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Abstract: In many processing plants decanter systems are used for separation of heterogeneous
mixtures, and even though they account for a large fraction of the energy consumption, most
decanters just runs at a fixed set-point. Here, multi model estimation is applied to a waste
water treatment plant, and it is shown using real production data, that it is possible online to
distinguish between different operating modes, which can be used in the control strategy for
energy optimization.
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1. INTRODUCTION

In many industrial processes where a fluid/solid mixture
is to be separated a decanter system is an obvious choice,
since it allows for continuous and rapid separation between
solids and liquids. An illustration of a typical centrifugal
decanter is shown in figure 1.

Fig. 1. Sketch of typical centrifugal decanter. Image cour-
tesy of Alfa Laval.

In the above figure the mixture is fed into the decanter
from the right side at A, through the hollow shaft at 8,
and the outlet streams are the clarified fluid phase at B
and the dewatered solids phase at C. The decanter itself
consists of an outer cone, which is driven by a motor at
3. The second motor, which drives the screw conveyer 2 is
also located at 3. The screw conveyer is mounted with a
set of vanes, 5, which pushes the solids towards the right
side as indicated by 4 and 6 into the solids discharge port,
which is located at 7.

As shown in figure 1, then the mixture to be separated is
feed into the decanter from the right side and ejected into

the decanter around the center of the main shaft. At the
left side two motors are located at 3. The main drive is
the one which rotates the bowl of the decanter at a very
high angular velocity thus accelerating the sedimentation
process, were as the other drives the screw conveyer to
extract the solids. The screw conveyer rotates at a low
relative velocity inside the bowl of the decanter. In order to
get a good dewatering of the solids, i.e. a good separation,
the solids layer should be as long as possible within the
bowl of the decanter. This translates to, that the region
within the bowl occupied by the solid fraction (5) should
be as large as possible, without letting solids exit with
the liquid phase. The only way to measure the extend of
the solid phase within the bowl is indirectly through a
torque measurement on the screw motor, since the amount
of solids being moved by the screw and the torque exerted
on the screw are related through a monotone function.
Therefore it is clear, that for a given feed composition and
flow rate, and a given desired filling of the decanter bowl
only one value for the torque will fulfill this, which will be
the control objective for the decanter control.

One of the main difficulties experienced when trying to
control a decanter system is, that the system parameters
are varying quite a lot as a function of the medium
being processed as well as the flow rate of the medium.
This is especially true for decanter systems used for
processing waste water and slaughter house waste, where
the heterogene mixture might vary a lot during a single
run. Thus in order to make a sufficiently good controller for
the system, an online parameter estimation scheme needs
to be in place.

Furthermore, as most decanter systems are operating in-
dependently of the other equipment in the production line,
e.g. feed pumps, then it is not possible to get information
from theses about the current expected operating condi-
tions. Thus it will be valuable to get an indication of up-
line equipments performance as well.
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In several industrial plants, the use of online parameter
estimation has been proven beneficial in improving the
operating performance of the process, either for improving
the control in terms of convergence rates and energy
consumption, or for fault detection purposes, e.g. Isermann
(2011); Kano and Ogawa (2010) and the reference therein.
It is therefore envisioned, that such an improvement will
also reveal itself in the control of decanter systems.

The data used in the presented study has been obtained
during a two day test run at the Aalborg Sewage Treat-
ment Plant West (ASTPW). The data from the first day
will be used to extract the model from, along with testing
of the parameter prediction algorithms. The algorithm is
then run on the data from the second day in order to
validate that the proposed procedure is feasible.

To the best of the authors knowledge online parameter
estimation on a decanter system has not been published
before, therefore no prior results exists for comparison.

In section 2, the proposed model structure is presented
and the Kalman Filter structure is recalled in section
3. Online parameter estimation where the parameter is
estimated directly is first presented in section 4 followed
by the development of the multi model approach for
the estimation in section 5. In section 6 the developed
estimator is evaluated with the test data set. Finally the
conclusions are drawn up in section 7.

2. SYSTEM MODEL

Through previous internal studies of the decanting process,
a first order non-minimum phase affine model has been
established empirically. As most simple decanter systems
only measure on the differential drive motor, where the
measurement is the produced torque by the motor, τ ,
needed for maintaining a specified differential velocity
and ∆ω, of the internal conveyer screws angular velocity
relative to the outer cones velocity, this is going to be the
output and input to the model used in the following.

The mathematical model for this setup is:

τ(s) =
τ0(F )

s
+

(a(F )) s+ c(F )

s+ b(F )
∆ω(s) +G(s) (1)

Where the parameters a, b, c, τ0 are all process parameters,
which are dependent on the current flow, as well as
dependent on the current composition of the material
being processed. Initial values for these parameters are
presented in table 1.

Variable Value Unit

a 12 kNm/Hz
b 0.01 Hz
c -660 Nm
τ0 8 kNm

Table 1. Coefficients for the decanter

The G(s) term is a noise term. Even though (1) looks
benign, then the non-minimum phase along with a high
level of process noise makes the estimation process rather
difficult. The physical interpretation behind the model
and the non-minimum phase is, that when the system is
at a steady state operating condition and an increase in
the differential velocity is applied, then the conveyer will

initially experience a larger torque due to the increased
velocity of the solids which needs to be transported.
However, as the solids is pushed out faster the amount
of solids within the decanter becomes smaller and thereby
the required torque to maintain the differential velocity
drops.

It turns out, that one of the most influential parameters
of the models performance is the affine parameter τ0, thus
a Kalman filter is introduced to estimate this part of the
process. In order to do so, the system will be put on state
space form, which for the continuous dynamics gives the
following parameters:

A = [−b] , B = 1, C = [c− ba] and D = a,

when the system is written as:

ẋ = Ax+Bu

y = Cx+Du.

Since the system is sampled at 0.1 Hz, the system is
discretized to this sampling frequency and augmented with
the constant term τ0, which is to be estimated. This results
in the system described by:

Φ =

[
0.5335 0

0 1

]
Γ =

[
7.4248

0

]
H = [380 1] D = 1909,

(2)
for the discrete system on the form

xk+1 = Φxk + Γuk
yk = Hxk +Duk,

and the associated state vector as xk = [τd τ0]T , where τd
is proportional to the dynamic contribution to the torque,
τ .

3. LINEAR KALMAN FILTER SETUP

The Kalman Filter structure used in this setup is the
standard linear formulation, and the prediction step is
generated as Grewal and Andrews (2008):

xpk+1 = Φxk + Γuk

zpk =Hxk +Duk

P p
k = ΦP p

k−1ΦT +Q

where superscript p denotes prediction values. The update
step is likewise generated as:

K = P p
kH

T (HP p
kH

T +R)−1

x̂k = xpk +K(zk − zpk)

Pk = (I −KH)P p
k .

The filter will be run on two different data sets - both
obtained from Aalborg Sewage Treatment Plant West
(ASTPW). The data sets are obtained during two days
of steady state operation of the plant, which means, that
most dynamics of the process is being suppressed by the
used controller. However, the flow into the decanter is
being changed at certain points, which leads to a new
steady state operating area for the decanter, which is to
be estimated. The first data set ASTPW1, which was
recorded during May 8th 2012 will be used as the training
set, whereas the second data set ASTPW2, recorded
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during May 9th 2012 will be used as the proof set. Both
data sets have been obtained using a 10 sec. sampling
interval

The ASTPW1 data set is depicted in figure 2.

Fig. 2. Differential velocity and resulting torque for the
ASTPW1 data set.

As a first step, the model described in section 3 is used
to check, that it is possible to estimate the constant
parameter in the model. By running the LKF as detailed

in 3 with R = 1 and Q =

[
0.01 0

0 100

]
the result depicted in

figure 3 is obtained. The initial guess of the constant has
in this case been set to 5450 Nm.

Fig. 3. KF estimation of the constant term with the
transfer function.

As it is clearly seen from figure 3, then the filter is able
to estimate the affine parameter, however, due to the
high amount of noise on the actual measured signals,
it converges to the value rather slowly. Hence it will
not be optimal for online usage. There are two different
approaches to cope with this problem: Either increase the
sampling rate to 1 Hz as opposed to the current 0.1 Hz.
This should decrease the convergence time by a similar
factor, thus getting a good estimate within a quarter of
an hour. The second possibility is to estimate a number
of models off-line, and then do an online estimation of
which model is the most probable. This is the approach,
which will be utilized in the following, since it has not been
possible to obtain measurements with a higher sampling
rate, and the 0.1 Hz sampling interval is a standard interval
for many older decanter systems.

The procedure followed in the remainder of this section is
thus first to isolate the two different operating conditions,
which is present in the ASTPW1 data set and identify
models for the two different operating modes. Following
this the multi model estimation procedure will be applied
to the entire data set to see if the developed estimator
is capable of identifying the different operating modes
correctly.

4. DUAL MODEL IDENTIFICATION

In order to estimate the models off-line the useful data sets
has to be identified first. That is, that on the basis of prior
knowledge about the flow set-points, the data set will be
divided into static sets, in which only one process model
applies.

The plant has been running with a steady inflow of 19 m3

h
from sample 0 - 551 and again from sample 2119 - 2694. In
the intermediate interval from sample 552 - 2118 the flow

was raised to 23 m3

h .

The model used for identification purposes is (2), where τ0
is adapted to fit the model at hand.

In the case of the first model, the result of the model
identification is seen in figure 4. The identification resulted
in a τ0 value of 5450 Nm.

Fig. 4. Estimation of τ0 for the first model. Green is output
estimate and blue is measurement.

Likewise the τ0 term for the second model was estimated
to be 5450 Nm, and the model fit is depicted in figure 5.

Fig. 5. Estimation of τ0 for the second model. Green is
output estimate and blue is measurements.

As seen from both figure 4 and 5, then there is a quite good
agreement between the estimated outputs of the model and
the actual process output.

5. MULTI MODEL ESTIMATION

In this step the two identified models from the previous
section will be run in parallel, fed with the same input,
and a binary discriminator is used to determine, if the
underlying process is best described by the first or the
second process model.

Ordinarily, a good metric for the model agreement is the
covariance matrix, however, since there is no noticeable
change in the system dynamics, but only within the τ0
term, this method can not be used. The place where
the influence of τ0 is most noticeable is within the error
between the output and the estimated output, hence this
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will be used as a metric for determining which model the
process measurements most likely belongs to. The setup is
depicted in figure 6.

Fig. 6. Structure of the estimation setup.

As it is seen then the output from the controller, i.e. the
input the plant, which is know, is fed to the two possible
models. From these, two estimated outputs, y1 and y2
are generated and fed into the model selector along with
the actual output of the plant. As described earlier, the
decision process here is a binary decision process, that
is, by defining the two error signals e1 = |y − y1| and
e2 = |y − y2| then the model selector output becomes

m(k) =

{
1 if e1 ≤ e2
2 if e1 > e2

(3)

For the ASTPW1 data set, and the above identified models
the two error signals e1 and e2 are depicted in figure 7.

Fig. 7. Output estimation error of the two model estima-
tions.

And using the discriminator directly, as described in (3),
figure 8 is produced. Each dot represents one data sample,
and throughout the experiment, only two different models
are available for selection. The two vertical lines indicates
when the inflow was changed. As it is seen, then the
estimator is quite good in estimating the correct model
when the process is stationary. However, when the process
changes parameters, e.g. changes the inflow, the transition
from one model to the other is, first of all highly affected
by the slow change in the dynamics, which in combination
with a quite high noise/disturbance level gives rise to a
considerable amount of jitter in the transition phase. For
the ASTPW1 data set it should also be mentioned, that
just after the first flow change, around 600 samples into
the set there was an error with the flocculent addition,
which is part of the explanation of the murky results just
after the first model transition.

The same result, but where the model output estimates
have been first order low pass filtered with a 5 min. time
constant, can be seen in figure 9. Here it is seen, that
through an appropriate filtering, and a hysteresis decision
rule, it would be possible to use the method online without
introducing controller jitter. For this run, hysteresis levels
of 1.7 for going to model 2 and 1.3 for going to model 1
would produce a control with only two switches.

Fig. 8. Estimation of which model is the most probable.

Fig. 9. Estimation of which model is the most probable
after a low pass filtering has been applied.

6. RESULTS

The final step in this analysis is to use the designed
estimator on an unknown data set, which in this case will
be the ASTPW2 data set.

The output of the estimator is shown in figure 10, and a 5
min. first order low pass filtered version, as for the training
data set is shown in figure 11. As with the previous plot
the two vertical lines indicate the times when the inflow
pumps set-point was changed.

Fig. 10. Estimation of which model is the most probable
for the ASTPW2 data set.

Fig. 11. Estimation of which model is the most probable
for the ASTPW2 data set after a 5 min. first order
low pass filtering.

Compared with the results of the training set in figure
8, then the results depicted in figure 10 shows a much
more clean result, meaning, that there are a lot fewer
incorrect model identifications. The same is true, if the
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filtered version is studied. Here it is even seen, that a
hysteresis decision function is no longer needed because
the estimation output is very well behaving. The peak
appearing around sample 1600 is actually the polymer
pump, which was turned off at this point, which introduced
a large disturbance to the system.

7. CONCLUSION

In this paper it has been shown how it is possible to
perform model estimation on a decanter system running
in steady state. As mentioned initially, it is quite difficult
to get a good identification of a dynamic model solely
based on measurements during static operation. However,
as seen from figure 10 and 11, then it is indeed possible
to distinguish between different apriori estimated models
online. From change in process set-points and until the
estimation has converged to the new model a delay of
around 10 min. has been observed in the available data set.
However, it should be taken into account, that the process
itself has very slow dynamics towards input variations with
a rise time of 20 to 30 min. Being able to estimate the
current operating conditions of the decanter now opens
the possibility of utilizing this information in the overall
control strategy for the decanter.
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