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Abstract: The paper presents the use of a MATLAB based software framework designed for nonlinear
state estimation of discrete-time dynamic systems in optimal and adaptive control problems. The main
focus of the framework is to facilitate implementation, testing and use of various nonlinear state
estimation methods. Nevertheless, due to its versatility, the framework is also suitable for adaptive
control purposes. The designer of the controller can utilize any of the large number of offered estimators
which provide the necessary state and parameter estimates in the form of conditional probability density
function. The paper presents the possibilities of the toolbox usage in optimal and adaptive control
problems. It will be demonstrated how easily and naturally an estimation problem can be described
by means provided by the framework and how easily it can be fitted into and controller.
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1. INTRODUCTION

The problem of control of the stochastic systems is tightly
coupled with the problem of state and parameter estimation.
In order to be able to properly fulfill the control goal, it is nec-
essary to obtain sufficient characteristics of the unknown state
and parameters. Generally, these two problems are inevitably
interwoven since the solution of one of the problems may have
significant influence on the quality of the solution of the other
problem (Feldbaum, 1965). Thus, any controller dealing with
uncertainties in state and parameters incorporates a suitable
estimator.

Nonlinear estimation of discrete-time stochastic dynamic sys-
tems is a rapidly developing field of study. In the last decade
it has undergone rapid development of various new estimation
methods. All those methods strive to overcome a problem with
closed form solvability of the general solution to state esti-
mation problem which can be found by means of Bayesian
functional relations (BFRs) (Candy, 2008).

The development has proceeded in both basic categories of es-
timation methods differentiated by the validity of the provided
estimates, i.e. the global and local methods. The global methods
such as the Gaussian sum method (Straka and Šimandl, 2005),
the point-mass method (Šimandl et al., 2006), and most notably
the particle filter (Doucet et al., 2001) provide state estimates,
which are valid in almost whole state space, in the form of a
probability density function (PDF). However, their high com-
putational costs often hinder their practical use.

The local methods are usually based on an approximation of
the nonlinear functions in the state or measurement equation
or on an approximate computation of first two moments of a
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nonlinearly transformed random variable so that the Kalman
filter (KF) (Grewal and Andrews, 2001) design technique can
be used to obtain the estimate. This rough approximation of
the posterior estimates induces local validity of the provided
point state estimates. As the concept is based on the adoption
of the structure of the KF, it is referred to as Kalman filtering
framework (KFF).

The traditionally widely used Taylor series based linearization
was gradually replaced by stochastic and polynomial lineariza-
tions or by use of quadrature or cubature integration rules (Ito
and Xiong, 2000; Arasaratnam and Haykin, 2009). The main
advantage of these new techniques over the traditional ones is
that they do not require evaluation of the Jacobi matrix of the
nonlinear functions in the state and measurement equations of
the model (Šimandl and Dunı́k, 2009). The idea of the stochas-
tic linearization is to approximate a random variable by a set
of points which are transformed through nonlinear functions
(i.e. functions in the model) (Julier and Uhlmann, 2004; Ito
and Xiong, 2000; Dunı́k et al., 2005). The unscented transform
(UT) used in the unscented Kalman filter (UKF) belongs to
stochastic linearization methods (Lefebvre et al., 2002). The
idea of the polynomial linearization is to approximate a nonlin-
ear function by a first or second order polynomial interpolation
(Ito and Xiong, 2000; Nørgaard et al., 2000). The divided dif-
ference filter (DDF) is the main representative of the filters uti-
lizing the polynomial linearization. Recently, several nonlinear
filters have been proposed based on numerical calculation of the
predictive statistics within the KFF. They use Gauss-Hermite
quadrature (Ito and Xiong, 2000) or cubature integration rules
(Arasaratnam and Haykin, 2009). Dunı́k et al. (2013) have pro-
posed a new filter called the stochastic integration filter (SIF).
Its core is the stochastic integration rule which possesses some
favorable properties as opposed to the UT.

This vast number of different state estimation methods can
make the choice of a suitable estimation technique for the con-
trol purposes quite burdensome. All their theoretical demands,
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the number of design parameters and lack of recommendations,
which could help the user who looks for a suitable estima-
tion method for his control task, call for the employment of
a suitable software package. A desirable package should ease
the burden of choosing and implementing the right estimation
technique. The control method designer should be able to chose
the estimation technique at will and concentrate on the main
task, i.e. control. Such package should act as a toolbox that
implements various estimation methods, facilitate their use and
makes it easy to setup the estimator for the control purposes.

The Nonlinear Estimation Framework (NEF) (Straka et al.,
2009; Straka et al., 2010; Flı́dr et al., 2013) can be seen as
a candidate. It serves as a supporting platform for developing
and testing various estimation techniques. It provides imple-
mentation of many of the traditional and modern estimation
techniques and supports processing of the filtering, prediction,
and fixed-lag smoothing tasks. It can also be easily employed
for implementation of optimal and adaptive controllers. It was
successfully used for numerical simulation of suboptimal adap-
tive dual controllers for systems with both parameter and func-
tional uncertainties (Flı́dr and Šimandl, 2011, 2013; Král and
Šimandl, 2011, 2013).

The main goal of this paper is thus twofold, to present the
Nonlinear Estimation Framework (NEF) software toolbox and
to demonstrate its use in two control examples.

The structure of the paper is as follows. Section 2 is devoted to
a brief introduction of the structure, the provided components
and possibilities of the NEF toolbox. Afterwards, in Section 3, a
demonstration of the framework possibilities will be presented
in two examples. The paper is concluded by Section 4.

2. INTRODUCTION TO THE NONLINEAR ESTIMATION
FRAMEWORK

The Nonlinear Estimation Framework is a freely available 1

MATLAB toolbox. The toolbox is comprised of components
representing all the necessary pieces for estimation experiment
description, processing of the data and performance evaluation
(see Fig. 1). These components provide set of classes which
instances are used for the problem description, choice and
parametrization of estimator and evaluation of the results. The
design of the toolbox facilitates a straightforward and natural
experiment setup for casual user, however, at the same time
it provides a powerful tool with full control in the hands of
advanced users. The toolbox is also easily extensible due to the
use of object oriented programming methodology.

The key features of the NEF are

• structural and probabilistic modeling,
• support for time-varying models,
• support for filtering, multi-step prediction and fixed-lag

smoothing,
• implementation of both standard and numerically stable

estimation algorithms,
• full estimator parametrization by means of the standard

MATLAB property-value mechanism,
• evaluation of estimate quality.

The remainder of this section is devoted to the description of
the core components.
1 The toolbox is downloadable upon registration at http://nft.kky.
zcu.cz/nef.

Fig. 1. Nonlinear Estimation Framework components

2.1 Components for Problem Description

In order to describe the estimation experiment at hand, the
toolbox has to provide means for proper description of func-
tions and random variables which can than be used for model
description. The resulting model description can be afterwards
employed in the estimator itself (see the Fig. 2).

The toolbox provides two model classes nefEqSystemn and
nefPDFSystem for structural and probabilistic description
of time-varying models, respectively. The structural model de-
scription is given as follows

xk+1 = f k(xk, uk,wk), k = 0, 1, . . . , (1)
zk = hk(xk, uk, vk), k = 0, 1, . . . , (2)

where xk ∈ Rnx , zk ∈ Rnz and uk ∈ Rnu are state,
measurement and control of the model, respectively, wk ∈ Rnx

and vk ∈ Rnz are state and measurement white noises described
by p(wk) and p(vk), respectively. Both noises are mutually
independent and they are also independent of the known initial
state x0. The functions f k and hk are supposed to be known.

From the above mentioned description it is clear that the
user needs to specify the state and measurement functions
accompanied with PDFs of the state and measurement noises
and of the prior state. Of all the function classes the class
nefHandleFunction is the most prominent for description
of the f k and hk functions. This class makes it possible to
provide a unified interface within the toolbox for description
of arbitrary generally time-varying function. The attributes of
the class instance are given either as anonymous functions or
function handles representing the function itself accompanied
by specification of system variable dimensions and if needed
its first and the second derivatives.

For the description of random variables, the toolbox provides
many classes which in fact represent PDFs. Their instances are
given by a specification of parameters of the corresponding
PDF, e.g. in case of the Gaussian PDF by the mean vector
and covariance matrix. In order to be able to describe time
varying parameters or to describe conditional PDF necessary
for probabilistic model description, it is possible to state these
PDF parameters using instances of function classes. This fea-
ture is naturally exploited in case of the probabilistic model
description which is specified by the transient PDF (3), the
measurement PDF (4):
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Model description

Random variables
nefGaussianRV

nefGaussianSumRV
nefUniformRV
nefEmpiricalRV

nefBetaRV
nefGammaRV

nefPDFSystemnefEqSystem

nefHandleFunction

nefLinFunction

nefConstFunction

Functions

Estimators
nefKalman

nefEnKF

nefSKalman, nefUDKalman
nefUSF, nefSUKF
nefDD1, nefDD2
nefSDD1, nefSDD2

nefSIF
nefItFilter

nefGSM
nefPF

:

Fig. 2. Overview of toolbox classes used for estimation experi-
ment description

p(xk+1|xk, uk), k = 0, 1, . . . , (3)
p(zk |xk, uk), k = 0, 1, . . . (4)

and PDF p(x0) of the initial state.

2.2 Estimators and class methods for estimation

The crucial toolbox component is undoubtedly the estimator
component. This components offers implementation of many
traditional and modern local and global estimation methods as
presented in Table 1.

Table 1. Estimators implemented in the NEF esti-
mation component

name in NEF estimators
nefKalman,
nefSKalman
nefUDKalman

(extended) Kalman filter (standard, square-
root and UD versions)

nefDD1, nefSDD1,
nefDD2, nefSDD2

central difference Kalman filter, divided dif-
ference filter (1st and 2nd order; standard
and square-root version)

nefUKF, nefSUKF unscented Kalman filter (standard and
square-root version), cubature Kalman filter

nefItKalman iterated Kalman filter based on any of the
above local filter

nefGSM Gaussian sum filter based on any of the
above local filter

nefPF bootstrap filter, generic particle filter, auxil-
iary particle filter, unscented particle filter

nefEnKF ensemble Kalman filter
nefSIF stochastic integration filter

The provided implementations are often broadly parametrizable
(as is the case of the particle filter and UKF implemented by
classes nefPF and nefUKF, respectively). Apart from the
canonical implementation, also more advanced algorithma such
as the UKF with adaptation of the parameter of the UT, are also
offered.

All the power of the estimator classes is inherited from the
abstract class nefEstimator. This class defines the inter-
face provided by all estimator classes and offers a ready-to-
use mechanism for processing the basic estimation tasks, i.e.
filtering, multi-step prediction and smoothing (fixed lag, fixed

Fig. 3. The scheme of processing schemes of basic estima-
tion tasks supported by the estimate method of the
nefEstimator class.

point and fixed interval). The simplest way of executing the esti-
mation experiment is to employ the estimate method which
embodies the BFR. This methods automatically processes all
the data (see Fig. 3) and gives the results in the form of PDFs.
However, this way is not suitable for control purposes as it is
currently not possible to insert the evaluation of the control law
into the process. Nevertheless, this is not a serious obstacle
as the user is able to use directly methods timeUpdate,
measurementUpdate (and possibly smoothUpdate).

2.3 Performance evaluation component

The last component supports the task of an experiment result
evaluation. It is primarily aimed at measuring the estimation
error and compare performance of several estimators against
the true value of the state. However, most of the provided
measures can also be advantageously used for evaluation of the
quality of the controllers. Currently, the performance evaluation
component provides performance indices (Li and Zhao, 2006;
Blasch et al., 2006) given in Table 2.

Table 2. Performance indices implemented in the
NEF performance evaluation component

ABSOLUTE ERROR MEASURES
MSEM mean squared error matrix
RMSE root mean squared error
AEE average Euclidean error
HAE harmonic average error
GAE geometric average error
MEDE median error
MODE mode error

RELATIVE ERROR MEASURES
RMSRE root mean squared relative error
ARE average Euclidean relative error
BEEQ Bayesian estimation error quotient
EMER estimation error relative to measurement error

PERFORMANCE MEASURES
NCI non-credibility index
ANEES average normalized estimation error squared

The class nefPerformanceEvaluator defines methods
for initialization, data processing and evaluating the perfor-
mance index. The instance of this class fulfills the task of i) col-
lecting data from Monte Carlo (MC) simulations, ii) extracting
appropriate indicators from the conditional distribution of the
state provided by individual estimators and iii) evaluating the
performance index.
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3. NEF EMPLOYMENT IN CONTROL PROBLEMS

This section presents examples of application of the NEF to the
control problems. First, the classical LQG controller, where the
state estimates will be provided by UD factorized Kalman filter,
will be shown. Second, the example where some parameters of
the controlled systems are not known will be presented. In this
example the estimation problem is nonlinear in nature and UKF
will be used in order to obtain the filtering mean and covariance
matrix.

In both examples, the following controlled system is considered
xk+1 = Axk + Buk + wk, (5)

zk = Cxk + vk (6)
with

A =
(

0 1
θ1k θ2k

)
, B =

(
0
θ3k

)
,C = (0 1) . (7)

The parameter vector θk =
(
θ1,k, θ2,k, θ3,k

)T is considered to
be constant, i.e. θk+1 = θk . The actual parameters are given by
θk = (−2.0427, 0.3427, 1)T , ∀k (i.e. the controlled system is
unstable) and the initial state is fixed to value x0 = (1,−0.5)T .

The PDFs of the state and measurement noises are specified as
wk ∼ N (0, 0.0001) , (8)
vk ∼ N (0, 0.001) . (9)

where N
(
r̂ , Pr

)
denotes normal distribution with mean r̂ and

covariance matrix Pr .

The goal is be to find a control law minimizing the criterion

J =E

{N−1∑
k=0

Lk(xk, uk)

}
(10)

with respect to the discrete time stochastic system (5)-(6). The
cost function is considered to be quadratic and is defined as

Lk(·) = (xk+1− x̄k+1)
T Qk+1 (xk+1− x̄k+1)+ uT

kRk uk . (11)

The quantity x̄k+1 ∈ R2 denotes the setpoint vector at time
instant k + 1. The matrices Qk+1 ∈ R2×2 and Rk ∈ R1 are
appropriately chosen positive semidefinite and positive definite
matrices, respectively.

In this particular case, the cost function (11) is specified as

Lk(·) = (xk+1,2 − x̄k+1,2)
2
+ 0.001 · u2

k, (12)
i.e. the goal is to drive the second state element to the setpoint
values x̄k+1,2 and the trajectory of the first state element is not
penalized in any way. The cost function (12) corresponds to the
general form (11) by choosing the weighting matrices as

Qk+1 =

(
0 0
0 1

)
, Rk = 0.001. (13)

3.1 Implementation of the LQG controller

In case of known parameters of the system the solution to
the above described optimization problem leads to the LQG
controller. The controller design employs the separation prin-
ciple. The control law is derived for a deterministic certainty
equivalent (CE) system with assumption that the state is com-
pletely known and the true state is replaced by its optimal state
estimate. The LQ controller represents a deterministic control
law and the optimal estimate is provided by KF .

The LQ control law, for a non zero setpoint is given by the
relation

uk(µk) = −K kµk + BT (Fk+1 − Qk+1 x̄k+1
)

(14)
with the control gain specified as

K k =
(

BT Sk+1 B + R
)−1

BT Sk+1 A. (15)

The matrix Sk+1 and the vector Fk+1 are derived using the
Bellman optimization recursion 2 . As the estimation and con-
trol tasks do not interfere with each other, it is possible to
determine these parameters of the LQ control law beforehand.

The proper implementation of the LQG controller consisting
of the LQ controller and KF is crucial. It is necessary to
properly propagate the quantities within the controller. The LQ
controller needs according to (14) the filtering estimate µk
which in turn requires the predictive estimate x̂k . The control
uk is then required to determine the predictive estimate x̂k+1.
The whole process of evaluation of control law and filtering and
predictive estimates is depicted in Fig. 4.

µk(u
k−1
0 , yk

0) = x̂k + K F
k ( yk − Ck x̂k)

Ê Kalman filter - filtering step

uk(µk) = −K kµk + BT (Fk+1 − Qk+1 x̄k+1
)Ë LQ controller for CE system

x̂k+1µk(uk
0, yk

0) = Akµk + Bk uk

Ì Kalman filter - predictive step

Fig. 4. The processing of the information in the LQG controller

The remaining part of this subsection will present how to
implement this procedure employing the means provided by the
NEF toolbox. First, it is necessary to describe the problem at
hand, i.e. to represent the system (5)-(9) within the toolbox.

Since the functions (5) and (6) are both linear, it would be ad-
vantageous to employ the nefLinFunction for instantiation
of the objects representing these functions

f = nefLinFunction(A, B, eye(2));
h = nefLinFunction(C,[],1);

where the first, second, and third matrix parameters correspond
to matrices multiplying the state, control, and noise, respec-
tively.

The state and measurement noises and the initial state are all
Gaussian and thus they can be represented by instances of the
nefGaussianRV class
wmean=[0;0]; Pw=eye(2)*0.0001;
pw=nefGaussianRV(wmean,Pw);

vmean=0; Qv=0.001;
pv=nefGaussianRV(vmean,Pv);

x0=[1;-0.5];

2 The matrices Sk+1 are given by the Riccati recurrence relation.
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Px0=diag(0.2*[1 1]);
px0=nefGaussianRV(x0,Px0);

The system model is given structurally, hence the nefEqSystem
class will be use for its definition within the toolbox
model=nefEqSystem(f,h,pw,pv,px0);

where it is mandatory to provide the state function f, the
measurement function h, the PDFs of the state and parameter
noises pw and pv, respectively, and initial state PDF px0.

Subsequently, it is possible to create an object that embodies the
chosen estimator. For this particular system, the KF is a natural
choice. This example will however use one of the numerically
stable implementations of the KF. The chosen filter uses the UD
factorization of the covariance matrices and is provided by the
class nefUDKalman. The instance of this filter is constructed
in the following manner
UDKalman = nefUDKalman(model);

Finally, it is possible to proceed to the implementation of the
control loop. It is necessary to implement the process depicted
in Fig. 4. For this implementation each of the estimators pro-
vided by NEF offers two indispensable methods. These are
the measurementUpdate and timeUpdate methods im-
plementing the filtering and predictive step of the estimator,
respectively.

Before the implementation itself it is necessary to mention
two notes. First, in the subsequent MATLAB code it will be
assumed that all the values of matrix Sk+1 and vector Fk+1
are already determined beforehand and stored in cell arrays S
and F. Second, since the UD factorized KF will be used instead
of the standard KF, it is necessary to factorize the initial state
covariance matrix 3 and to prepare a proper prediction PDF for
the filtering step in a structure element RV
predPDF.RV=nefGaussianRV(x0,...

nefUDFactorFunction(Px0));

Now, everything but measurement of the initial state is prepared
for the actual trajectory simulation. This measurement is com-
puted using simulate method of the nefEqSystem class
[z(:,1),x(:,1),model] = ...

simulate(model,1,[],'initialState',x0)

In this case the initial state is equal to variable x0. In case when
the last two parameters would be omitted, the initial state would
be drawn from initial state PDF. The control loop is finally
implemented as follows
for k = 1:controlHorizon

% determine current filtering pdf
filtPDF = measurementUpdate(UDKalman,...

predPDF,[],z(:,k),k);
mu(:,k) = evalMean(filtPDF.RV);

% control law
u(:,k)=-(B'*S{k+1}*B+R)\...

(B'*S{k+1}*A*mu(:,k)...
+B'*F{k+1}-Q*xsetpoint(:,k+1));

% determine one step predictive pdf

3 Simillar procedure is necessary for all estimators which employ factoriza-
tions. For the standard Kalman filter this step is omitted.

predPDF = timeUpdate(UDKalman,...
filtPDF,u(:,k),k);

% system trajectory simulation
[z(:,time+1),x(:,time+1),model] = ...
simulate(model,1,u(:,time));

end

3.2 Implementation of the cautious controller

Now it will be assumed that the parameter vector θk will be
unknown. The problem is not separable and neutral anymore.
Also the optimal control law is not attainable in a closed
form. It is necessary to resort to some suboptimal solution.
For purposes of this example the suboptimal cautious controller
will be used. Moreover, to simplify the presentation, only the
myopic cautious controller will be considered as this controller
can be simply derived and implemented.

The control law is in this case given as
uk = argmin

uk

Lk (xk, uk) . (16)

It should also be noted, that in this case the control is not
solely function of the point estimate µk but also of the filtering
estimate covariance matrix.

The estimation problem is also slightly more complicated, as
the the state has to be augmented with the unknown parameters
making the problem nonlinear. The state transient function
f k (xk, uk,wk) is in this case represented by instance of the
class nefHandleFunction
fFun = @(x,u,w,k) [x(2)+w(1);

x(3)*x(1)+x(4)*x(2)+x(5)*u+w(2);
x(3); x(4); x(5)];

f = nefHandleFunction(fFun,[5 1 2 0]);

where the fFun is MATLAB handle function representing the
state transient function augmented with the relations describing
constant parameters. The second parameter specifies dimen-
sions of the state, control, state noise and time quantities 4 . The
model is again described using the instance of nefEqSystem
class in the same manner as before.

Next the estimator object should be created. It is possible to
use the nefUDKalman class constructor again. Then, the es-
timator will detect the nonlinear state transition function and
will automatically use the UD factorized extended KF in the
prediction step. However, it should be noted that in this case the
user would have to enhance the nefHandleFunction con-
tructor with a parameter specifying the Jacobian of the function
fk (xk, uk,wk). Of course, it advisable to use a derivative free
method instead, such as the UKF
UKF = nefUKF(model);

The implementation of the control loop is very similar to the
previous case. There are three differences in the algorithm.
First, it is necessary to extract the covariance matrix from the
filtering PDF as it is used in the control law. Second, of the
point estimate µk only the first two elements representing the
state. Third, it is necessary to create estimated matrices Â and
B̂ at each time instant using the remaining elements of point
estimate µk .
4 The zero dimension for time means that the function is t-invariant.
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for k = 1:controlHorizon
% determine current filtering pdf
filtPDF = measurementUpdate(UKF,...

predPDF,[],z(:,k),k);

% extract mean and covariance matrix
mu(:,k) = evalMean(filtPDF);
Pf = evalVariance(filtPDF);

% construct estimated matrices A and B
estA = [ 0 1; mu(3:4,k)'];
estB = [ 0; mu(5,k)];

% cautious control law
u(:,k)=-(estB'*Q*estB+Pf(5,5)+R)\...
(estB'*(Q*estA+Pf(3:4,3:4)*mu(1:2,k)...
-estB'*Q*xsetpoint(:,k+1));

% determine one step predictive pdf
predPDF = timeUpdate(UDKalman,...

filtPDF,u(:,k),k);

% system trajectory simulation
[z(:,time+1),x(:,time+1),model] = ...

simulate(model,1,u(:,time));
end

4. CONCLUSION

The paper presented the Nonlinear Estimation Framework that
facilitates implementation, testing, use and evaluation of non-
linear state estimation methods. It is aimed at both the casual
and the experienced user. It provides easy to use, however, pow-
erful tools for straightforward estimation experiment design.

It was shown that the framework is useful not only for pure es-
timation purposes. But it can also be advantageously employed
in controller design and testing. The toolbox can alleviate the
burden of choosing and implementing the estimator and leave
more room for controller design.

The usage of the NEF was illustrated in two control examples,
more specifically the LQG and cautious control.
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Dunı́k, J., Šimandl, M., Straka, O., and Král, L. (2005). Perfor-
mance Analysis of Derivative-Free Filters. In Proceedings
of the 44th IEEE Conference on Decision and Control, and
European Control Conference ECC’05, ISBN: 0-7803-9568-
9, ISSN: 0191-2216, 1941–1946. Seville, Spain.

Dunı́k, J., Straka, O., and Šimandl (2013). Stochastic integra-
tion filter. IEEE Transactions on Automatic Control, 58(6),
1561 – 1566.

Feldbaum, A. (1965). Optimal Control Systems. Academic
Press, New York.

Flı́dr, M., Straka, O., Havlı́k, J., and Šimandl, M. (2013). Non-
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Flı́dr, M. and Šimandl, M. (2011). Dual Adaptive Controllers
Based on Partial Certainty Equivalence. In Proceedings of
18th IFAC World Congress, 3457–3462. Elsevier, Milano,
Italy.
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