
     

A Bayesian Approach to Model-Development: 

Design of Continuous Distributions for Infection Variables 

 

Logan Ward* Mads L. Mogensen** Mical Paul*** Leonard Leibovici*** Steen Andreassen* 


*Centre for Model-based Medical Decision Support, Aalborg University, Aalborg, Denmark 

**Treat Systems A/S, Aalborg, Denmark 

***Sackler Faculty of Medicine, Tel-Aviv Univeristy, Tel-Aviv, Israel 

Abstract: Bayesian networks can be used to build models of diseases for diagnosis, and, if complemented 

by decision theory and utility functions, can also suggest treatments. This paper presents a development 

framework for such a network that has been used to model sepsis and in particular focuses on 

incorporating knowledge from the literature and databases as well as expert opinion into the model. Two 

parameters are presented as examples of the methods used, and the model is validated for a cohort of 

patients suspected of infection.  
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1. INTRODUCTION 

Bayesian networks can be used to build models of diseases 

for diagnosis (Alvarez et al. 2006, Sadeghi et al. 2006, 

Schurink et al. 2007, Kariv et al. 2011, Andreassen et al. 

1996). If complemented by decision theory and associated 

utility functions, they can also be used to suggest treatments 

(Hejlesen et al. 1997, Andreassen et al. 1999, Leibovici et al. 

2000).   

A Bayesian network consists of nodes, representing 

stochastic variables, and arrows linking these nodes together. 

To provide plausible reasoning, these arrows must follow the 

flow of causality (Pearl 1988), which is why they are also 

referred to as Causal Probabilistic Networks (Andreassen et 

al. 1991). Numerically the arrows hold conditional 

probabilities and the task of constructing a CPN consists of 

specifying the graph of nodes and arrows and the associated 

conditional probabilities. In the CPN, some of the nodes will 

represent variables, such as diagnoses, which are of interest 

but unobservable and other variables, like body temperature 

or blood pressure, which are observable. The task of the 

CPN, once it is constructed, is to modify the probability 

distributions for the unobservable variables in accordance 

with the axioms of probability theory, when evidence, i.e. 

values for the observable variables, is inserted into the CPN.  

During the construction of a CPN the conditional 

probabilities themselves may be considered stochastic 

variables. The initial specification of these variables can be 

seen as the specification of a priori distributions for the 

variables. These a priori distributions may come from any 

source of evidence, including expert opinion and knowledge 

derived from textbooks or the scientific literature. This is at 

best a semiformal approach, but its value has been 

demonstrated empirically, for example through the clinical 

performance of the Treat decision support system (Paul et al. 

2006a, Paul et al. 2006b, Paul et al. 2007, Leibovici et al. 

2007, Leibovici et al. 2010), which was constructed this way 

(Andreassen et al. 1999, Leibovici et al. 2000, Andreassen et 

al. 2005). Treat provides decision support for diagnosis and 

antibiotic treatment of acute infections. 

The Treat CPN is large with about 6000 nodes. A small part 

of the CPN, about 40 nodes, deals with the assessment of the 

patients’ degree of illness, expressed on a sepsis scale going 

from “None” through “Mild”, “Moderate” and “Severe” to 

“Critical”. In the first version (Leibovici et al. 2000) the 

observable nodes were discrete stochastic variables, and 

accordingly we call this CPN the Discrete Sepsis CPN (D-

Sepsis CPN). The structure of this CPN was largely 

determined by performing a factor analysis on a database of 

patients with different degrees of sepsis (Fig. 1, Phase I) and 

the conditional probabilities were based on expert and 

literature based opinions. The probability of a patient being 

bacteraemic is dependent on the patient’s degree of sepsis 

and the clinical success of the D-Sepsis CPN was 

demonstrated by showing that it could provide a fair 

prediction of bacteraemia with an area under the ROC curve 

of 0.70 (Paul et al. 2006a). 

Despite the clinical success of the D-Sepsis CPN it had some 

suboptimal properties. For example, temperature was 

represented by a discrete stochastic node with 5 states: <36.0, 

36.0-36.5, 36.6-37.9, 38.0-38.6 and >38.6. This fairly crude 

discretization gave rise to undesirable jumps in the 

assessment of patient state, for example if the patient’s 

temperature increases from 38.6 °C to 38.7 °C. This 

motivated a revision of the sepsis CPN into a Continuous 
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Sepsis CPN (C-Sepsis CPN) using continuous rather than 

discrete conditional probability distributions. Hugin (Hugin 

Expert A/S, Aalborg, Denmark), a tool for specification of 

CPNs, offers such a facility, provided the distributions are 

Gaussian. This revision uses the discrete sepsis CPN as its set 

of a priori conditional probability distributions to be modified 

(or learned). The revision itself is mainly based on expert and 

literature opinions (Fig. 1, Phase II) and thus its method of 

construction is essentially identical to the method used for the 

D-Sepsis CPN. The purpose of this paper is to provide insight 

into this semiformal process of construction.  

Eventually these informal “manual learning” methods may be 

supplemented by learning from case databases, where 

methods such as Dirichlet learning or expectation-

maximisation (EM) learning (Lauritzen 1995, Spiegelhalter, 

Lauritzen 1990) are employed (Fig. 1, Phase III). This is, 

however, outside the scope of this paper. 

As examples of the method of development, ‘manually 

learned’ distributions for two of the observable variables in 

the sepsis CPN are included. The observable variables are C-

Reactive Protein (CRP) and plasma albumin. They serve as 

extremes in terms of knowledge, because values of CRP 

during sepsis have been reported extensively in the literature, 

while literature on albumin during sepsis is sparser. We then 

validate the manual learning approach by testing the ability of 

Treat, including the continuous sepsis CPN, to predict 

bacteraemia. 

2. METHODS 

The purpose of the paper is to describe how the D-Sepsis 

CPN can be modified into the C-Sepsis CPN (Fig. 1, Phase 

II). For this purpose the D-Sepsis CPN serves as the 

specification of the a priori conditional probability 

distribution for the observable variables, given the state of 

sepsis.  

The first step in the process is to apply expert knowledge to 

the structure of the CPN, adding or deleting nodes and 

rearranging arrows. 

The next step is to make a literature search to locate papers 

containing information about these conditional distributions. 

A search of PubMed was performed using MeSH terms, 

followed by a staged elimination based on paper title, abstract 

and the full text. Information was extracted from the 

remaining papers and an informal meta-analysis was 

attempted.  

Finally the numerical results from the meta-analysis were 

modified in the light of the a priori distributions, i.e the D-

Sepsis CPN. 

The outcome of this process, i.e. the C-Sepsis CPN was then 

validated by comparing the ability to predict bacteraemia of 

Treat with the D-Sepsis CPN with the ability of Treat with 

the C-Sepsis CPN. This ability was benchmarked by the ROC 

curve for bacteraemia prediction. Of the two observable 

variables associated with severity we have available, 

bacteraemia and mortality, bacteraemia is chosen because of 

the greater number of cases, and consequently greater chance 

of showing a significant result. 

3. RESULTS 

To accomplish the first step (see Methods) a number of 

structural changes were made to modify the D-sepsis CPN 

into the C-Sepsis CPN (Fig. 2). Observable nodes were added 

for heart rate and oliguria to better model cardiovascular and 

renal failure, respectively. “Modifier” nodes were also added: 

these nodes are parents of observable nodes that modify the 

inference we make about sepsis from the observation made. 

For example, we make no inference about sepsis from the 

heart rate if the patient is receiving beta-blockers. Modifier 

parents were also added to the blood pressure node, where 

“age” was added because we expect higher blood pressure in 

older patients, and fluid resuscitation was added because it 

may partially alleviate reduced blood pressure. In addition, 

we chose to explicitly model the non-infectious aetiologies of 

the systemic inflammatory response syndrome (SIRS). This 

is accomplished through the addition of a diagnosis node for 

“other_SIRS” and a set of mapping nodes. These mapping 

nodes are a set of additional factors that define the 

distribution of severities for non-infectious causes of 

inflammation. Together with the other_SIRS node, they 

provide an alternative explanation for the observations in the 

sepsis CPN, which then reduces the strength of the evidence 

provided by the observations. 

Previously non-infectious SIRS was modelled by small leaks 

in the conditional probability tables of the factor nodes. The 

section of the D-Sepsis CPN concerning respiratory effects 

was also remodelled to reflect that the lungs are affected both 

 
Fig. 1 Sepsis CPN development framework. Phase I describes the development process of the discrete sepsis CPN, phase II the 

development of the continuous sepsis CPN - the subject of this article, and phase III the future development of the 

sepsis CPN through formal learning methods. 
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Fig. 2 The continuous sepsis CPN showing the nodes (ovals) 

and causal links (arrows). The colouring corresponds 

to the node type; red is the sepsis severity node, blue 

is an intermediate factor node, green defines an 

observed (or observable) node, orange the nodes 

associated with non-infectious SIRS, and white non-

observed or unobservable nodes. Nodes with a double-

ring are continuous nodes. 

by pneumonia and by sepsis. All of these modifications were 

made based on expert opinion. 

The second step (see Methods) in the development of the C-

Sepsis CPN was to conduct a literature search and define 

distributions for individual parameters with respect to sepsis 

severity. For the purpose of this paper, two extreme cases are 

taken: one parameter which has been researched extensively 

as a sepsis biomarker, CRP, and one for which little literature 

is available, albumin. 

3.1 C-Reactive Protein 

CRP is an acute-phase protein, with rapid increases 

associated with the onset of infection. Although CRP levels 

are raised in the inflammatory condition in general, non-

infectious causes of inflammation such as burns, trauma and 

surgery are usually associated with a lesser increase. CRP has 

been studied extensively as a potential biomarker for sepsis 

(Pierrakos, Vincent 2010). The normal range for CRP is well 

established, with serum concentrations >10 mg/L strongly 

indicative of an on-going pathological process (Vigushin et 

al. 1993). Attempts have been made to determine the validity 

of using CRP both as a marker to differentiate between those 

with and without an infection, the aetiology of the infection 

and the severity of illness for both septic and aseptic patients 

(sepsis, severe sepsis, septic shock and the non-infectious 

equivalents). Ideally, we would like to use this collection of 

knowledge about CRP to form a two-dimensional table of 

CRP distributions, with aetiology (non-infectious, viral, 

bacterial) on one axis, and severity (for example, mild, 

moderate, severe, critical) on the other. The severity 

gradations should also follow the consensus definitions for 

sepsis (Bone et al. 1992, Levy et al. 2003). 

To identify a suitable set of literature, a systematic, although 

not exhaustive search was performed. Using a Boolean 

strategy, and MeSH Terms, the PubMed database was 

searched using the query: 

((c reactive protein[MeSH Terms] OR "CRP" OR "C-

reactive protein") AND humans[MeSH Terms]) AND 

(adult[MeSH Terms] OR aged[MeSH Terms]) AND 

("sepsis"[Title/Abstract] OR "SIRS"[Title/Abstract] OR 

"infection"[Title/Abstract]) AND ("Critical care" OR 

"icu" OR "hospital" OR "emergency department") 

The search returned 1654 results. Inspection of titles and, if 

deemed necessary, abstracts reduced the set of results to a 

final list of articles for which full-text was inspected. One 

further article was identified through inspection of the 

reference lists of the articles for which full-text was 

inspected. A lack of data for subjects without infection or 

inflammation led to an additional search where three extra 

papers were found relating to healthy subjects to give a final 

list of 34 articles. 14 of these articles were then eliminated 

because they either failed to grade sepsis by severity, or the 

statistics were poor, that is the figures provided could not be 

converted to means and standard deviations. 

Meta-analysis was then performed on distributions grouped 

according to nine classifications: 4 infectious; viral infection, 

sepsis, severe sepsis, and septic shock (Fig. 3, top panel) and 

5 non-infectious; healthy, no SIRS (patients who may be ill, 

but do not meet the SIRS criteria), SIRS, severe SIRS and 

non-septic shock (Fig. 3, bottom panel). Median and 

interquartile range or median and range were converted to 

mean and standard deviation to allow pooling of data (Hozo 

et al. 2005). Initial inspection of the reported means and 

standard deviations suggested that log-normal distributions 

would be more appropriate than regular normal distributions. 

Data was converted into log-normal means and standard 

deviations (Higgins et al. 2008), and pooled together in a 

meta-analysis (Rudmin 2010). 

The C-Sepsis CPN defines five severity states- no 

(healthy/normal patients), mild, moderate, severe and critical. 

Each CRP distribution should then be mapped to one of these 

states. Fig. 4 shows which distributions from Fig. 3 are 

 
Fig. 3 Log-normal distributions for 4 infected (top panel) and 

5 non-infected (bottom panel) patient groups. 

Individual distributions are the result of meta-analysis 

of literature studies, with reported distributions 

converted to log-distributions as required. 
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Fig. 4 Distributions from Fig. 3 are grouped together 

(literature distributions, left hand side) and assigned to 

one of the severity states as defined in the continuous 

sepsis CPN; no, mild, moderate, severe, and critical. 

The distributions were then modified based on expert 

opinion to give those that are used in the C-Sepsis 

CPN (right hand side). 

grouped together, and mapped to each severity state (left 

hand panel) and the resulting C-Sepsis CPN distributions 

after input from experts (right hand panel). 

The distributions used in the C-Sepsis CPN were based on 

the combinations of literature distributions and on the expert 

opinions of our clinical partners, which include the 

distributions in the D-Sepsis CPN. The mild distribution in 

the C-Sepsis CPN is an example of a modification made to 

the literature distributions. We define this distribution as 

covering viral sepsis, and other mild infections such as 

atypical pneumonias for which data was lacking, as well as 

several non-infectious aetiologies. These distributions, 

although formed from studies with relatively few cases, serve 

the purpose of defining an approximate mean and range to be 

covered by the resultant distribution and the C-Sepsis 

distribution (green) was chosen to cover this range.  

Another expert-motivated decision was taken in forming the 

moderate curve. For this curve, we group non-septic shock 

patients with ‘sepsis’ patients. We would like to have that 

this state is used for patients with uncomplicated sepsis, that 

is, those that have not progressed to severe sepsis or septic 

shock. However, two problems arise here; not every paper 

explicitly defines sepsis diagnosis in this way according to 

the ACCP criteria, and the fact that the ACCP consensus 

definitions for sepsis have changed (Bone et al. 1992, Levy et 

al. 2003). This led to the decision that the moderate 

distribution should be shifted slightly lower than that formed 

from the literature. Coincidentally, this closely resembles the 

literature curve for non-septic shock.   

It is important that there is significant overlap between the 

septic distributions because of the time taken for the CRP 

level to reach its peak, usually 36-50 hours after the original 

insult (Vigushin et al. 1993). Some studies have also 

suggested that the degree of increase of CRP does not reflect 

the severity of illness (Mitaka 2005). CRP typically has a 

maximum of 300-500 mg/l which can be reached even in 

non-severe cases, meaning that for individual patients, the 

sensitivity of CRP in differentiating between stages of sepsis 

is limited. 

3.2 Albumin 

Hypoalbuminemia is a commonly recognised marker of 

injury severity. Serum albumin concentration can be 

modified by several mechanisms; a change in production of 

albumin, a change in albumin consumption/degradation or a 

change in vascular permeability, allowing albumin to 

distribute from plasma into the interstitium. The rate of 

albumin synthesis and catabolism is many times smaller than 

the normal rate of albumin diffusion to the interstitium 

(5%/h), and is too slow to be responsible for the rapid drop in 

serum albumin seen in sepsis and other critical illnesses 

(Fleck et al. 1985), leaving capillary leakage as the accepted 

mechanism by which levels are reduced. A meta-analysis 

found serum albumin to be a dose-dependent predictor of 

poor outcome, with significant increases in mortality, 

morbidity and length of stay for each decrease of 10 g/L 

(Vincent et al. 2003).  

Using a similar search procedure to that used for CRP, the 

following query was entered into the PubMed search facility: 

(albumin, serum[MeSH Terms] AND humans[MeSH 

Terms]) AND (adult[MeSH Terms] OR aged[MeSH 

Terms]) AND ("sepsis"[Title/Abstract] OR 

"SIRS"[Title/Abstract] OR "infection"[Title/Abstract]) 

AND ("Critical care" OR "icu" OR "hospital" OR 

"emergency department") 

The search returned 244 results, all of which were rejected 

for the purpose of defining explicit distributions for albumin 

stratified by sepsis severity and/or aetiology. Serum albumin 

has not, unlike CRP, been evaluated as a biomarker for sepsis 

severity, so there is a notable absence of literature in which 

measurements of albumin concentrations are recorded in 

relation to the stages of sepsis. The normal distribution used 

in our network has been taken from a large study of albumin 

as a predictor for mortality (Corti et al. 1994). 

To design the severity-based distributions, data from the 

Treat study (Paul et al. 2006b) was used to set the range 

which needed to be covered. A set of distributions was 

defined, with means decreasing according to sepsis severity 

to reflect the trend noted in the meta-analysis of Vincent et al. 

(Vincent et al. 2003). The distributions implemented in the 

C-Sepsis CPN are shown in Fig. 5. Plasma 

hyperalbuminemia is rare (Quinlan et al. 2005), so it is not 

covered. 

 
Fig. 5 Gaussian distributions for serum albumin for the 

severity states of the continuous sepsis CPN. 
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3.3 Predictive Performance 

The final step of the development process, that is, phase II of 

our framework (Fig. 1), was the validation of the C-Sepsis 

network. We compare the respective abilities of the D- and 

C-Sepsis CPNs to predict bacteraemia, assessed by the area 

under the ROC curve. 
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Fig. 6 ROC curves for the prediction of bacteraemia for the 

D- and C-Sepsis CPNs. 

The data used was collected from 263 patients suspected of 

infection in the acute ward at Hvidovre Hospital, Copenhagen 

University Hospital, Denmark from November 2011 to May 

2012. Of the patients admitted, 19 (7.2%) had bacteraemia. A 

comparison of ROC curves for the discrete and continuous 

models shows a non-significant improvement in bacteraemia 

prediction (two tailed, p=0.3). The area under the curve 

(AUC) for the continuous model is 0.80 (95% confidence 

interval 0.70-0.90) while the AUC for the discrete model is 

0.73 (95% CI 0.62-0.85). The two ROC curves are shown 

overlaid in Fig. 6. Although the result here is not statistically 

significant, it is promising and provides motivation for 

continuing down this path of development. 

4. DISCUSSION 

In this paper we have described the manual part of the 

process of building the structure and numbers of a CPN from 

a mix of expert knowledge and the literature.  Many systems 

have been built this way, but to our knowledge the process 

has not been described in any great detail – possibly because 

it is an unsatisfactory mix of partial knowledge based on 

literature or expert opinion and guesswork. However, despite 

any flaws in the process, the fact remains that it produces 

CPNs, such as the Treat CPN which not only work, but 

actually outperform clinicians (Paul et al. 2006b).   

Learning, from a Bayesian perspective, can be considered as 

a stepwise updating of knowledge in the light of evidence. No 

formal restrictions are placed on the source or the format of 

evidence, leaving us free to combine expert opinion with 

knowledge gleaned from the literature. Adopting such a 

philosophy allows us to use all the information available, and 

transforms CPNs into an updateable repository for 

knowledge. Seen in that light it is less surprising that a 

manually constructed CPN can outperform clinicians. The 

CPN can be constructed after close scrutiny of the available 

literature. The CPN will then serve as a repository of the data 

extracted from the literature and will continue to remember 

this. Any clinician will find it difficult to remember the exact 

statistics for findings, prevalences etc., which together make 

up the information going into the CPN. In addition the CPN 

can provide reasoning, strictly adhering to the axioms of 

probability theory.  

Despite attempts to formalise the manual learning process 

through systematic searching of the literature and meta-

analysis of the studies identified, the process remains 

difficult. For example, even the distributions for CRP, which 

was the best parameter in terms of literature availability, were 

flawed because of problems with the grouping of patients 

according to severity of sepsis. This is partially due to 

different strategies for grouping in different papers and 

partially due to a change in the consensus definitions of 

sepsis over the time that CRP has been investigated as a 

biomarker. Another flaw is incomplete data for some types of 

infection, such as viral infections or atypical pneumonias.  

The process was also flawed for the other parameter 

presented in this paper, Albumin, although in this case it is 

due to a complete lack of relevant data, requiring that we 

instead base our guess for distributions on trends in mortality.  

The conversion from discrete to continuous nodes for the 

observed parameters in the sepsis CPN has eliminated the 

“jumps” in diagnoses, previously seen with small changes of 

an observable parameter, e.g. fever, with the additional 

benefit of a modest, albeit not statistically significant, 

improvement in performance. 

Another goal of the construction of the C-Sepsis CPN was to 

increase the transparency of the network, that is to say, to 

increase the ease with which the network can be interpreted. 

An example of this is that the non-infectious causes of SIRS 

are now explicitly represented by their own node.   

We do not believe that substantial further improvement can 

be made by a continuation of the manual refinement of the 

probability distributions in themselves, although some benefit 

may be seen from the addition of new nodes, for example 

lactate or procalcitonin. To this end, further improvements 

must then come from a formalisation of the learning process 

(Fig. 1, Phase III), automatic learning from a database using 

Dirichlet or EM learning. 

5.  CONCLUSIONS 

Initial results suggest that the manual construction of 

continuous nodes in the Treat sepsis network can improve the 

prediction of bacteraemia, although the results from the small 

test database are not statistically significant. The results 

obtained provide motivation for further testing using a larger 

database, and further development of the model through the 

addition of nodes and application of automatic learning 

methods to adjust the prior probability distributions. 
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