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Abstract:

The ultimate goal for humanoid robotics research is to develop humanoid robotic systems
capable and flexible enough to handle the challenge of working alongside human in complex
natural environments performing everyday tasks. To reach this goal it is key to develop
appropriate structures in which to organize the acquire knowledge in a manner that allows
the system to retrieve it in order to use it to fulfil its missions. In this work a knowledge base
representation of the robot skills knowledge organized in terms of the relationships between

objects, actions and event frames is proposed.

1. INTRODUCTION

Great advances have been made in humanoid robotics
research, especially during the last two decades. There
currently exist robots that walk, run or climb stairs, that
can handle and manipulate objects, that interact and play
games with people, etc. However, all this robots exist in the
scope of research departments of universities or technolog-
ical companies. Despite all advances, the ultimate goal of
an intelligent and autonomous humanoid robot companion
is still far from reach. Important challenges remains to
be solved. Functional humanoid robots would need to
execute a wide range of movements in a natural human-like
manner. They would also need to process information from
multiple sensors into a reliable representation of the world
in order to understand and react to their environment.
Also, they must be engaging and responsive, and they must
present intelligent, natural and predictable behaviours.

In this work we focus on the challenge of providing robots
with systems that allow them to continuously learn new
skills knowledge and adapt their existing skills knowledge
to new contexts. The aim is to build knowledge base with
the knowledge of learned skills allowing for its storage,
classification and retrieval, for a humanoid robotic systems
to be able to access its acquired knowledge in a manner
that allows it to retrieve it in order to use it to deal with
the constraints and conditions of its current context.

Section II surveys related work on libraries and knowledge
base of robot skills. Section IIT address the framework
for learning the skills. Section IV discuss the knowledge
representation formalism. Section V presents the structure
of the knowledge base. Section VI concludes this paper.
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2. ROBOT SKILLS KNOWLEDGE LIBRARIES

Main goal for humanoid robotics research is to build hu-
man like robots that can work with humans in continuous
changing environments and performing a wide array of
tasks. To achieve a complex behaviour such as this it would
be necessary to have inclusive and comprehensive reper-
toires of skills. For this the concept of movement prim-
itives, also called movement schemas, basic behaviours,
units of actions, etc, is important. Movement primitives
are basic sequences of action accomplishing complete goal-
directed behaviors (Schaal [1999]). Coping with the com-
plexity of motor skills learning for robots, needs to rely
on the insight that humans decompose motor skills into
smaller subtasks. Many theories about motor primitives
suggest that they are viable means for encoding humanoids
movements.

The movement primitives are sequences of action that
accomplish a certain movement goal. The primitives en-
code groups or classes of stereotypical movements (Mataric
[2000]). To deal with complex motions a library of move-
ments primitives can be built (Pastor et al. [2009]), pro-
viding basic components from which multiple desired robot
tasks can be performed by combination and superposition
of the primitives. A robotic system equipped with a well
stock library of movement primitives can be though of
possessing an adequate repertoire of actions to deal with a
vast range of situations. Such collection of primitives are
used to build a knowledge base from the learned motions
of a task. Various examples can be found on building up
knowledge base from learned motion tasks.

The work of Ijspeert et al. [2003] suggested using dynam-
ical systems (DS) as motor primitives. Control policies
could be used to represent basic movements that form
a library of motions. Defining the primitives in term of
causal dynamical systems allows then to be parametrized
by a small set of dynamical parameters and an input
driving the overall dynamics.

3042



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

Mataric [2000], proposed to structure the motor system
into a collection of movement primitives, which then serve
both to generate a movement repertoire to the humanoid
robots, and to provide prediction and classification capa-
bilities for visual perception and interpretation of move-
ment. The movement primitives represent the generic
building blocks of motion that can be implemented as
parametric motor controllers.

Zoliner et al. [2005] built up a knowledge base of tasks
by extracting relevant knowledge from demonstrations of
manipulation problems. They dealt with the integration of
learned tasks into a knowledge base as well as enabling the
system to reason and reorganize the gathered knowledge
in terms of re-usability, scalability and explainability of
learned skills and tasks. Goal was comparing newly ac-
quired skills with already existing tasks knowledge and
deciding whether to add a new task representation or to
expand the existing representation with an alternative.

Ude et al. [2007] presents a framework for synthesizing
goal-directed actions from a library of example move-
ments, different methods can be utilized for the construc-
tion of this movements library. The approach used a gen-
eral representation based on fifth order splines.

In Pastor et al. [2009] a collection of dynamic movement
primitives is used to build a library of movements by
labelling each recorded movement according to task and
context. Their work provides a general approach for learn-
ing robotic motor skills from human demonstration. Gen-
eralization can be achieved simply by adapting a start and
a goal parameter in the equation to the desired position
values of a movement.

In Muelling et al. [2013] the goal was to acquired a
library of movement primitives from demonstrations and
to select and generalize among these movement primitives
to adapt to new situations. The primitives stored in the
library are associated with a set of parameters that form
an augmented state that describes the situation present
during demonstration and are used as components in a
mixture of motor primitives algorithm.

Representations of robot skills must be flexible and com-
pact enough to store, use and retrieve this knowledge in ef-
ficient ways and let the robot have a comprehensive reper-
toire of skills. Motor controller components of the move-
ment primitives could be manually derived or learned. The
learning of movement primitives would benefit from coding
the complete temporal behaviours that result in state-
action representation that are compact and which need
to adjust only a few parameters for a specific goal (Schaal
[1999]). In this work a framework to build the models of the
robot skills using Learning from Demonstration techniques
was chosen to learn the robot skills.

3. ROBOT SKILL LEARNING

The Learning from Demonstration approaches focus on de-
velopment of algorithms that are generic in their represen-
tation of the skills and in the way they are generated. One
of most promising approaches are those that encapsulate
the dynamics of the movement into the encoding, (Billard
et al. [2008]). Autonomous dynamical systems (DS) has
been proposed representing movements as mixtures of non-

linear differential equations with well-defined attractor dy-
namics (Ijspeert et al. [2001]). The DS approach could also
be use to exploit its representational properties for move-
ment generalization, recognition and classification (Pastor
et al. [2009]). DS can create a rich variety of non-linear
dynamics models fitted for point attractor and limit cyclic
systems allowing encoding of both discrete and rhythmic
movements (Ijspeert et al. [2009]).

8.1 Learning Motion Dynamics as Multivariate Gaussian
Mixtures

The DS framework provides an effective mean to encode
trajectories through time-independent functions that de-
fine the temporal evolution of the motions. The motion
dynamics are estimate through a set of first order non-
linear dynamical system equations. It is assume that the
motion is governed by a first order autonomous ordinary
differential equation,

£=1(9), (1)

A probabilistic framework is employed to build an estimate
f , of the non-linear state transition map f, based on the
set of demonstrations. Gaussian Mizture Models (GMM)
are used to directly embed the multi-variate dynamics of
a motion through the encoding of the demonstrated data.

The GMM define a joint probability distribution p(&7, £%)
of the training set of demonstrated trajectories as a mix-
ture of the K Gaussian multivariate distributions N,
with 7%, p*, and ¥, respectively the prior, mean and
covariance matrix, parameters of the Gaussian component
k. The joint probability distribution, p(¢, 5), for the GMM
is given by,
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The mixture of Gaussian functions would estimate the
non-linear function f, thus the unknown parameters of f,
6, becomes the prior, 7%, the mean, ;*, and the covariance
matrix, ¥, of the K Gaussian functions, such that 0¥ =
(7%, ik, $%) | defined as in Eq. 2.

To generate a new trajectory from the GMM, one then can
sample from the probability distribution function p(¢,¢),
this process is called Gaussian Mizture Regression (GMR).

4. REPRESENTING THE SKILL KNOWLEDGE

An important challenge for robots acting on unstructured
dynamic environments, as is a requirement for humanoid
robots, is in dealing with internal representation and un-
derstanding of the world. A key decision must be made on
which aspects of the world to focus on and which aspects
of the world to ignore, and how the knowledge about the
world would be structured. Despite claims against the use
of internal representation altogether, the abstractions are
necessary because no system can possible manage a world
model that includes the whole of the world. However, the
representations must be limited and physically grounded
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to the environment, good representations must be selective
and oriented to a particular use by a particular agent
(Anderson [2003]).

A majority of approaches in cognitive architectures focus
on skill knowledge about how to generate or execute se-
quences of actions, while often relegating equally impor-
tant conceptual knowledge dealing with categories of ob-
jects, situations or other concepts (Langley et al. [2009]).
Therefore, much of an agent’s knowledge must consist of
objects, concepts, actions, skills, situations, events.

The central task of a knowledge representation is capturing
the complexity of the real world. Representations thus
perform as functional abstractions of the perceived envi-
ronment, encoding an agents knowledge about its world,
objects, actions, events, etc., into manageable internal
structures.

4.1 Representing Objects Knowledge

Organizing objects is a vital part of knowledge represen-
tation. For this it is needed to state out an ontology.
It is essential to circumscribe the basic types of objects
our knowledge base would have, and to determine the
set of attributes that our objects can have. The ontology
provides a set of features that serve to identify objects that
can fit typical categories.

A typical problem building a representational approach is
that knowledge about an object could be scattered around
the knowledge base. The organization of the knowledge
of objects in the world towards a manageable structure
of objects knowledge is a critical aspect of the design of
a knowledge base. Categories are the primary building
blocks of knowledge representation schemes, the real world
can be seen as primitives objects and composite objects
build from them.

A system dealing with objects in the real world must
deal with various different forms and types of knowledge.
Minsky [1975], suggested the idea of using object-oriented
groups of procedures, which where called frames. The
frame concept offers a representation of an object or
category, with attributes and relations to other objects
or categories, assembling facts about particular object and
event types and arranging the types into a large taxonomic
hierarchy analogous to a biological taxonomy (Russell and
Norvig [2010]). Frames focus mainly on the recognition and
description of objects and classes. Minsky [1975] pictured
a great collection of frames systems stored in permanent,
when the perception evidence suggest one will fit a frame
is evoked to working memory.

The frame knowledge structure can be seem as an instance
of an object-oriented representation analogous to the de-
velopment in a object-oriented programming language.
This could allow the frame representation of objects to
share many advantages of object-oriented programming
systems, like the specification of general classes, logical
control, inheritance of methods, encapsulation of abstract
procedures, etc.

Figure 1 present different modes for the representation
of an object location knowledge. In this work the data
structure of frames is used to store the knowledge about

Table 1. Object Frames.

Object Frame: Example of generic object frame
and instances of an object frame

(Object-frame) gObj
(Color) none (/Color)
(Volume) 0 (/Volume)
(Roles) obstacle (/Roles)
(Position) 0 0 0 (/Position)

Object) ObjA
instanceOf) gObj

Color) Blue (/Color)
Volume) none (/Volume)
Roles) tool (/Roles)
Position)

120 34 56 (/Position)

Object) ObjB

instanceOf) gObj

Color) # FFFF00 (/Color)
Volume) none (/Volume)
Roles) obstacle (/Roles)
Position)

30 -45 78 (/Position)

P N N

(
(
(
(
(
(

the objects. Table 1 shows an example of the object frame.
A generic object frame is described, and two instances
derived from the generic frame are also present. Instances
of object frames inherits from the properties and default
values of the generic frame, but this does not forbid it to
have properties, and update its values, on its own. Object
frame could also be instances of two or more frames or be
composed of other object frames. Important properties of
the object frames are its name, position and role values for
their identification, localization and relation with the rest
of the knowledge base.

4.2 Representing Actions Knowledge

The interrelation between the objects and actions repre-
sentations, is a fundamental concern when executing tasks
upon the world. The robots actions would generally involve
the presence of an object, or several objects, plus the
possible interaction with human partners.

Representations, to be valid for embedded cognition, are
to be limited, physically grounded to the environment
and oriented towards the specific needs of the given agent
(Anderson [2003]). The distinction must not be made be-
tween representational and non-representational solutions
but among the action-neutral forms of internal represen-
tations and more action-oriented forms of representation,
in which the behavioural response is embedded into the
representation itself (Clark [2004]).

When thinking of actions representations the concept of
affordances is essential, the representation of objects and
actions are related in terms of their affordances. The
affordances are proprieties of the objects and of what kinds
of interactions they can support.

General approaches from artificial intelligence and logic
base reasoning see the world in more of as discrete time
experiences. However, real-world action is a continuous
time phenomena. To acquire an internal representation
of an affordance, and agent must carry out a complex
encoding of the sensory stimulus; to reproduce the action
an agent must decode the encoded representation into
proper signals. The embodied approach of cognition calls
for the representations to be encoded in the body and not
in the head (Anderson [2003]). A dynamical system theory
approach to cognition provides a way to overcome the
separation between mind and the world largely prevalent
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Fig. 1. Different modes for the representation of an object location knowledge. (left to right): The real-world object. 3D
model representation of the object. Convex bounding volume representation of the object. Representation of the

object in Cartesian, spherical or cylindrical coordinates.

Fig. 2. Different representations for a skill action. (left to right): Real-world agent action execution. Trajectory
representation of the action. Dynamic attractor landscape representation of the action. Encoding representation of

the action dynamics in a Mixture Gaussian Model.

Table 2. Action-Affordance Frame.

Action Frame: Example of action-affordance frame
(Action) Actl
(instanceOf) gAct
(iniConditions) ... (/iniConditions)
(Skill) Mpg1 (/Skill)

(Object) gObj2 (/Object)

SkillModel) Mpg1

Prior) 0.302 .... (/Prior)
Mean) -424.72 .... (/Mean)
Covar)4.04e+3 .... (/Covar)

o~~~ o~

in most work in artificial intelligence (Bechtel [1998]). The
dynamic systems theory provides an alternative to the
traditional formats of representations, yet, despite their
differences the approaches can be complementary (Bechtel
[1998]). A wide variety of aspects of dynamical models can
be regarded as having a representational status, such as
states, attractors, trajectories, bifurcations, and parameter
settings (van Gelder and Port [1995]).

Section 3 presented the framework for learning the robot
skills. The robot skills ought to enclose the knowledge of
the task to allow generalization of the skill for reproduction
and to form full goal directed actions. The dynamical
systems approach to skill learning can offer a fast, simple
and powerful formulation for representing and generating
movement plans. The robot skills are modelled by the
parameters 6 of f. where 8" = {r, 1, £} of the N'* Gaussian
function, defined by Eq. 2, are the prior, 7%, the mean, p*,
and the covariance matrix, ¥, of the K Gaussian and they
encode the representation of the skill action in a dynamical
system.

Figure 2 shows different representations for a skill action.
Table 2 shows an example of the action-affordances frame.
Generic action frames have a linked model of the encoded
skill action dynamics. In addition, to the model of the skill,
the action frame links actions with the corresponding ob-
jects that afford them. Generic action frames list available

objects for action, particular instances of an action frame
presents only one object affordance for the execution of
the action.

4.3 Representing Events Knowledge

Focusing on only on objects and actions would not be
enough to develop the knowledge representation structures
needed by the humanoid robotic systems. Representational
attributes need to also take into account the state of the
world, the current situation, grounding the representations
to the environment, the task at hand and present events.

Minsky [1975], suggested the idea of using object-oriented
groups of procedures to recognize and deal with new situa-
tions. A frame is a data-structure intended for representing
a stereotyped situation. The idea behind the approach
is that when one encounters a new situation one selects
from memory a frame structure. When a proper frame
is retrieved its slots are fill with available information,
its default assignments become instantly available, and
the more complex assignment negotiations are completed
latter as they become available. The process of matching a
proposed frame suitable to represent the current situation
is controlled by the system current goals and by informa-
tion attached to the frame. The representations of events is
thus largely concentrated in two major frames. One of the
system tasks and goals knowledge, and one representing
the current state of the world knowledge.

Task event frames would hold knowledge for the requested
execution of a task. Such as, the task goal, task actions,
including proper instances of required action frames, task
start, end and invoking conditions. Task events are in-
stantiated from recognizing matching invoking conditions
for the event frame or by directly giving the system high
level commands. The representation of a world event frame
would try to maintain an accurate model of the agent’s en-
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Table 3. Event Frame

Task Event Frame: Example of the task event frame
(Task-event) gTask

(Goal) ... (/Goal)

(ActionSet) actl act2 (/ActionSet)

(Status) 0 (/Status)

(Conditions) ... (/Conditions)

vironment, so the world frame holds knowledge of objects
being perceived as well as the most recent assumptions of
objects not longer in the current view that are reasonably
thought to lie around.

In such a complex problem as working in dynamic envi-
ronments it is not possible to cope with many details at
once. At each moment one must work within a reasonably
simpler framework.Humans do not process the whole of
a scene, one constantly discriminates information from
a scene, categorizing, grouping and discarding chunks of
information. An engage worker would generally focus all
of its attention in to very small region of features. To
determine what would be the agent’s view, its focus of
executing attention, we propose to start from the two event
frames, representing the task and world knowledge, and
build from them a single frame of what constitutes the
relevant aspects of the current view of the world, focusing
on the knowledge for task execution. This event frame,
called here execution view event frame, consist of knowl-
edge from objects and relationships in the environment
taken from the world event frame according to what the
task event frame requires.

Table 3 shows a simplified example of the task event
frame.

5. ROBOT SKILLS KNOWLEDGE BASE
STRUCTURE

Our earlier attempts Herndndez et al. [2009], at building
a knowledge database of robot skills consisted on the
pairing of pairing of objects and actions. Elements in
the knowledge database were represented in two principal
directions of objects and skill actions.

However, objects and actions alone does not provide suffi-
cient and complete information for a robot situated in its
environment to be able of performing its task adequately.
For instance, for a single behaviour there could be more
than one available pairing of ( object, skill model ), leading
to ambiguities. To resolve this problems it is suggested
to considered two more representational directives, one
for the task goal, and one for the configuration of the
current state of the world, mainly objects position and
relations with themselves, the robot and a human opera-
tor. Figure 3 presents the organization of the knowledge
base in terms of the frames describe in Section 4. The
knowledge of the environment is represented in terms of
World Event Frame and Task Event Frames, with Object
and Action Frames representing knowledge about available
objects and actions respectively. From the knowledge of
this frames a Execution View Event Frame is built of the
focused knowledge promoting the agent’s execution.

The knowledge base needs to hold all necessary infor-
mation for reproduction of the skills. Knowledge of the

World Event Frame
A Object Frame
' ..... < ['Object yPitcher

Object Frame| [Object Frame

‘Object bSpoon "‘Object rBall

Object Frame| |Object Frame

*Object bCup

l 'Object bPlate
\ 4
Execution View Event Frame

Task Event Frame

- !

Action Frame
*Action Pick
°Object Spoon

A 4

Fig. 3. Knowledge base structure and organization of the
knowledge representations.

task would be distributed among the representation of
objects, actions and events of the goal and the state of the
world. A behaviour could be represented by the phrase
“Do Action (A), To an Object (0O), For achiev-
ing Goal (G), When State of the World is (W)”.
Therefore, the tuple formed by ( Do = Action(4), To
= Object(0), For = Goal(G), When = World State(W))
holds all necessary information for the reproduction of the
task behaviour. The robot extract from the received per-
ceptual input the knowledge about objects, goals, and cur-
rent state of its working environment. The robotic system
would be able to retrieve an appropriate skill action from
the knowledge base by finding the answer to the phrase
“Do Action (?) ... ” for its current task constraints
when being presented with the triple (Object, Goal, World
State).

6. DISCUSSION

In this work we presented the development of a knowledge
base for the storing and retrieval of the learned models of
the skills. Section 2, reviewed some approaches aimed at
building repertoires of basic robot motor skills which can
represent a basic set of elementary movement primitives.
The embodied view of cognition and its challenges to the
traditional approaches of symbolic representations call for
representations to be limited, physically grounded to the
environment and oriented towards a particular use.

In sections 4.1, 4.2 and 4.3 approaches and problems
for building representation of objects, actions, and events
knowledge were presented. And section 5, presented the
representational structure of the robot skills knowledge
base developed in this paper.

Thinking in terms of objects and actions is not only intu-
itive but also convenient for a representational undertaking
in robotics. Object and actions are at the basis of robot
performance. However, representational attributions must
include also information about the world and situations,
events and goals, for effective situated performance.

The principal aim for the humanoid robot is to take
actions, as situated agents, that are appropriate to its
circumstances. Fitting representations are essential for this
goal. Approaches from artificial intelligence and logic base
reasoning see the world in more of as discrete time expe-
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Fig. 4. Snapshots from the execution of the task, depend-
ing on the state of the environment and the knowledge
base information the robot perform different skills.

riences. Yet the state and action representations are dy-
namic. The robot actions and thinking must be a process
of interacting change in the environment. The dynamical
system theory approach is an appropriate alternative to
the traditional formats of representations. Dynamical sys-
tems can store knowledge and have this stored knowledge
influence their behaviour (van Gelder and Port [1995]).
The dynamical systems framework allows to comply with
the attractor dynamics of a skill, modulating it with a set
of non-linear dynamical systems that form an autonomous
control policy for motor control.

Evaluation of robotic systems, and knowledge base robotics
systems in particular, is a complicated issue in which
there are not readily available standardized evaluations
or established benchmarks Tenorth and Beetz [2013]. To
validate the proposed systems a experiment was conducted
with the humanoid robot. The demonstration will test the
operation of the robot and the developed approach as it is
required to complete distinct skills. For the experiment the
HOAP-3 humanoid robot is equipped with a table tennis
paddle, and set of learned robot skills to perform different
tennis shots. The purpose of this scenario is to prove the
viability of the representations and knowledge base system
for selecting the appropriate robot skills from its available
action frames and perceived world state knowledge. Figure
4 presents snapshots from the execution of the task.
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