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Abstract: Demand for final products has grown significantly worldwide, particularly, due to the increase 

of emerging countries on the consumer market. The big problem is that consumer of energy and use of 

raw material increase in parallel. Consequently, an unsustainable environmental situation will be 

observed on the next future as arguing some researchers. In order to mitigate such a situation, the reuse of 

resources can be an interesting initial solution. However, reuse products or materials require a somewhat 

treatment or remanufacturing process that together with the collection process can be highly expensive. 

The paper tries to identify a return rate that leads to a minimum lower cost for running a reverse logistics. 

A chance-constrained LQG problem is used to provide both an optimal return rate and optimal 

production policy for returnable products. A fictitious company is used as an example of application. 

 

1. INTRODUCTION 

Due to exaggerated use of raw material, which is extracted 

from the earth, and the amount of energy spent to produce 

and distribute products around the world, reverse logistics has 

become an essential part of an integrated supply chain. The 

main objective of a reverse system is to shift products from 

market collectors to places where they can be treated or can 

be properly disposal. The purpose is that some products can 

get value along the reverse chain by mean of recycling or 

remanufacturing processes. Thus, it is possible to contribute 

positively to improving the environment, reducing waste by 

mean of remanufacturing or recycling. 

A reverse logistics system can be formulated through two 

integrated mathematical models: one represents the forward 

channel of the supply chain, where products are 

manufactured, stored in serviceable inventory units, and then 

moved to the marketplace in order to meet demand. The other 

denotes the backward channel, where used-products are 

recovered or discarded. Authors, like Fleischmann et al. 

(1997), have provided a typology of quantitative models for 

reverse logistics. Usually, in the literature, three kinds of 

problems involving such models are formulated as follows: 

(i) collecting, packaging, and distributing used products. The 

collecting process starts at the marketplace, from where 

customers leave their out-of-use products; (ii) scheduling of 

remanufacture and recycle process, which allows used 

products returning to the serviceable inventory of the 

company; and (iii) planning and controlling of items and 

products for reusing, without any additional process of 

remanufacturing.  

The forward channel model is a dynamic system that is 

affected by the stochastic fluctuation of demand. It is 

assumed that the demand follows a distribution of 

probability, which can be approximated by a normal 

distribution, see Graves (1999). As a main consequence, the 

forward channel system becomes a stochastic process. The 

problem formulated from this system belongs to the class of 

stochastic mathematical programming problem, which means 

that it is more complex to be optimally solved. 

It is worth mentioning that stochastic production-inventory 

systems are usually found in reverse logistics problems, 

particularly in reason of the return rate not known precisely 

over the future periods. Fleischmann et al. (1997) have shown 

that the traditional classification of   production and inventory 

stochastic problems, based on discrete or continuous-time 

models, can be also applied to model and solve problems of 

products recovering, see for instance Ouaret, et al. (2013) and 

Kenné et al. (2012)  

In this paper, a discrete-time Linear Quadratic Gaussian 

(LQG) model with chance-constraints is considered to 

represent a recovery problem. A two stages procedure is 

provided to allow managers determining an optimal return 

rate and optimal manufacturing-remanufacturing policy. In 

the first stage, different costs are combined in order to 

identify the optimal return rate. In the sequence, the second 

stage consists in finding a manufacturing-remanufacturing 

optimal policy. To solve the chance-constrained LQG 

problem, an equivalent, but deterministic problem is 

considered. An Open-Loop Feedback Controller is used as a 

solution approach.  Sensibility analysis, provided from 

simple variation of some parameters as return rate of used 

products, delay of return, or both, allows creating production 

scenarios that help managers to make prospered decisions.  

The paper is distributed as follows: section 2 discusses a 

constrained LQG model for reverse logistics problem; section 

3 introduces a two-stage procedure, which allows managers 

deciding on the optimal return rate and providing an optimal 

production plan; and the section 4 presents a numerical 

example to illustrate the application of this procedure
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Fig. 1. A forward-backward system under uncertain demand 

2.  THE REVERSE LOGISTICS MODEL 

Figure 1 illustrates the forward and backward channels of a 

unique product supply chain. Note that there are two stores in 

this figure: the first one (Store 1) stocks manufactured and 

remanufactured products to meet the demand, and the second 

store (Store 2) collects the returned products. These returned 

products can be remanufactured or disposal properly. 

It is worth emphasizing that the demand for products must be 

fulfilled by the combination between new products 

(manufactured) and remanufactured products (i.e., used 

products that are collected from the marketplace and, if 

possible overhauled). Other features and properties 

considered for the system exhibited by figure 1 are: a) 

demand is a random variable that follows a stationary 

stochastic process while the return process is assumed 

essentially deterministic; b) both manufacturing and 

remanufacturing process has infinite capacity; c) similarly, 

the maximum physical storage capacity of inventory for 

warehouses 1 and 2 are assumed unlimited; d) there is a 

constant time-delay associated with return products from the 

market; and e) used-products may be disposed of after being 

collected. There are two main reasons to discard used-

products: the first has a technical reason, which is related to 

inappropriately returned products for remanufacturing 

activities, and the second has a financial reason, in which 

remanufacturing all products can significantly raise the 

inventories, and, as a result, such strategy can increase the 

overall production cost. 

2.1. Stochastic inventory-production system 

The integrated forward and reverse inventory-production 

system illustrated in figure 1 can mathematically be described 

by a discrete-time stochastic control model with two state 

variables that are related to inventory levels on serviceable 

and remanufacturable units; and three control variables that 

are related to manufacturing, remanufacturing, and discard 

rates.  

Note that, such features like dynamic of reverse logistics and 

uncertainties associated with the process of collecting and, 

simultaneously, attending the market demand are usually 

reasonable considerations to justify the use of stochastic 

control models. In the literature, it is possible to find 

innumerous contributions related with this kind of model, the 

majority of them consider the formulation in time-continuous 

pattern; see, for instance, Dobos (2003) and Miner and 

Kleber (2001). For reader interest in more generic themes of 

reverse logistics, it is recommended to visit the site 

http://www.rltinc.com. 

 The discrete-time stochastic control model is described by 

the following two difference equations, which represent, 

respectively, the inventory balance systems related to forward 

and reverse channel of the supply chain: 

x1(k+1)  =  x1(k)+u1(k)+u2(k)-d(k)        (1) 

x2(k+1)  =  x2(k)-u2(k)-u3(k)+r(k)                   (2) 

where, for each period k, the notation is given as follows: 

x1(k) = inventory level of serviceable products (store 1); 

x2(k) = inventory level of used product (store 2); 

u1(k) = production rate of manufactured products; 

u2(k) = production rate of treated used-products; 

u3(k) = discard rate of unserviceable products; 

d(k)  = demand level for serviceable products;  

r(k) = d(k) =  level of used-products 
 

The demand d(k) is a random variable that follows a normal 

distribution with mean and variance given by  )k(d̂  and 2

D  

finite, respectively. Since d(k) is an independent random 

variables, the inventory system (1) is a stochastic process. As 

a consequence, the inventory level x1(k) is a dependent 

random variable with mean )k(x̂1  and variance 0)k(V
1x  . 

On the other hand, the return rate r(k) is deterministic 

variable given by )k(d̂)k(r 


, with 01 denoting a 

percentage of the total number of returned units. As a result, 

the inventory system described by the backward process (2) 

should be seen as a deterministic process. 
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2.2. The stochastic reverse logistics problem 

Based on system (1)-(2), a chance-constrained Linear 

Quadratic Gaussian (LQG) model is formulated in order to 

represent a logistic reverse problem as follows: 

 

 

 

 

(3) 

 

 

 

 

It is worth mentioning some characteristics of using a 

quadratic cost: a) it penalizes equally, both positive (i.e., 

excess) and negative (i.e., backlogging), variations of 

decision variables; and b) it induces high penalties for large 

deviations of the decision variables from the origin, but 

relatively small penalties for small deviation, see Bertesekas 

(2000).  

  Based on problem (3), a two-stage procedure that provides 

an optimal return rate (), and as well an optimal forward and 

reverse policy for systems (1) and (2) are described next. 

 

3. SOLVING (6) WITH OPTIMAL RETURN RATE () 

This section presents a structured procedure that allows the 

decision maker defining an optimal return rate for a given 

product. The procedure takes into account the quadratic 

programming model, which is presented in the formulation 

(6), to choose the best return rate and to provide an optimal 

inventory-production for the system given in (1). 

It is known that the strategy used for selecting models that 

help managers to implement a reverse logistics in a given 

supply chain depends on the costs related to the logistics of 

returning, which includes costs for collecting, transporting, 

storing, treating and disposing. Besides there are also indirect 

costs like energy costs for treating of returnable product and 

no-measures costs related to pollution in part due to an 

increase of transportation in urban centers. In fact, these costs 

are often high and can reduce the profitability of the supply 

chain. However, the most part of these costs is tangible. This 

means that the supply chain can obtain intangible gains by 

associating its image to an environmentally sustainable 

supply chain, which reduces the extraction of raw material of 

the earth.  

The procedure proposed below takes into account the 

definition of scenarios to choose the optimal rate of return for 

a given product, considering the costs in forward and 

backward (reverse) channels of the supply chain. After 

setting the best rate, the next step is to identify an optimal 

production-inventory schedule that considers the projected 

levels of demand. It is assumed here that the supply chain 

runs in a make-to-stock pattern. 

The procedure is given in two stages: 

Stage 1:  Determining an optimal return rate  

First, it is important to set some basic assumption related to 

problem (6):  

 Collection and transportation costs are included in the 

inventory cost of the product returnable. 

 Demand d(k) is assumed to be equal to the monthly 

average demand (i.e., d(k)= )k(d̂ ). Note that such average 

demand )k(d̂  is computed from historical data that 

contain monthly record of sales.  

Then, some scenarios can be constructed by relating costs 

between the forward and reverse channels of the supply 

chain. This allows comparison of different scenarios that 

involve costs with inventory and manufacturing of 

serviceable products (i.e., c1 and h1, respectively) and the 

costs of inventory, treatment and disposal of collected 

products (i.e., h2, c2 and c3, respectively). There are several 

possibilities of combinations of these costs.  

Lastly, the problem (6) is solved, but considering the return 

rate "" as being the decision variable that must be found. 

The follow two steps provide the scheme: 

 

Step 1: Setting demand equal to its average monthly demand, 

(i.e., d(k) = )k(d̂ for k = 1, 2, …, T), the problem (3) is 

transformed to a Mean Value Problem, which is given as: 
 

 

 

 

(4) 

 

 

 

 

 

Step 2:  Changing the prices in the criterion of 4 (i.e., h1, h2, 

c1, c2 and c3), it is possible to create different scenarios of 

retuning by solving the  problem (4) when  varies in the 

range (0, 1]. The best value of  (i.e., =
*
) is the one that 

provides the smaller criterion of (4). 

 

Stage 2: Determining optimum production and inventory 

levels for serviceable and returnable products, with =
*
.  

 

Computing a true optimal solution (i.e. an optimal closed-

loop solution) for the stochastic problems, like problem (9), 

is not a simple task. Thus, in the literature, it is possible to 
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find alternative approaches that provide near-optimal 

solutions. The sequential suboptimal techniques (Bertesekas, 

2000) can be interesting approaches to providing revised 

policies. In this context, Open-Loop Feedback Controller 

(OLFC) is a suboptimal alternative proposed here for 

investigation. This procedure permits updating the optimal 

policy periodically, taking into account the current state of 

systems (1)-(2). Note that the feedback characteristic of the 

OLFC makes it an adaptive procedure. This means that the 

solution provided by the procedure is better than that one 

given by an open-loop procedure. Note that an open-loop 

solution is obtained from the classical mean optimal problem. 

 

Note that the problem (3) is a stochastic optimal control 

problem with perfect state information. So, it is perfectly 

possible to measure the inventory level (i.e. the state) at the 

beginning of each new period k. This characteristic allows 

immediate application of the OLFC procedure since it does 

not need use state estimators. Basically, the steps of the 

OLFC procedure are (Bertesekas, 2000): 

 

Step 1. In the beginning of each period k, the exact position 

of the serviceable (x1(t)) and returnable (x2(t)) inventory 

levels are measured. 

 

Step 2. With these information (i.e., ( 1x~ (k) = (x1(t)) and 

( 2x~ (t) = (x2(t))), an optimal production policy {u1(k) u2(k) 

u3(k)}k= t, t+1, …, T-1 is computed from solving the following 

equivalent problem (Silva Filho, 2011): 

 

 

 

 

(5) 

 

 

 
where,  the integration constant of the criterion Kt, when it 

takes in probability, depends of the variance of demand and 

the period t, it gives by 

 

)tT()hh(K 2

d21t                        (6) 

 

 

The physical constraints of serviceable and collected products 

are transformed into equivalents, but deterministic 

inequalities given by: 

 

 

 
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     (7)      

Step 3 As a result, it can be established a production policy to 

the problem (10) that uses the result provided exactly during 

period t. This means that the rest of policy is completely 

ignored. 

Some comments: 

The main characteristics about this procedure are: (a) it 

requires the solution of N problems in a rolling horizon 

scheme. This is equivalent to maintain the production plan 

constantly revised; (b) only the decision of the period k=t (i.e, 

ui(t), i=1,2,3) is effectively applied. The rest of the policy (i.e, 

{ui(t+1), ui(t+2), ..., ui(T-1); i=1,2,3}) is ignored since it does 

not take into account the actual level of inventory; (c) there is 

easy computational implementation of multidimensional 

problems. The procedure permits the application of different 

optimisation techniques, and then, user can choose the one 

that requires less computational effort; (d) fixing t=1 and 

d(k)= )k(d̂  ( 2

D =0, k), the problem (5) becomes a static 

optimisation problem, also known as mean problem; (Silva 

Filho, 2009) and (e) being adaptive, the OLFC provides a 

better solution than the one provided by the mean optimal 

solution. 

 

4. NUMERICAL EXAMPLE 

A fictitious company makes to stock and distributes a product 

to the marketplace. Under the pressure of environmental 

movements, the supply chain department of this company has 

been seeking alternatives to implement a model of reverse 

logistics that not causes a strong impact on its profitability. In 

short, currently, the company is in charge of manufacturing 

the final product of this supply chain and distributing it into 

the marketplace. In the brief future, the company will have to 

collect it back and to treat or dispose of it. 

The operational data of the company are given in the Table 1: 

Table 1. Company’s data 

Elements Description 

T=12 months            Planning horizon 

α=0.9                        Customer satisfaction level 

=50 Standard deviation of demand 

x01=300                    Initial inventory level of serviceable 

0x1  300x1   Lower and upper bounds of serviceable 

750u
1
   Upper production bounds 

h1=2;  c1=3               Current production and inventory costs 

$ 6.570.000 Total cost of the company per year 

The company aims to answer some questions: a) assuming 

different costs, as shown in Table 2, what is the best rate of 

return for the company?;  b) after selecting optimum rate of 

return, which will be the final cost of the optimal reverse 

policy?; and c) compared with the current policy model, what 

difference is verified?  

Initially, let’s consider the first question: assuming that 

inventory costs are h1> h2, it becomes possible to evaluate 

the behavior of rates of return for different situations related 

to the production and disposal costs, see Table 2. 
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Table 2. Costs relations with h1>h2  

Situations Production and disposal costs 

1 c1 > c2 = c3 

2 c2 < c1 = c3 

3 c1< c2 = c3 

4 c2 < c1 = c3 

5 c1> c2 > c3 

6 c1< c2 < c3 
 

Setting the mean value of demand   to the problem (3) and 

solving the step 2 of stage 1, the best value for  a return rate 

for the company is promptly identified. The relation among 

return rates and costs provide different curves  that are shown 

in the figure 2. 

 

Fig. 2. Return rate versus costs 

From figure 2, it is possible to identify two optimal situation 

for the company that is to consider c1>c2=c3 or c1=c2=c3. 

The return rate for these two situations is to ½, that is, =0,5. 

4.1. Scenario without a reverse policy  ( = 0%) 

Initially, let’s assume that the company does not use a reverse 

system as the one exhibited by figure 1. The operation policy 

of the company in terms of serviceable inventory level and 

manufacturing rate is shown in figure 3.  
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Fig. 3. Inventory and production levels for =0 

It is worth mentioning that the company is running in its 

maximum load, which means that u1(k)   750u1  . About 

the inventory levels, every product manufactured by the 

company is practically used to meet the demand at once. 

However, a small part of products is kept in stock to ready-

delivery. In fact, the company uses a performance measure 

for customer satisfaction that look for guaranteeing 95% of 

ready-delivery stock to the market place. The inequality 

given by (7) shows how to keep a save stock for ready-

delivery with k= 95% of chances of no violation of 

serviceable inventory constraint. 

Table 3 provides the costs of the company to run its 

production operation without a reverse policy (=0). Note 

that both holding serviceable and manufacturing new product 

costs are considered in this Table. The idea is to compare 

these costs with those costs that will obtain with   = 50%. 

4.2, Scenario with the return rate  = 50% 

Figures 4 and 5 illustrate optimal inventory and production 

trajectories for forward and backward channels. In this 

scenario, 50% of collected products return from the 

marketplace. These products are checked before to be sent to 

remanufacture or to be properly disposed. An interesting 

aspect to be noted through this situation is the reduction of 

the production of new products. Practically, new product 

production rate was reduced to 47% compared to the previous 

situation (i.e., without reverse policy; figure 3). Note, from 

figure 5, that remanufacturing level of used-products was 

close to maximum capacity. Surely, this new feature reduces 

costs, particularly due to purchase of components to produce 

new products. Note that this feature explains the reason of the 

cost for remanufacturing to be less than the cost for 

manufacturing new products.  
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Fig. 4. Inventory-production levels without reverse policy 

 

Production and disposal rates
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Fig. 5. Optimal production and disposal rates 
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4.3. Comparing scenario’s costs 

Table 3 provides the costs related to both scenarios. Note that 

the total cost of the scenarios 1 is more than the double of 

scenario 2, which means that the use of remanufactured 

products can decrease the overall costs of production. It is 

important to understand here that such a result is only 

possible because it was assumed that the costs incurred in the 

reverse channel are less than the costs of the forward channel. 

Table 3. Costs of each scenario ($) 

Costs                  

(K=1000) 

Scenario 1 

(=0) 

Scenario 2 

(=0,5) 

Serviceable holding  421,70 K 352,45 K 

Returnable holding   40 K 

Manufacturing  6.138,20 K 1.500 K 

Remanufacturing   909,39 K 

Disposing   6.959,30 

Total cost 6.559,90K 2.808,80 K 

4.4. Final comments about scenarios 

The use of reverse logistics scheme joint to a good return 

policy for used products can reduce the holding and 

production costs of the company. However, it is required that 

the cost for remanufacturing be at least slightly less than the 

cost for manufacturing new products. The two scenarios 

previously analyzed show such a situation. In fact, in scenario 

one (=0), the manufacturing of new products is intense and 

uses all production capacity. Comparatively, in the scenario 

two (=0,5) returnable products are remanufactured and, as a 

consequence, the manufacturing process of new products is 

reduced around 47%, which means less expensive cost for the 

company. This characteristic is observed in the Table 3. 

5. CONCLUSION 

The use of raw material extracted from the earth and energy 

spent to produce and distribute products around the world 

have done reverse logistics an essential part of an integrated 

supply chain. The main objective of a reverse system is to 

move products from market collectors to places where they 

can be remanufactured or properly disposed. The purpose is 

that some used-products can get value along the reverse chain 

by mean of any retreatment. As a consequence, it is possible 

to improve the environment, reducing waste. 

In this paper, reverse logistics channel is added to the forward 

channel in order to reduce inventory and production costs. A 

stochastic dynamic problem is introduced to this proposal. 

The problem is, therefore, defined by two production-

inventory systems; one is a forward stochastic system, and 

the other a reverse system. During the operation of these 

systems, manufacturing and remanufacturing products are 

available in a serviceable inventory to meet the demand.  

After a period, products already used return from the market 

to the company using a backward channel, which includes a 

returnable inventory and a remanufacturing process.  

A two stage procedure is considered in this study. In them, a 

stochastic linear quadratic Gaussian (LQG) model with 

constraints is formulated. In the first stage, the random nature 

of the problem is eliminated by changing the demand by its 

monthly average value. Thus, in this first stage, the optimal 

return rate is provided, taking into account different schemes 

of costs (as shown in Table 2). In the second stage, the 

stochastic problem is solved by mean of an Open-Loop 

Feedback controller, where an estimated demand is used to 

provide an optimal annual plan for manufacturing, 

remanufacturing and disposal variables.  

Through scenarios analyses, it is possible to compare this 

optimal plan with a return rate obtained from stage 1, with 

the scenario where a company does not use a reverse channel. 

This procedure can help managers to develop decision-

making about appropriate policies of returning for the 

company. In fact, this simple example of a make-to-stock 

company, it is possible to reach important conclusion regards 

to the use of returned products to reduce costs for the 

company. 
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