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Abstract: Frequency domain identification of complex systems imposes important challenges
with respect to numerically reliable algorithms. This is evidenced by the use of different
rational and data-dependent basis functions in the literature. The aim of this paper is
to compare these different methods and to establish new connections. This leads to two
new identification algorithms. The conditioning and convergence properties of the considered
methods are investigated on simulated and experimental data. The results reveal interesting
convergence differences between (nonlinear) least squares and instrumental variable methods. In
addition, the results shed light on the conditioning associated with so-called frequency localising
basis functions, vector fitting algorithms, and (bi)-orthonormal basis functions.
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1. INTRODUCTION

Frequency domain identification is commonly applied for
modelling in various fields, including mechanical systems
(Bayard and Chiang, 1998), (Oomen et al., 2013), as well
as power systems (Deschrijver et al., 2008). In these fields
several identification algorithms have been developed such
as the SK (Sanathanan and Koerner, 1963), Vector Fitting
(VF) (Gustavsen and Semlyen, 1999) and Instrumental
Variable (IV) algorithms (Blom and Van den Hof, 2010). A
key challenge that is encountered in the implementation of
these algorithms is poor numerical conditioning, leading to
inaccurate solutions and unreliable convergence properties
of the algorithms.

Several partial solutions to this problem have been de-
veloped such as the use of frequency scaling (Pintelon
and Kollar, 2005) and the use of various orthonormal
basis functions (Ninness and Hjalmarsson, 2001), which
have advantageous numerical over the basic monomial
basis functions. Also, the use of several rational bases
in frequency domain identification has been investigated
(Ninness et al., 2000), where a recent development is the
use of frequency localising basis functions (Welsh and
Goodwin, 2003). Rational bases are also frequently used
in the electronics field in the form of the Vector Fitting
algorithm (Gustavsen and Semlyen, 1999).

The use of data-dependent polynomial bases has also
yielded some important results. It has been shown in
Bultheel and van Barel (1995), that orthonormal block-
polynomials can be used to achieve optimal condition-
ing for the iterations of the SK algorithm. Recently, in
van Herpen et al. (2014) it has been shown that a sim-
ilar result can be achieved for the Instrumental Variable
algorithm using a set of bi-orthonormal block polynomials.
Although several methods have been developed to improve
the numerical conditioning of these algorithms, a thorough
comparison between these methods is not yet present.
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Therefore, the aim of this paper is to:

1. Establish new connections between these methods.
2. Benchmark the different methods on simulated and
experimental data.

The main contributions of this paper are:

C.1 (a) The development of an SK routine with frequency
localising basis functions and pole relocation.
(b) The development of a vector fitting routine using
the instrumental variables algorithm.
C.2 A thorough comparison, on simulated and experimen-
tal data, of the proposed and existing identification
methods with improved numerical conditioning.

In the upcoming section the existing identification algo-
rithms are introduced and the problem is formulated. In
section 3, the use of rational basis functions in the identi-
fication problem is investigated and two new identification
methods are introduced, constituting contribution C.1 of
this research. In section 4, the use of data-dependent
bases in system identification and the theoretical results
that have been achieved with such bases are explained.
In section 5, the benchmark results of the various con-
sidered methods are presented and discussed, constituting
contribution C.2 of this research. Finally, in Section 6 the
conclusions of the presented work are given.

2. PROBLEM FORMULATION
2.1 Parametric identification criterion
In this paper, parametric frequency-domain identification
based on the quadratic cost criterion (1) is considered,

V()= 3 [Wse)(Palse) ~ Pl )] (1)
k=1

The goal is to minimise V(). In (1), P,(sx), k=1,...,m,
are given frequency response function (FRF) measure-
ments and P(s,6) denotes the parametric model that is to
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be estimated. In the present paper continuous time system
identification is considered, but equal results can be ob-
tained for the discrete time case. Using (1), a broad range
of system identification criteria can be pursued through
an appropriate choice of the weighting function W (sy),
see Pintelon and Schoukens (2012) for an overview. The
model structure considered in this paper is,

- B(s,0) N(s,0)
P = 45.8) ~ D(s.0) @
Here B(s,0), A(s,0) € R]s] are the numerator and denom-
inator polynomials respectively. The functions N (s, ) and
D(s,0) are linear in the parameters 6 with respect to a set
of basis functions, these are not necessarily polynomials.
Minimising (1) is a non-convex optimization problem.

2.2 Two iterative identification algorithms

In classical literature on parametric system identification,
the non-convexity of this optimization problem has been
addressed by considering a related convex optimization
problem. Observe that V(#) in (1) can be rewritten as

| W (sk) D(sr,0)] |
V(0) = —_— — ’ . (3
0)= 2| Doy g Folow) 1 gl @
By multiplying (3) with D(sg,0), V(0) is linearised.
Linearised least squares. (Levy, 1959) Approximate the
solution 6 to (1) by minimising

N(Sk, 9)

Although (4 ) akes the form of a standard linear regression
problem that can be solved straightforwardly, a different
cost criterion is optimized compared to (1). Compared
to (1), the cost function of (4), is weighted with D(s, 9).
For a polynomial parametrisation of D(s, 6), this typically
overemphasises high frequency errors. To improve the es-
timate, the a priori unknown weighting factor D(sg, )1,
needs to be approximated more adequately. For this pur-
pose, iterative identification algorithms are utilised.

Algorithm 1. (SK-iteration). (Sanathanan and Koerner,

1963) Let 69 be given. In iteration i = 1,2, ..., determine
the least-squares solution to

L W (sk)
P —~ D(sk,0<ki*1>) [Po(s1) —1][

(0] e

N(Sk, 9<i>)

Typically, Alg. 1 converges and yields a small value of
the cost function (1), outperforming the non-iterative
solution (4). However, the fixed point of the iteration is
generally not a local optimum of V(8), as is shown in
Whitfield (1987). To address this problem, Gauss-Newton
iterations can be used, after the SK algorithm converges,
to guarantee that the fixed point of iteration is a local
minimum of (1).

An alternative iterative identification algorithm is known
in the literature, which is based on an Instrumental Vari-
able (IV) approach. This algorithm is known in time do-
main identification as the Simplified Refined Instrumental
Variable method (SRIV) Young (1976), and has recently
been formulated for frequency domain identification (Blom
and Van den Hof, 2010). The fixed point of iteration for
this algorithm is equal to a local minimum of the cost
function, rendering such additional Gauss-Newton itera-
tions superfluous. For this algorithm the first necessary

condition for optimality -5V () = 0, is considered. For
(1), this condition becomes:

—AP(si,0)

il ] W (5019 (50) (Palise) — Pls1s ) = 0.

k=1

(6)
This is a non-linear equation in # which can be solved with
an iterative scheme similar to algorithm 1. This leads to
the following algorithm.

Algorithm 2. (IV iterations). (Blom and Van den Hof,

2010) Let 69 be given. In iteration i = 1,2,..., solve
the linear system of equations for 6"
8P ska ) ’ *
Z T ] W (k) @
k=1 0=0(i—1)
W(Sk) D(Sk 9<1>)
—_ — Tl =0.
D(sy, 0G-1) [Po(sk) 1] {N(skﬁ(l))

Remark 1. This algorithm can be recognised as an instru-
mental variable method since it replaces the orthogonal
projection, ¢} = (X*X)~'X*y, of the least squares
problem with an oblique projection 8¢ = (Z*X)~1Z*y,
which is the defining characteristic of an IV method.

The convergence properties of this Instrumental Variables
algorithm are theoretically superior to other algorithms.
However it often suffers from prohibitive numerical condi-
tioning problems.

2.8 Problem formulation

The identification methods considered in this paper can
all be characterised as one of the two iterative algorithms
discussed in the previous section. Both these algorithms
are known to suffer from problems regarding numerical
conditioning, as is evidenced by the multitude of meth-
ods proposed in literature to improve this conditioning
(Van Herpen et al., 2014) (Ninness et al., 2000) (Pintelon
and Kollar, 2005). The conditioning problems are briefly
explained in this section, after which the considered meth-
ods to improve this numerical conditioning, are given.
The iterations from the SK algorithm (Alg. 1) can be writ-
ten as the overdetermined system of equations (Van Her-
pen et al., 2014):

W16 = b,,. (8)
This system can be solved through QR factorisation
followed by backward substitution. The relevant condi-
tion number for these iterations therefore is k(W1 ®). In
(8), ® is a matrix containing the basis functions. If a
monomial polynomial basis is used this becomes a block-
Vandermonde matrix which is notoriously ill-conditioned,
ie. k(W1 @) > 1.
For the IV algorithm (Alg. 2) the set of equations that are
solved each iteration can be written as:

Wy W10 = & *Wy*b,,. (9)
The typical conditioning problems for this set of equations
are significantly worse than for (8), since:

k(DWW D) ~ k(O W W1 ®) = k(W1 @)%, (10)
Therefore conditioning is much more critical for the IV
algorithm. In this paper, the use of rational basis functions
and the use of data-dependent basis functions, to improve

numerical conditioning, will be considered in sections 3
and 4 respectively.
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3. RATIONAL BASES

In this section, identification using rational basis func-
tions is discussed. T'wo choices of rational basis functions
are considered and with these basis functions two novel
identification methods are formulated. This constitutes
contribution (C.1) of this paper.

3.1 Rational basis functions

The functions N(s,8) and D(s,6) are by definition linear
in the parameters with respect to a set of basis functions.
Although these are usually chosen to be polynomials, this
is not necessary in general. In this section rational basis
functions are considered, as is done in multiple earlier pub-
lications (Ninness et al., 2000) (Welsh and Goodwin, 2003)
(Gustavsen and Semlyen, 1999). From these publications,
it is known that such rational basis functions can lead to
a better conditioning of the identification algorithms con-
sidered in section 2.2. When using rational basis functions,
N(s,0) and D(s,0) are given by

iemmmp )
_ Zedcn,p 6,(s) = 259 (12)

E(s)

Two choices of rational basis functions ¢,, are a par-
tial fractions basis (PF)(Gustavsen and Semlyen, 1999)
and frequency localising basis functions (FL) (Welsh and
Goodwin, 2003):

1 la,| M : s
PrLpy = — < > . (13)
s+ap, s—l—apl]-;[l s+
Both these sets of basis functions are completely deter-
mined by the choice of a set of poles a;,, and the common
denominator polynomial E(s) is given by:

n

E(s) = [[ (s + ap).
p=1

With an appropriate choice for the poles of the basis
functions, the effect of the a priori unknown weighting
introduced in the linearised least squares criterion (4)
can be significantly reduced. This is due to the fact that
this weighting is given by D(s,6), which for the rational
case is a bi-proper rational function instead of a (high
order) polynomial in the standard case. This significantly
reduces the overemphasis on high frequency errors that
(4) typically suffers from. In Welsh and Goodwin (2003)
the use of such a linearised least squares solution using
frequency localising basis functions is proposed for wide
band frequency domain system identification. This method
is referred to as FLBF-LS in this paper.
To further reduce the effects of the a priori unknown
weighting introduced in this method, Gilson et al. (2013)
proposed to use an iterative IV algorithm. However, this
IV algorithm is still applied to the linearised problem
which is weighted with D(sg, 6). The point of convergence
of this algorithm is therefore different from the point of
convergence of the IV method proposed by Blom and
Van den Hof (2010). As a result, this routine does not
converge to a minimum of the original cost function (1), as
will be seen in the benchmark results. The IV algorithm
of Gilson et al. (2013) is referred to as FLBF-IV in the
present paper.

¢PF,p =

(14)

A possible reason for solving this weighted problem (mul-
tiplied with D(sg,0)) is that dividing the problem with
D(s1,0%1) (or multiplying it with %
done in the iterative algorithms of section 2.2, leads to:

oy (o Mg - P

), as is

2

o)

2

(15)
Which is an optimization problem where the common
denominator polynomial E(sj), is eliminated from the
equation. Because of this, the advantageous numerical
properties of the rational basis functions are lost. To
address this problem, the pole relocation technique, as
used in vector fitting (Gustavsen and Semlyen, 1999), can
be used. This technique is introduced next, after which it is
shown how this technique can be used with the frequency
localising basis functions.

3.2 Pole relocation

As mentioned in the previous section, the explicit weight-
ing of the identification problem with D(sy,8¢~1)~1, re-
sults in a loss of the advantageous properties of the rational
basis functions. Pole relocation is a technique that implic-
itly applies this weighting, thus retaining the structure and
properties of the rational basis functions. The equivalence
between pole relocation and the SK algorithm has been
shown in Hendrickx and Dhaene (2006).

The implicit weighting is achieved by iteratively relocating
the poles of the rational basis functions. The updated poles
are taken equal to the zeros of the denominator function
of the previous iteration, i.e.

2&71) = zeros {D(s, 9<i*1>)} , (16)
which means E(s) becomes
H s — z (17)

p=1
Because the polynomial A(s,
(15) can be rewritten as:

. A(Sk79<i>) B(Sk,0<i>)
w P . — .
v [0 (Rn g~ ),
Since the poles of the rational basis functions are also

~1) is equal to E(s)®,

2

(18)

updated such that a;@ = 2,?7”, the terms Aézs(jili) and
B]:E?g(f)) are equal to D(s,0%) and N(s,0(")) respectively.

To compute the zeros Z ( b , a state space representation
of the denominator D(s 0) is constructed after which the
zeros are found by solving the eigenvalue problem:

%, = eig(A — BD'C) (19)
The iterative pole relocation procedure, which is equiva-
lent to the SK algorithm Alg. 1, consists of the following
steps. First, construct basis functions from a given set of

poles a,@, then solve

, 2
mln HW (sk (Po(sk) (s5,00) — (sk,9<’>)) H2 (20)
Next, construct the state space system of the rational

denominator function D(s,6{) and compute the zeros of

this system by solving (19) Finally, take a<1+1) ~(i> and

iterate until convergence is reached.

This iterative pole relocation procedure, can next be used
to implement a new adaptation of the SK algorithm
(Alg. 1), utilising the frequency localising basis functions.

10020



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3.3 FLBF with pole relocation

Pole relocation can be used to formulate the SK algorithm
with frequency localising basis functions, without losing
the advantageous numerical properties of these basis func-
tions. To be able to use the pole relocation procedure with
the frequency localising basis functions, as proposed in
Welsh and Goodwin (2003), two extensions of the existing
method need to be made.

First, the basis functions must be able to incorporate com-
plex conjugate pole pairs while maintaining the guarantee
of a real-rational transfer function and a real parameter
vector 6. Second, a state space representation must be con-
structed from the basis functions and the parameter vector
f. This state space representation is used to compute the
zeros of the rational denominator function.

For complex conjugate poles a, = a,41, the following
basis functions are constructed to make sure the transfer
function and the parameter vector 6 are real-valued:

|ap|(5 — |ap|)

p—1
Wp(s) = <H 5+al> (s +ap)(s+aps1)

=1

S S W 7 (CRAT)
Upa(s) = <H s—|—al> (s +ap)(s+aps1)

=1

(21)

A minimal, real valued, state space realization of D(s,0)
can be constructed by considering the full state space
system as the compound system of the individual basis
functions. This method is related to the one used in De-
schrijver et al. (2007) to construct the state space repre-
sentation for orthonormal vector fitting. Using this state
space description, the zeros of D(s) can be computed using
(19), and an SK-FLBF algorithm using pole relocation
is obtained. The development of this method constitutes
contribution C.1(a) of this paper.

3.4 Vector fitting with instrumental variables

Recently, it was shown that Vector Fitting is equivalent to
the SK algorithm (Hendrickx and Dhaene, 2006), however
the SK algorithm is known not to converge to a local
minimum of the cost function (1), as is shown in Whitfield
(1987). This shortcoming of the current vector fitting
algorithms has been acknowledged in various VF related
publications (Hendrickx and Dhaene, 2006)(Deschrijver
et al., 2007), but has not yet been resolved. The solution
proposed in this paper is a new vector fitting procedure
that makes use of the IV algorithm (Alg. 2).

To achieve this, the pole relocation technique that is
used in vector fitting has to be incorporated into the IV
algorithm. This is possible because, in the Instrument
Z* of the IV algorithm, the basis functions are also
weighted with D(sy,0¢~1)~1. Therefore, relocating the
poles implicitly applies the appropriate weighting to both
the Instrument Z* and the problem matrix X of the IV
algorithm. The new identification method resulting from
the implementation of the oblique IV projection in the
vector fitting procedure, will be referred to as IV-VF. The
development of this method corresponds to contribution
C.1(b) of this paper.

4. DATA-DEPENDENT BASES

The rational basis functions of the previous section have
shown good results. A key question that remains is:
which choice of basis functions leads to the best possible
conditioning of the identification algorithms of section 2.2.

The answer to this is that it depends on the problem
data. This leads to the concept of data-dependent basis
functions. These data-dependent bases can be constructed
such that optimal conditioning (k = 1) of the iterations
is achieved. In Bultheel and van Barel (1995) it is shown
that choosing the basis functions for the SK iterations to
be block-polynomials that are orthonormal with respect
to the data-dependent inner product (22), then optimal
conditioning of the SK iterations is achieved.

(6i(€), ¢5(©) =D &7 (&r)wiwindi(&r)-
k=1

This result does not hold for IV iteration however, since
the IV iterations involve the oblique projection Z*X60 =
Z *b, instead of the orthonormal projection X *X6 = X *b.
To achieve optimal conditioning of the IV iterations a
separate set of block-polynomials (Van Herpen et al.,
2014) needs to be constructed for the instrument and for
the variables, transforming (9) to

(T Wy Wy @) 0% = T *W,'b,. (23)
These two sets of block polynomials are then constructed

to be bi-orthonormal with respect to the data-dependent
bi-linear form:

m
(i), 65(€)) ==Y ¥ (&k)wswindi(&r)-
k=1
This yields optimally conditioned (k = 1) iterations for
the instrumental variable algorithm. Efficient algorithms
to construct these bases have been developed by Bultheel
and van Barel (1995) and van Herpen et al. (2014). In the
coming section, the benchmark results will also enable an
examination of the numerical robustness of these methods
for constructing the data-dependent basis functions.

5. BENCHMARK RESULTS

In this section the performance of the proposed and
existing methods is compared for a large set of simulated
data as well as an experimental example. This comparison
of methods constitutes contribution (C.2) of this paper.

(22)

(24)

5.1 Simulation data

To be able to thoroughly compare all the proposed and
existing methods a dataset is generated consisting of 100
systems of the form:

8 blwz
_ l
G(s) ;52+2ms+w?,
where w; spans approximately 9 decades and the pa-
rameters b;, w; and (; are generated randomly from a
predetermined range. The systems are all evaluated at
1500 logarithmically spaced points that span the entire
frequency range of the system. To this sampled data,
random noise is added in a multiplicative manner, i.e.
P, = G(sk)(1+¢e(sk)), where e(sy) is zero mean Gaussian
white noise, such that the signal to noise ratio is 20dB. An
example of one of the simulated frequency responses can
be seen in Figure 1.
The considered identification methods are :

(25)

e the proposed SK FLBF method with pole relocation as
presented in section 3.3;

e the Vector Fitting method as developed by Gustavsen
and Semlyen (1999), SK VF;

e the SK algorithm with a data-dependent orthonormal
polynomial basis, SK OP;
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the SK algorithm with monomial basis, SK Mon;

the IV FLBF method as proposed by Gilson (2013);
the proposed IV VF method as presented in section 3.4;
the IV algorithm with a data-dependent bi-orthonormal
polynomial basis, IV BP;

the IV algorithm with monomial basis, IV Mon.

For the implementation of the Vector fitting methods, a
modified version of the freely available vecfit3.m routine
(http://www.sintef.no/vectfit) is used.

For each of the 100 generated frequency response mea-
surements, 25 iterations of all of the considered methods
are computed. All of the methods are initialised using the
FLBF-LS estimator as described in section 3.1 and as first
proposed in Welsh and Goodwin (2003).

Table 1. Converged cost function value of the
different methods for the simulation data.

SK v
1.4-10* | 6.9-103

IV FLBF
1.3-10%

v (6%)

In Table 1 the average converged cost function values for
the considered methods are depicted. First, the IV based
methods converge to a lower value of the cost function than
the SK based methods. Second, the IV-FLBF method as
proposed by Gilson et al. (2013), on average, converges
to a higher value of the cost function than the other IV
based methods. This can be explained from the earlier
observation that the IV-FLBF method solves a weighted
version of the optimal IV criterion (7) , meaning that, the
IV-FLBF method does not converge to a local minimum
of the cost function (1).

After further inspection of the data, the discrepancy
between the converged values of the cost function for the
SK and IV methods, is dominated by a small fraction of
the analysed systems. For this fraction, the SK algorithms
fail to fit one of the eight resonance peaks that are present
in the system, leading to a much higher value of the cost
function. An example of this is shown in Figure 1.

The fact that for some of these systems the IV algorithm
does fit all the resonances peaks and the SK algorithm
does not, can be attributed to the known property of SK
algorithm (Whitfield, 1987) that the fixed point of the
iterations does not coincide with a local minimum of the
cost function. Because of this property, the SK algorithm
might be more likely to get “stuck”. To be able to state this
with certainty, however, a more rigorous analysis needs to
be performed.

Table 2. Average conditioning of the methods
for the simulation data.

Ksk Ry
Orth 1.00 1.00
FLBF | 1.9-107 4.6 - 109
VF 5.7-10%2 | 2.0-10%7
Mon | 9.0-10%9 | 1.2.10149

In Table 2 the average numerical conditioning properties
for seven of the considered methods are depicted. The
results depicted in Table 2 show a couple of clear re-
sults. First, the conditioning when using Monomial basis
functions is prohibitively high for the identification of the
considered class of systems. Second, the conditioning for
IV based methods is indeed significantly worse than for SK
based methods, as expected from the analysis in section

+ data
3 —SK VF |]

IS

Magnitude (-)

10° 10 10
Frequency (-)

Fig. 1. Simulated FRF, with an IV fit which captures all
the resonances and an SK fit which misses one.

2.3. Third, the use of rational basis functions does signif-
icantly improve conditioning over the use of a monomial
polynomial basis. Fourth, the frequency localising basis
functions lead to a much better conditioned problem than
the partial fractions basis, which is traditionally used in
Vector Fitting.

In addition, the (bi-)orthonormal data-dependent bases in-
deed lead to an optimally conditioned identification prob-
lem. This underlines the results of Bultheel and van Barel
(1995) and Van Herpen et al. (2014). It also shows that the
recently developed methods for the construction of data-
dependent (bi-)orthonormal bases are practically viable
for the optimally conditioned identification of complex
systems.

5.2 Experimental data

For further validation of the considered identification
methods, an experimental example is considered. The ex-
perimental set-up is that of the Active Vibration Isolation
System which is depicted in Figure 2.

A 15" order parametric model is fitted to the identified
FRF data. Fifty iterations for each of the identification
methods are computed. The converged value of the cost
function (1) is again computed and the results are shown
in Table 3. The FRF data and the resulting fits for three
methods (SK, IV and IV-FLBF) are shown in Figure 2
and the average conditioning for the considered methods
is shown in Table 4.

Again, the methods based on the IV algorithm converge to
slightly a lower value of the cost function than those based
on the SK algorithm. The FLBF IV algorithm converges
to a higher value of the cost function than the other IV
methods.

Table 3. Converged cost function values of the
different methods for the AVIS data.

SK v
5.6-101 | 2.8-10!

IV FLBF
4.5-101

V(6%)

Table 4. Average conditioning of the methods
for the AVIS data.

Rsk Ry

Orth 1.00 1.00
FLBF | 4.8-10% | 1.1-10%°
VF 9.2.103 3.6-108
Mon | 2.8-1022 | 1.0-1072
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Fig. 2. Bode diagram of AVIS FRF measurements and
various resulting parametric fits.

The conditioning results for the AVIS data as depicted in
Table 4 show a slightly different result than the simulation
data. For this identification problem, the conditioning of
the methods using frequency localising basis functions is
worse than the conditioning of the vector fitting meth-
ods that use a partial fractions basis. This difference be-
tween the simulated and experimental data might indicate
that the frequency localising basis functions are especially
suited for systems with the structure (25), as is used in
the simulations.

The results in Figure 2 show that an excellent parametric
fit is obtained with each of the considered methods up to
about 3000 Hz after which the FRF data either becomes
too noisy or has a resolution that is too low to accurately
determine additional modes. Qualitatively there is not
much separating the parametric fits but considering the
converged cost function values, it is concluded that the IV
algorithm yields the most accurate fit.

6. CONCLUSIONS

Two new identification methods are developed, which con-
stitutes contribution C.1 of this research. These meth-
ods show that pole relocation is a versatile and effective
technique to formulate the SK and IV algorithms, using
rational basis functions.

Overall conclusions that can be drawn from the bench-
marking results of section 5, which constitutes contribu-
tion C.2 of this research, are as follows. First, it is clear
that the IV algorithm has favourable convergence proper-
ties over the SK algorithm. However the conditioning of
the IV iterations is in general much worse that for the SK
iterations. Second, the considered rational basis functions
lead to much better conditioning than the monomial poly-
nomial basis.

It can also be concluded that the most rigorous solution for
improving conditioning is the use of the data-dependent
(bi-)orthonormal polynomials. This method does require
more computational effort, but it has been shown that
these bases can be reliably computed. With increasing
model order, the conditioning of the identification algo-
rithms will become even more critical. Therefore, the use
of a data-dependent basis might prove essential for the for-
mulation of a numerically reliable identification algorithm
for increasingly complex systems.
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