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Abstract: This work addresses the research and implementation of methodologies for time series prediction, 
mainly to support the early detection of critical events. To this aim, a wavelet decomposition based scheme is 
proposed to estimate the evolution trend of physiological signals. The scheme does not involve the explicit 
development of a model and is essentially supported on the hypothesis that future evolution of a biosignal can 
be estimated from similar historic patterns. The strategy considers an à-trous wavelet decomposition, where 
the most representative trends are extracted from the historic similar patterns. Then, a set of distance-based 
measures able to assess the prediction likelihood of each representative trend is introduced. From these 
measures and through an optimization process, a subset of these trends is selected and aggregated to derive 
the required time series evolution trend. The performance of the scheme was, in a first phase, compared with 
other typical prediction strategies, namely the autoregressive integral moving average model and the 
generalized regression neural network. Then, in a second phase, the effectiveness of the methodology was 
tested in the assessment of arrhythmic episodes using heart rate measurements computed from ECG signals 
collected in the context of TEN-HMS telemonitoring study. 
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

1. INTRODUCTION 

Cardiovascular disease (CVD), a general name for a wide 
diversity of diseases, disorders and conditions that affect the 
heart and often the blood vessels, is a major cause of 
disability and premature death throughout the world. 
Cardiovascular diseases can take many forms, such as raised 
blood pressure (hypertension), cardiac arrhythmias (abnormal 
heart rhythms), coronary artery disease, heart attack 
(myocardial infarction) and cerebrovascular disease (stroke). 
On the other hand, it is well known, the heart health is linked 
to behavior and lifestyle. Therefore, the focus should be on 
prevention, recognized by clinical professionals as the best 
method to avoid diseases from happening. In fact, preventive 
medicine is more cost effective, that is, able to obtain the 
same outcome in terms of health, with smaller costs, less 
pain, and within a short time.  

In the context of preventive medicine, telemonitoring 
solutions are making a huge impact by enabling the remote 
monitoring of patients. In effect, the information collected 
during long periods allows for advances in the diagnosing of 
a disease, for the description of its evolution and for the 
prediction of possible complications, including the early 
prevention of the occurrence of severe events that may 
require hospitalization.  

 

Cardiac arrhythmias are among the top most factors 
associated with cardiovascular diseases. In fact, abnormal 
rhythms can result in a multiplicity of alterations in the 
myocardial structure, coronary vasculature, and conduction 
system of the heart, which can lead to the development of left 
ventricular hypertrophy, coronary artery disease, myocardial 
infarction, cardiac arrhythmias, heart failure, among others 
(Sign, 2007). Therefore, the development of methodologies 
able to detect not only the occurrence of these arrhythmias 
but also their evolution trends is of extreme importance for 
the conception of early prevention systems. 

This work aims at the development of a predictive 
methodology to estimate biosignals’ future values. In 
particular, the research addresses the trend analysis, in order 
to predict if the HR of a given patient evolves towards high 
values or, on the contrary, is maintaining or decreasing to 
normal values. The strategy is founded on the hypothesis that 
the estimation of biosignals’ future evolution can be 
supported on current and past measurements taken from 
historical data of a group of patients, including the patient 
under study. For this purpose three main stages are 
considered: i) the selection of patients who display similar 
behaviors in their physiological time series is carried out by 
means of a similarity analysis process; ii) then, an estimation 
of the biosignal’s future values is performed, based on the 
similar time series identified in the first phase; iii) finally, the 
estimated values are used in the assessment of the 
arrhythmias risk for the patient under study. 
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Regarding methodologies for similarity search in time series, 
significant advances have been made. The simplest 
algorithms used the Euclidean distance between raw time 
series of the same length. Others proposed dynamic time 
warping for time series of different lengths (Park et al, 2000). 
However, due to the high dimensionality of time series, most 
of the approaches perform dimension reduction on data. 
Among them, some used discrete Fourier transform (Agrawal 
et al, 1993), principal component analysis (Karhunen-Loève 
transform) (Yang and Shahabi, 2004), and wavelet transform 
(Saeed and Mark, 2006). Rocha et al (2012) presented an 
innovative scheme able to efficiently evaluate the similarity 
between two physiological time series. It combines the Haar 
wavelet with the Karhunen Loève transforms, allowing for 
the representation of signals as a linear combination of an 
optimal reduced set of basis functions. Through an iterative 
algorithm for computing the expansion coefficients, the 
computational complexity of the method is significantly 
decreased.  

Among prediction techniques, linear regression methods, 
such as autoregressive structures, have been the most used in 
practice. However, linear models are not always adequate for 
biosignals, since they are non-linear to some extent. Among 
the non-linear methods, neural networks became very popular 
mainly due to their universal approximation properties. Many 
different types of neural networks, such as time delay and 
recurrent neural networks, demonstrated to be effective for 
time series modeling and prediction (Haykin, 2008). On the 
other hand, in most clinical cases, an assumption of global 
stationarity can not be considered. Among time-frequency 
methods, wavelet transform that provides a good local 
representation of the signal in both the time and frequency 
domains, offering an appropriate framework to deal with non-
stationarities, has been frequently applied. Although the 
wavelet transform itself is not a forecasting methodology, it 
may be incorporated in hybrid prediction schemes involving 
the multi-resolution decomposition of signals (Fryzlewicz et 
al, 2003). 

This work, starting from the similarity measure and indexing 
scheme proposed by the same authors (Rocha et al, 2012), 
presents a strategy based on Haar “à-trous” wavelet 
decomposition for the prediction of biosignals. The proposed 
approach does not intend to perform an accurate prediction, 
but to obtain a reasonable forecast of the future trend. 
Basically, from the wavelet decomposition of similar signals 
retrieved form the historic, the most representative trends at 
the several decomposition levels are identified and combined 
through an optimization process, directly providing an 
estimation of the current time series evolution.  

The structure of the paper is as follows: section 2 describes 
the proposed wavelet decomposition scheme and section 3 
presents its application to heart rate signals for the assessment 
of arrhythmia risk, using data collected during TEN-HMS 
(Cleland et al, 2005) tele-monitoring study. Finally, in 
section 4, some conclusions are drawn.  

2. METHODOLOGIES 

Figure 1 illustrates the idea behind the proposed prediction 
approach. Basically, the process starts by considering the 
current signal to be predicted, designated here as the 
template, 1,( ) NX t . Using the template and from a 
similarity analysis procedure **, the set of the M most 
similar conditions (patterns)  1,( ) ( )  N

mt X tX , 
1,...,m M , is identified. From these, the corresponding 

subsequent P future values,  1,( ) ( ) ,  P
mt Y tY are 

straightforwardly obtained (known past values from historic 
dataset). Then, the known “future” evolution of the identified 
patterns,  ( ) ( ) mt Y tY , can be used in a prediction 
mechanism to estimate the evolution of the current template, 

1,ˆ ( ) PY t . 

 

 
Fig. 1. Prediction strategy based on similar signals. 
 

The global set of patterns, ,( ) M N PtZ , is thus composed 
of two components, ( )tX and ( )tY , in the form of (1). 

[ ]( ) ( ) ( )t t tZ X Y=  (1) 

Figure 2 depicts the main steps involved in the estimation of 
ˆ( ),Y t based on the similar patterns ( )tZ and trough a wavelet 

decomposition scheme. 

 
Fig. 2. Prediction methodology. 
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2.1. Template decomposition 

The second step involves the determination, at each 
decomposition level, of the most representative time series 
(trends) from the retrieved similar historic signals. To achieve 
this goal, the historic signals are in a first phase decomposed 
using the “à-trous” wavelet (Renaud et al, 2003), according 
to (2). 

   ( ), ( ) , 1,..,l L
m m mW Z d Z t a Z t l L   (2)

The variables ( )L
ma Z t  and ( ), 1, , ,l

md Z t m M   represent, 
respectively, the approximation and the details. It is 
important to note that, in this case, the decomposition can be 
extended to the “future” (time instants from 1N   to 
N P ), with length N P , that is,   1,L N P

mW Z R   . 

Then, in a second phase, the representative decomposition 
trend at each level is determined through a clustering process. 
In this case the subtractive method was employed (Kriegel et 
al 2003). 

 ( ) ( ) ,    1,.., , 1,...,  l l
md Z t subCustering d Z t m M l L  (3)

 ( ) ( ) , 1,.., L L
ma Z t subClustering a Z t m M  (4)

The variables 1,( )l N Pd Z t R   and 1,( )L N Pa Z t R   denote, 
respectively, the representative details and approximation. 

2.2 Optimal Trends 

In this step, the representative trends are reduced to an 
optimal set, that is, to a set of trends (decomposition levels) 
that have the potential to contribute to a consistent prediction. 
To this purpose, a combination process comprising the 
minimization of a set of distance-based measures, that assess 
the likelihood that a representative trend will contribute to a 
correct estimation, is implemented.  

a. Distance-based measures 

The distance-based measures are computed for each 
decomposition level 1,.., 1l L  , where 1L  stands for the 
approximation, using: i) the template 1,( ) NX t R ; ii) the 
corresponding wavelet decomposition at l level, 

1,( )l Nd X t R ; iii) the wavelet decomposition of similar 
patterns at the same level, 1,( ) , 1,..,l N P

md Z t R m M  ; iv) 
the corresponding clustering, that is, the representative trends 

1,( )l N Pd Z t R  . Using these signals, a set of distance-based 
measures l

i  is computed as follows, for 1,..,m M : 

1 ( ( ), ( )),           1, ,l lS X t d X t t N     (5)

2 ( ( ), ( )),     1, ,l l lS d X t d Z t t N     (6)

3 ( ( ), ( )) ,   1, ,l l l
mmean S d X t d Z t t N       (7)

4  { ( ( ), ( )) } ,   1, ,l l l
mexp std S d X t d Z t t N      

 (8)

5 ( ( ), ( )) ,                 1 ,l l l
mmean S d Z t d Z t t N N P       

 
(9)

6  { ( ( ), ( )) } ,          1, ,l l l
mexp std S d Z t d Z t t N N P        

 (10)

As result, a vector composed of six measures is obtained, 

1 2 6, ,...,l l l l       , where each [0,1]l
i  . 

The measure 1 2( ( ), ( )) [0,1]S X t X t  , is a normalized 
similarity measure, where a value of 1 of means a total 
agreement between the signals. The operators ( )mean   and 

( )std   denote, respectively, the mean and standard-deviation 
operators.  

b. Selection of the optimal trends 

The optimization strategy assumes that each of the 
parameters l

i  defines a measure that enables to assess the 
quality of each representative trend. Therefore, according to 
the obtained measures, a decision regarding the inclusion or 
exclusion of a specific representative trend in the optimal set 
can be taken. To support this decision the operators 

( )maximum  and ( )product   are employed, respectively, as 
the aggregation and conjunction operators. As result, the 
quality of a specific prediction is assessed according to (11). 

 1( ) max ( ),..., ( ),..., ( )i np p p p        (11)

Each variable ( )ip   denotes the possible decomposition 
level combinations, resulting from the operator ( , )C nL nN  
(combinations of nL  taken nN  at a time). In this process, 
the conjunction of the metrics corresponding to a specific 
level is given by the ( )product   operation (12). 

6

1

( ) 1,..., 1l l
i

i

p l L


     (12)

If two levels iL  and jL  are combined, the corresponding 
aggregation ( )ip   is obtained according to (13). 

 ( ) max ( ), ( )ji
LL

ip p p     (13)

2.4 Trend Prediction 

Finally, the optimal trends resulting from the optimization 
process are combined to obtain the trend prediction 
corresponding to the template ( )X t , as (14). 

ˆ( ) ( ) ( ) 1,..,Y t a Z t d Z t t N N P       (14)

In the previous equation the subscript s  denotes the optimal 
trends identified by the optimization process. 

  

3. RESULTS 

3.1 Introduction 

a. Tachycardia 

The precise definition of tachycardia is difficult to find and, 
therefore, the threshold for this condition should be 
considered flexible, based on the level and profile of the 
patient’s cardiovascular risk. For example, a heart rate (HR) 
value may be considered as unacceptably high for patients in 
high risk state, but still acceptable for low risk patients. 
Nevertheless, it is the responsibility of the clinician to decide 
if the individual suffers from tachycardia not only based on 
heart rate measurements, but also on the patient’s history. To 
show the feasibility of the approach, in this work a threshold 
of 100 bpm was considered as the limit value for tachycardia. 
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b. TEN-HMS dataset 

The Trans-European Network Homecare Monitoring Study 
(TEN-HMS) was designed to assess whether home based 
telemonitoring could reduce morbidity and mortality in 
patients with heart failure, compared with usual care or 
regular telephone contact (a total of 426 patients). 
Particularly, home telemonitoring consisted of twice-daily 
self-measuring of weight, blood pressure and heart rate, 
during the period of two years. For the present work, a 
subsection containing data from 83 patients was made 
available. In terms of strategy validation, only HR signals 
were employed. Furthermore, only patients for whom there 
were HR measurements in, at least, 150 days (5 months) were 
selected for this purpose, resulting in a total of 51 patients, 
with a heart rate value per day (sampling rate of 1 day). 

c. Time horizon 

The selection of a forecasting horizon is an essential step 
when predicting time-series data. From a clinical perspective, 
this period should be longer enough to allow a timely 
intervention in order to avoid an undesirable outcome. From 
the prediction perspective, the period should be as shorter as 
possible, since trends in data may not persist for too long. 
Taking into account these aspects, a forecast period of 
approximately one week (eight days, P=8) was stipulated. In 
terms of the length of the template, that is, the past 
information used in the prediction, the value suggested by the 
clinical partners was about a month (N=32).  

d. Experiments 

Two groups of experiments were carried out. The first group 
assesses the capacity of the proposed wavelet multi-
resolution scheme (WMM) in the trend prediction of heart 
rate signals. Moreover, the performance of this scheme is 
compared with other typical prediction strategies, namely a 
linear regression model, the autoregressive integral moving 
average model - ARIMA, and a non-linear regression models, 
the generalized regression neural network – GRNN. Other 
prediction method (AVP) simply considers the average value 
of predictive signals ( )mY t , as an estimation for the 
prediction of ( )Y t .  

The second set of experiments selects patients with HR 
values in a critical range (around the threshold of 
tachycardia), and uses the previously estimated trend to 
determine the risk of tachycardia. Specifically, the goal is to 
evaluate whether during the following week the HR signal of 
a given patient evolves towards tachycardia values or, on the 
contrary, is maintaining or decreasing to normal values§1. 

3.2. Experiment 1: trend prediction comparison 

a. Parameters 

With respect to the ARIMA model, the examination of the 
autocorrelation and partial autocorrelation functions of the 
differenced series, was used in the estimation the order of the 
model ( , , )a cARIMA n d n . The parameters an , d and cn  
identify, respectively, the number of autoregressive terms, the 
degree of differencing and the number of lagged forecast 

errors in the prediction equation. As result, the ARIMA 
structure was ARIMA(2,1,2). The estimation of parameters 
was carried out with the armax() Matlab command.  

Regarding GRNN structure, it can be seen as normalized 
radial basis function networks, were there is a hidden unit 
centred at every training case. These units are called 
"kernels" and, usually, are probability density functions, such 
as Gaussian functions. The weights from the hidden to output 
layer are just the target values, so the output is simply a 
weighted average of the target values of the training cases, 
close to the given input case. As a consequence, the only 
parameters to be learned are the widths of the units. In the 
experiments using the heart rate signals, the width of the 
kernels was experimentally determined as 0.2l= . The 
newgrnn() Matlab command was used to implement this 
neural model. Moreover, a different neural network had to be 
trained for each template.  

With respect t AVP, the average prediction ( )Y t , of the 
identified patterns was computed using an weighted average, 
taking into account the similarity measure evaluated for each 
pattern. 

The last approach (WMM) put into practice the proposed 
wavelet strategy, considering the following parameters: 

Similarity analysis: N=32, P=8, where N and P denote, 
respectively, the time intervals before and after the current 
time instant; M=5, number of patterns retrieved from the 
historic dataset; L=5, wavelet decomposition level. 

Selection of the optimal trends: Number of decompositions 
considered in the optimal trend selection 3,4,5,6l =  (the 
details are the levels 3,4,5l = ; the approximation is the level 

6l = ); the first two levels of detail ( 1,2l = ) were neglected; 
conjunction and aggregation operators were, respectively, the 

( )maximum ⋅  and the ( )product ⋅  operators. 

b. Prediction metrics 

The accuracy of the forecasting methods was determined in 
terms of four performance metrics: i) the proposed similarity 
measure based on the wavelet decomposition+KLT (SWK), 
(15); ii) the Pearson’s correlation coefficient (CORR), (16); 
iii) the normalised root mean squared error (NRMSE), (17) 
and iv) the mean absolute percentage error (MAPE). 

( )( ), ( ) 1,...,SWK S Y t Y t t N N P= = + +  (15)

( )  ( )

( )  ( )
1

22

1 1

( )  ( )

( )   ( )

N P

t N

N P N P

t N t N

Y t Y Y t Y

CORR

Y t Y Y t Y

+

= +

+ +

= + = +

- -

=

- -

å

å å
 (16)

( )

( )

2

1

2

1

( ) ( )
1

( )

N P

t N
N P

t N

Y t Y t

NRMSE
P

Y t Y

+

= +
+

= +

-

=

-

å

å
 (17)



1

1 ( ) ( )

( )

N P

t N

Y t Y t
MAPE

P Y t

+

= +

-
= å  (18)
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In the previous equations, ( )Y t  is the actual HR value, ( )Y t  

is the forecasted HR, Y  and Y  are, respectively, the means 

of the actual and the estimated signals. The metrics NRMSE 

and MAPE were transformed to exp( )NNRMSE NRMSEk= -  

and exp( )MMAPE MAPEk= - , in order to guarantee that 

their values are in the range [0,1] . The parameters Nk  and 

Mk  are constants, respectively, 0.25Nk =  and 10Mk = . 

c. Comparison of prediction methods 

Among the available parametric and nonparametric tests, the 
Friedman test is a nonparametric one that enables to perform 
multiple comparisons in experimental studies. This test 
(Friedman, 1937)§2, (Friedman, 1940)§3 is equivalent to ANOVA 
and is particularly adequate for machine learning studies 
when the assumptions (independency, normality and 
homoscedasticity) do not hold or are difficult to verify for a 
parametric test (Garcia et al, 2010)§4.  

The objective of the Friedman test is to determine if it is 
possible to conclude, from a set of results, that there is a 
difference among the several methods. Basically, the 
Friedman test then compares the average ranks jR  of each 
method, to decide about the null hypothesis, which states that 
“Ho: all the algorithms behave similarly and thus their ranks 

jR  should be equal”. The Friedman statistics, is distributed 
according to 2

Fc , with 1k-  degrees of freedom. From the 
computation of the corresponding p-value, the null 
hypothesis can be or not rejected at a given level of 
significance. 

The Nemenyi test enables a parwise comparison of the 
methods, based on the average ranks computed in the 
Friedman test. Basically, by means of the Nemenyi test, two 
methods can be significantly different at a severeal levels, 
namely 1%a= , 5%a= , or 10%a= , if their average 
ranks differ at least the critical value. In this case (k=4) the 
thresholds for the critical values are, respectively, 

1 1.4675CD = , 5 1.2110CD =  and 10 1.080CD = . 

d. Results 
 
For the comparison of the proposed prediction method 
(WMM) against the other strategies a total of 300 random 
experiments were performed. The Figure 3 depicts the box-
plot resulting from the comparisons. 
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0.4

0.5

ARIMA GRNN AVP WMM
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Fig. 3. Comparison of the prediction methods (NRMSE, MAPE, 

CORR, and SWK metrics) using TEN-HMS dataset. 

From the analysis of Figure 3 and, in global terms, it appears 
that the proposed method is slightly superior to the others. In 
effect, the wavelet based prediction method (WMM) presents 
the highest median for all the metrics showing, however, a 
higher variability for some of these metrics. 

The methods ARIMA and GRNN compute the prediction 
based on an iterative approach: a one-step ahead model is 
iteratively applied during P times, being the current 
predictions used by the model in order to obtain the next 
forecast. The last two methods (AVP and WMM) do not 
involve the explicit computation of a model, thus, they are, to 
some extent, similar to a direct approach. This fact can justify 
why GRNN and ARIMA present poor.  

In order to accurately compare the predictive methods, the 
Friedman test was implemented, considering the four metrics. 
The Table 1 and Table 2 summarize the average ranks and 
the respective values of qui-square and p-value. 

Table 1. Comparison of the prediction methods 

a) Average ranks. 
ARIMA GRNN AVP WMM

NRMSE 2.066  1.40  2.600  3.933 

MAPE 1.733  1.333  3.066  3.866 

CORR 1.933  1.266  3.200  3.600 

SWK 1.800  1.333  3.466  3.400 

b) Qui-square and p-value. 

 2
Fc  p value-  

NRMSE 31.16 7e-7 
MAPE 37.24 4e-8 
CORR 31.88 5e-7 
SWK 32.36 4e-7 

 

From the analysis of Table 1b) the null hypothesis has to be 
rejected for all the metrics. Moreover, from the previous 
comparison using individual metrics using the average of 
ranks (Table 1a), it can be concluded that the proposed 
method is globally superior to the others, except when the 
SWK metric was used. 

In a second phase the Nemenyi test was used to compare the 
methods based on the computed average ranks. Table 2 
presents this comparison, for the particular case of the CORR 
metric (Figure 3, left, bottom). 

Table 2. Nemenyi test (CORR metric). 

#methods (k) GRNN AVP WMM 

ARIMA -0.666 1.266 * *  1.666 * * *  

GRNN  1.933 * * *  2.333 * * *  
AVP   0.400 

* , * * , * * * : at a significance level of, respectively, 10%, 5% and 1% 

 

From the table, it can be concluded that the proposed WMM 
method outperforms ARIMA and GRNN at the levels of 1%. 
In turn, at a level of 1% and 5% the SVR outperforms, 
respectively, the GRNN and ARIMA methods. One the other 
hand, the methods AVP and WMM presents similar results 
and therefore can not be considered different. 
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3.3 Experiment 2: tachycardia risk assessment 

A set of experiments was carried out particularly applied to 
patients whose heart rate values were in a critical range 
(around the threshold of tachycardia). The main goal was to 
determine whether during the following week the heart rate 
signal of a patient would evolve towards tachycardia values 
or, on the contrary, would be maintained or decrease to 
normal values. Figure 4 illustrates this idea.  

0t

 

Fig. 4. Assessment of tachycardia risk. 

 

The procedure started by identifying patients that had 
recently shown heart rate values in a critical range, more 
specifically, that had presented HR values in the range 
[ 5%, 5%]- +  of the limit value of 100 bpm during three 
consecutive days. Then, for those patients, the HR values of 
the following week were predicted using the methodology 
previously described. According to the percentage of values 
that were above the limit threshold (100 bpm), the risk of the 
patient was assessed: if the percentage was higher than 75%, 
the patient was considered to be at risk of developing an 
tachycardia condition; in the other case (less than 75%), the 
patient was considered to have no tachycardia risk. 

The effectiveness of the proposed strategy was tested by 
selecting, from a set of 600 random templates, the ones that 
verified the referred requirement (to be in the critical range). 
In effect, 58 verified this condition: in 26 cases the patient 
presented risk of developing a tachycardia condition, and in 
32 cases the patient revealed no risk. 

 

Table 3 shows the discrimination capability of the method. 

Table 3. Confusion matrix. 

  Actual class 
  No risk In risk 

Predicted class 
No risk 28 10
In risk 4 16

 

To quantify the validity of the method, the sensitivity (SE) 
and specificity (SP) were determined, resulting in a SE of 
62% and a SP of 87%.  

Although it was not possible to compare these results with 
other works, considering that the prediction involved fully 
random templates, the obtained SE and SP values were very 
satisfactory. In effect, these metrics demonstrate the potential 
of the trend prediction strategy. 

 

4. CONCLUSIONS 

This paper presented a strategy based on wavelet 
decomposition for the forecast of biosignals, which goal was 
not to perform accurate predictions but to obtain a reasonable 
estimation of signals’ future evolution trend. The capability 
of the proposed methodology was, in a first phase compared 
with other common prediction mechanisms. Then, using the 
predicted values, the scheme was tested in the assessment of 
the tachycardia risk in patients whose heart rate values were 
in a critical range (around the threshold of tachycardia). For 
the effect, real data collected by the tele-monitoring study 
TEN-HMS, were used. The obtained values of sensitivity and 
specificity suggested the capacity of our strategy. 
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