) (mmol/mmol) (mmol/mmol) (mmol/mmol) 

0.06±0.02 0.29±0.05 0.03±0.01 0.69±0.06 

 

Thus, theoretical and experimental yields were located within 

the yield space. The selection of active modes (Elementary 

Modes used for the dynamic model), is not a straightforward 

task because several solutions are possible. 

When the experimental yield is inside the convex hull, the 

phenotypic state can be expressed as a convex combination of 

the polygon vertices. In this work, the active modes chosen 

for best-enclosing the data are the vertices of a triangle. 

Actually, the triangle which possesses the largest area is 

calculated in order to maximize the phenotypic states taken 

into account around the experimental data. 

As shown in Fig. 2, the measured experimental yields for the 

first phase (PI) are located within the convex hull bounded by 

the three selected active modes represented by black discs. 

During the second phase (PII), among the available 

experimental data, only acetone and isopropanol are 

produced, which constituted the constraints for reducing the 

set of Elementary Modes. As previously done, experimental 

yields were calculated and positioned in the yield space. In 

order for the experimental data to be located within the 

convex hull, 3 boundary active modes were identified (Fig. 

3). 

Finally, in this work, active modes were selected in two 

stages ; a first reduction of the whole set based on the 

microbial kinetics of the culture and a second selection based 

on the experimental data. In the end, six active modes have 

been selected for the HCM. 

3.2  The Hybrid Cybernetic Model (HCM) 

The full HCM was described by the equations (5) to (13). 

After having selected the active modes, model parameters 

were identified. Indeed, experimental data of fructose, 

biomass, isopropanol, and acetone concentrations (11 data 

points) enabled calculation of the 13 kinetic parameters of the 

model. Since 2 phases and 6 active modes were identified, 

two parameters   
    and      for characterizing each mode 

were identified. The inhibitor kinetic  parameters      were 

taken identical for every mode and the resulting    was also 

identified. The other parameter values      and      were 

taken from Song et al. (2009) and      was taken from Franz 

et al. (2011) (Table 3).     ,     , and      were assumed to 
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be identically for every mode and then named α, β, and    

respectively. 

 

Fig. 2. Phase I: Selection of active modes in the yield space 

for the establishment of the dynamic model. Here are shown: 

the convex hull (- -), the experimental data ( ), Elementary 

Modes ( ), Active Modes ( ), and the largest area triangle (-). 

 

Fig. 3. Phase II: Selection of active modes in the yield space 

for the establishment of the dynamic model. Here are shown: 

the convex hull (- -), the experimental data ( ), Elementary 

Modes ( ), Active Modes ( ), and the largest area triangle (-). 

The state vector   [ | |  ]  was constituted by 

FRUS  ,   [                  ], and    
[                       ]. The initial enzyme levels       

were set to be the same for each active mode and was 

calculated by the following formula (Song et al. 2009) taking 

into account the preculture: 

      [        
    

       
]         

      (14) 

The set of optimized parameters was estimated using the 

Rosenbrock function implemented in a toolbox of 

MATLAB®. The resulting parameter values are summarized 

in Table 3 and the corresponding simulated data are presented 

in Fig. 4. 

Table 3.  Values of identified parameters (  
   ,       and 

  ) and parameters taken from Song et al. (2009) (  and  ) and 

Franz et al. (2011) (  ) 

Parameter Value 

  
    [0.97 1 1 0.1 0.85 0.82]T [L/h] 

     [0.0075 0.0092 0.035 0.19 0.53 0.14]T [L/h] 

   1.00 [mmol/L] 

  0.1 [L/h] 

  0.2 [L/h] 

   0.33 [mmol/L] 

 

Fig. 4. Comparison between experimental results and 

simulated data for the phases PI and PII. 

 

4. CONCLUSIONS 

This work demonstrates for the first time the use of a Hybrid 

Cybernetic Model based on Elementary Mode Analysis to 

describe the dynamic metabolic behavior of C. necator for 

the production of isopropanol. Selection and classification of 

Elementary Modes took into account the microbial kinetics 

from batch-mode cultures. An engineered C. necator, capable 

of producing isopropanol, was used as a case study. A set of 

kinetic parameters was identified using an optimization 

technique. In this study, the available experimental data 

presented measurements for only four external metabolites. 

In the near future, experiments will be scheduled in a 

controlled environment in bioreactors, which will provide 

measurements for numerous additional external metabolites. 

On top of that, it will also be informative to incorporate the 

phase of latency (P0) into our calculations to further validate 

the model. 

Several new perspectives have emerged from this work. It 

will be important, however, to test the sensitivity of the 

parameters and, in particular, ensure that the fixed parameters 

have no significant influence on the model’s behavior. The 

expanded experimental data will be used to refine and 

validate the modeling technique. We believe the hybrid 

modeling is a very promising method with which to predict 

and evaluate the capabilities of newly engineered strains. 

Specifically, this method holds the promise of predicting the 
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value of maximal and minimal product yields for other 

proposed experimental substrates. 
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