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Abstract: The purpose of the controller presented is to maintain the proportion of carbon
content in the products of the coal washing dense medium cyclone (DMC) at a certain level
by optimally manipulating the density of the heavy medium. In practice, the DMC processes
are mainly controlled by empirical methods which are process specific and cannot satisfy
the industrial requirements today. As a result, industries are looking at introducing sensors
to monitor the coal quality from the DMC process. Application of such sensors requires
the development of new controllers that can handle large delays and sampled measurement.
Therefore, a model based closed-loop control approach is presented to improve the separation
efficiency of DMC plants. The feed coal quality is taken as the feed forward information and
the sampled and delayed measurement from the DMC output is utilized as feedback for the
controller to improve the quality of coal product and ensure the robustness of the controller.
In addition, a state updating scheme is presented for the controller because the time delay of
the measured feedback can be one hour or longer. The effectiveness of the designed controller

is demonstrated by simulations.

Keywords: Coal beneficiation, dense medium cyclone, model predictive control, model plant

mismatch, delayed and sampled measurement.

1. INTRODUCTION

Improving the process efficiency of coal benefication plants
to obtain high quality fine coal for industrial use is of
great importance due to energy shortage and the pressure
on carbon footprint mitigation. The run-of-mine (ROM)
coal contains many different contents like rock, ash, sulfur,
volatile, etc., which are to be removed by the coal washing
process. If the coal is not cleaned thoroughly, the non-
carbon contents will have a deterministic effect on the
quality (e.g. heating value) of the coal (Speight, 2005). For
instance, the carbon content cannot be fully burnt, which
results in waste of coal resources. In practice, removing
all the non-carbon components cannot be easily realized.
Therefore, the percentage of fixed carbon content in the
fines is usually used as a measure for assessing the quality
of the fine coal (Nurkowski, 1984; Kolker et al., 2006).

From the view point of coal processing companies, they
are forced to improve the quality of their products and
reduce energy consumption due to market competition
and the sharp rising energy price. Dense medium cyclones
(DMCs) are used as the main coal benefication process in
modern coal washing plants because of their high capacity
and efficiency (Chu et al., 2009). The relative density
of the dense medium used to enhance the separation
is the key factor that affects the quality of coal after
this DMC circuit. As the characteristics of the ROM
coal vary, a proper control is essential to ensure the
fine coal quality. Historically, this is done by manually
adjusting the medium density (Burgess, 1984) or applying
control theory to an experimental DMC model obtained
by data fitting (Firth, 2009; Addison, 2010). Drawbacks
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of the empirical approaches are twofold. Firstly, detailed
information of different components (fixed carbon, ash,
sulfur, etc.) in the fine product is missing. Secondly, the
structure and parameters of the cyclone model are process
specific and have no clear physical meanings. Under the
extreme case, the empirical model is only applicable to
the cyclone on which the experiments were carried out.

In view of this, a model-based optimal control approach
is highly desired. An optimal feed forward controller for
the DMC coal beneficiation process was proposed in our
previous study (Zhang et al., 2013) based on a general
DMC model which was developed and validated by Meyer
and Craig (2010). But, no feedback information on coal
quality was taken into account in that study because
measurement of required information at the DMC output
takes around four hours and is very costly. Recently, driven
by the market force and coal quality requirements, coal
mining companies are looking for opportunities in im-
proving the separation efficiency of the DMC processes by
investing in equipment that measures the quality of DMC
products. The new equipment is capable of measuring the
coal quality with less than one hour’s delay. However,
the new sensor only gives sampled measurement. Both
the sampled measurement and the long time delay pose
technical problems for the design of a feedback solution.
On the one hand, it requires the controller to be able to
deal with sampled and delayed measurement feedback. On
the other hand, controls by sampled and delayed output
measurement are of very acute control theoretical interest-
s (Ahmed-Ali et al., 2013; Lee et al., 2013), little effort is
made to test these new ideas in the DMC study.
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Fig. 1. Diagram of DMC coal separation circuit

In this study, a closed-loop model predictive control (M-
PC) approach is employed to optimize the behavior of
the DMC plant. As one of the most effective control
approaches in industrial field (Xia et al., 2011; Zhuan and
Xia, 2013; Elaiw et al., 2012; Qin and Badgwell, 2003)
and with the ability of dealing with constraints (Zhang
and Xia, 2011), MPC has some intrinsic properties that
make it suitable for this application. For instance, the state
prediction under measurement delay is highly desirable for
the DMC control. With the delayed and sampled measure-
ment, the state of the DMC predicted by an emulation
approach is used by the MPC when no actual measurement
is available.

The closed-loop control is introduced to determine the
optimal control based on the results of the feed forward
controller (Zhang et al., 2013) such that the performance
of the DMC can be improved, especially under the presence
of model plant mismatch and disturbances. In such a
way, both feed forward and feedback information on coal
quality are taken into account to reach desired DMC
behavior. Results of the feed forward optimal controller in
our previous paper are used as the baseline to demonstrate
the advantages of this design.

Benefits of this design can be summarized as follows:

e Feed coal characteristics are taken into account,
which make the proposed controller robust against
the variation of the ROM coal quality.

e A closed-loop controller is designed so that perfor-
mance of the DMC circuit is maintained under dis-
turbances and model plant mismatch.

e The controller is applicable to similar DMC circuits
because it is designed based on a general DMC model.

e It provides a test platform for delayed and sampled
control system.

The remainder of this paper is organized as follows. The
model of the DMC circuit is briefly described in Section 2,
this is followed by the controller design in Section 3.
Simulations are given in Section 4 to demonstrate and
verify the effectiveness of the proposed control approach.
Section 5 concludes this paper.

2. DMC COAL SEPARATION PROCESS

The ROM coal and corrected dense medium are fed to
a mixing box where they are blended before entering the

9811

DMC as shown in Fig. 1. According to the percentages
of the components in the ROM coal z, . ¢, in which the
subscript ¢ represents ash, sulfur, moisture, and volatile,
the percentages of those components z; . and medium z; .,
in the mixed slurry fed into the DMC can be calculated
by the following equations (Meyer and Craig, 2010).

. me me m 1
mb = — 1,  Pm : 'mb,m 7Worev 1
Pmb Vmbp b Vmb Pmb, N Vmb ( )
ore cWore
By = aEeore (2)
mepmb
me mPmb,m
Tim = - - 3
' mepmb ( )

where p,,, is the density of the mixed slurry from the
output of mixing box. Vi, Qmb,m,s Pmb,m and Wy, are,
respectively, the volume of the mixing box, the medium
flow rate, the medium density, and the coal feed rate to
the mixing box. @, is the flow rate of the mix to the
cyclone.

The relationships between the proportions of different
components in the slurries that enter and exit the DMC
are governed by the following equations (Meyer and Craig,
2010).

fbo,c = [Wixi,c - Qopomo,c - Qupuxu,c - Voxo,cpo

Voo
- Vqu,cﬁu - Ku,cvupu(,oc - pmb,m)(l'i,c - l'u,c)]y

) 1 .
Ty,e =77 [Wixi,c - Qopomo,c - Qupuxu,c - Voxo,cpo
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. 1
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uPu
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u

(4)
where 4 ¢, Ty, are 4x1 vectors that represent the percent-
ages of components (ash, sulfur, moisture and volatile) in
the overflow and underflow of the cyclone, respectively. p,
and p, are the densities of slurries exiting at the overflow
and underflow of the cyclone. W; = Qppmep is the slurry
feed rate to the cyclone. The volumetric parameter V,
denotes the volume of slurry inside the cyclone which is
assumed to split at a constant ratio a into the volume
that reports to the overflow V, = ﬁVC and the volume
that reports to the underflow V,, = H%Vc. Similarly, Q,
and @, are the flow rates to the overflow and underflow of
the cyclone that are split by the same ratio o. The K, ,
Ky, Ko m and K, ,, are DMC specific constants for the
component overflows and underflows.

The percentages of fixed carbon in the cyclone overflow
and underflow after medium recycling, z, ¢ and z, ¢, are
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obtained by the following equations.

1
To,C = 11— — To,cs
1-— mo,m ¢
X (5)
u,C 1— T z(,: u,c

The model represented by equations (1)—(5) is derived
from the model developed by Meyer and Craig (2010). The
advantage of this model is that the percentages of different
components in the cyclone products and rejects can be
obtained directly so that a controller can be designed to
optimize the DMC process in a more detailed manner in
comparison to the empirical approaches (Napier-Munn,
1991).

3. CONTROL OF DMC PROCESS

In order to maintain the coal quality at a specified level,
there is need of a well designed controller. Due to the fact
that the DMC process model is intrinsically nonlinear,
a nonlinear model predictive controller is proposed to
control the relative density of the medium.

To facilitate controller design, the DMC model is dis-
cretized using the Runge—Kutta method to be as follows

a(k+1) = f(z(k),u(k)), (6)
where the state of the DMC process at time kT is x(k) =
[mz,c(k)vxz,c(k)vxmm(k)vxu,m(k)aPO(k)vpu(k)]T» in which
T, is the sampling period. f(-) is the nonlinear functions
that represent the DMC model. The control variable is

w(k) = pmb,m (k).
3.1 Feed forward control

The primary goal of controlling the DMC process is to
maintain the quality of the coal. With the sharp increase of
electricity price in recent years, improving energy efficiency
of the DMC plant is also of vital importance for the
economic benefit of the plant owner. Therefore, reducing
energy consumption is treated as the secondary objective
of the controller. As a result, the following objective
function is adopted.
T/Ts
T =" [kp(wo,c(k) = 2 (k) + keu(k)?],  (7)
k=1
where z,.(k) is the desired percentage of fixed carbon in
the fines, T is the operating time of the DMC circuit. For
simplicity, 1" is a multiple of Ts. Weights k, and k. are used
to tune the controller, which are chosen by users according
to the preference for coal quality and energy consumption.

The first and second terms in this function represent,
respectively, the indicators of coal quality and energy con-
sumption. The reasonability of using u? as a indicator for
energy consumption lies in the fact that the dense medium
is pumped to the mixing box. The energy consumed by the
DMC circuit is mainly the pumping cost which is a linear
function of the medium density.

The physical constraints of the DMC process include
the maximum and minimum limits of the density of the

medium, and limits on the percentages of the components
in the mixture. The operational constraints are the limits
on the rate of change of the medium density. In summary,
the constraints are given in the following inequalities.

0< 2oe(k) <1 (8)

0 < 2yelk) <1, (9)
0<zoc(k) <1, (10)

0< zuc(k) <1, (11)

|pmbm (k) = pmbm(k — 1) < Appm, (12)
P < Prmbm (k) < plpm- (13)

Inequalities (8), (9), (10), and (11) naturally exist as
the percentages are from 0% to 100%. Constraints (12)
and (13) represent the limits on the rate of change and
range of the medium density. Ap,,, pinbm and py,, ,, are,
respectively, the limits on the rate of change, and the lower
and upper limits of the density of the medium.

In practice, the percentages of components in as well
as the feed rate of the ROM coal feed are measured.
Therefore, the feed forward controller solves the nonlinear
optimization problem, minimize (7) subject to (6) and (8)—
(13), with help of these measurements.

3.2 Closed-loop MPC for DMC circuits

Whereas the feed forward controller takes advantage of
feed forward information to optimize the DMC perfor-
mance, it is essentially an open loop controller. In order
to control the DMC plant effectively under model plant
mismatch and process disturbances, a closed-loop MPC
controller is proposed in this study.

In MPC, the optimal solution of the original problem is
obtained step-by-step by solving the problem within each
chosen optimization window where feedback information
from the plant can be incorporated into the optimization.
This feedback information results in improved robustness
of the controller with regard to model plant mismatch and
process disturbances.

Specifically, the MPC controller designed aims to improv-
ing fine coal quality by means of manipulating the density
of medium in real-time according to the feedback state of
the DMC outputs.

Denote the DMC state and control reached by the feed
forward controller as z° and u°, in which the carbon
content is denoted as xg’c. The closed-loop MPC is to
maintain the carbon content taking advantage of feedback
information x by introducing Au change to u’, u = u® +
Au. Therefore, the objective function for the closed-loop
MPC is derived from (7) and given as follows

N,
J= Z (kpm:ic(k +ilk) 4+ ke Au(k + i — 1|k)?
i:;kp[xg’c(k: +i) = 2 (b + 1)) Azg o(k +ilk) (1Y)
+ 2k ul (k4 — 1) Au(k +i — 1|1<:)),
where N, is the optimization horizon, k denotes the

current time kT, |k means that the predicted value is
based on the information available from ¢ = 0 up to
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Fig. 2. Control diagram

t =kT;, and Azoc = 200 — mgc is the change of carbon
content resulted from Au.

As for the constraints, they are transformed into
h(Au(klk), ..., Au(k + N, — 1]k)) <7, (15)

where N, is the control horizon. The nonlinear function
h(-) represents the constraints (8)—(13) and ~ represents
the limits derived therein.

As depicted in Fig. 2, the feed forward controller is an
open loop controller that optimizes the performance of
the DMC taking into account the feed coal characteristics
(Wore and ope,c). Feedback information from output of
the cyclone is used by the closed-loop MPC controller
to improve the behavior of the DMC under model plant
mismatch and external disturbances. The optimal medium
density is obtained by adding up the solutions of the feed
forward and the feedback controllers: v = u® + Au.

Therefore, the MPC forms a state feedback control that
solves the problem, minimize (14) subject to (15), itera-
tively.

To close the loop, measured feedback from the output of
the DMC is required. This measurement for the DMC
plant is obtained by the new sensor, which yields sampled
values at discrete time instances with less than one hour
time delay (indicated in Fig. 2). This sampled and delayed
measurement causes a time interval within which there
is no feedback information from the DMC circuit. As a
result, the state of the DMC system is predicted by the
DMC model and updated whenever actual measurement
is available. Fig. 3 shows the scheme of the state prediction.

Assume that the measurements are only available at time
t1,...,ti ..., tn, the state of the DMC is predicted as

m(t) = .’f)(t|ti), t; <t <tit1,

where the symbol &(¢|t;) represents the state of the DMC
process at time ¢ predicted by the DMC model according
to measurement information at time ¢;.

During the time interval within which no measurement
is received, the state predicted based on the most recent
measurement, information is used by the controller. The
measurement data are the feedback for the controller to: 1)
calibrate the modeling error and 2) improve the behavior
of the DMC process according to the actual state. Under
process disturbances and model plant mismatch, this feed-
back information is essential to ensure the robustness of
the control system.

The work flow of the proposed nonlinear MPC controller
is depicted in Algorithm 1, where the procedure of state
feedback, optimization and control are demonstrated.

Algorithm 1 Nonlinear MPC for DMC circuits

Initialization: model parameters, optimization and
control horizons.
while ¢t < T do

if measurement available then

Update prediction to be Z (¢ + i[t).

end if

Solve the optimization problem within the optimiza-
tion horizon to obtain the feedback control vector Au =
[Au(1), ..., Au(N,)].

Apply the control variable u®(t)+Awu(1) to the DMC

plant.

end while
) ) )
LY, "2 NG

Fig. 3. State prediction under sampled and delayed mea-

surement
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Fig. 4. Closed-loop MPC results under ideal case
4. SIMULATION

Simulations are done based on the plant data from a
coal washing plant in South Africa. The DMC parameters
are retrieved from (Meyer and Craig, 2010) and listed in
Table 1. Sampling period Ty is taken as 14 seconds. The
optimization and control horizon N, and N, are set to
5 and 3, respectively. The set carbon proportion in the
fine coal is kept constant as 75%. The weights for product
quality and energy consumption are chosen as k, = 5000
and k. = 1 x 107%. The optimization is done over a
simulation period of T" equals to 5 hours.

It is noted that the feed forward controller is essentially an
open loop controller and its results are taken as reference
to investigate the advantages of the designed control
approach. In simulations, the results of the feed forward
controller are referred to as open loop results, which take
5 minutes of a PC with Intel i7-2600 core to solve with
Matlab 2010b.

To demonstrate the effectiveness of the proposed control
strategy, the MPC results without model plant mismatch
and disturbances are shown in Fig. 4. As this is the ideal
case, it shows that the density of the medium is varied
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Table 1. Cyclone separation circuit model pa-

rameters
Variable Description
Vinb 0.16 (m?)
me,med 0.495 (m3/s)
Qmb 0.500 (m3/s)
« 2
Ve 0.38 (m3)
K, 0.22 (m?2s)
K, 0.22 (m?2s)
Ko ash 2.00 x 10=% (m3 /kgs)
Ko.s 3.90 x 107% (m3 /kgs)
Ko m,o 150 x 107% (m3/kgs)
Ko vl 8.90 x 10™% (m3 /kgs)
Komed 4.80 x 1074 (m3 /kgs)
Kuash 0.77 x 10~% (m3 /kgs)
Ky.s 3.90 x 1074 (m3 /kgs)
Ky, m,0  0.30 x 1074 (m3 /kgs)
Ky vol 8.90 x 1076 (m3 /kgs)
Koy med 3.90 x 1074 (m3 /kgs)
Pash 2000 (kg/ms)
ps 1920 (kg/m?)
PH,0 1000 (kg/m?)
Puol 1100 (kg/m?)

in such a way that the carbon percentage in the product
is kept constant. The key factor that affects the medium
density in this case is the ROM coal feed rate.

4.1 Model plant mismatch

In practice, the model used for controller design usually
cannot exactly capture the behavior of the plant accurate-
ly. Assume that there is d mismatch between the model
and the plant, which means that the true plant model is
given by

x(t) = f(z(t —1),u(t — 1)) +d(t).

Under the sampled and delayed measurement, the state
predicted according to the most recent measurement,
Z(t|t;), is used in the optimal control during the time
interval [t;, ¢;+1). This means that, during the period
[ti, ti+1), the control is not based on the actual plant state,
which results in control errors. In the closed-loop approach,
the measurement data are used to eliminate prediction
errors from the model and resultantly eliminate the control
errors and improve the performance of the DMC.

A 5% modeling error is considered since it has been verified
by Meyer and Craig (2010) that the DMC model developed
is able to predict the plant behavior within 5% error
with 95% confidence. Specifically, the modeling error d is
assumed to be:

d(t) = 0.05z(t)(—1 + 2¢(t)),
where € is a vector with uniformly distributed random
numbers on [0,1].

A comprehensive comparison of the DMC performance
between the closed-loop MPC approach and the open loop
controller is shown in Fig. 5, in which the 5% model
plant mismatch is introduced for all circumstances. |e| in
the figure stands for absolute mean tracking error of the
controller.

According to the results, it is clear that the open loop
control strategy for the DMC plant suffers from carbon

~
wv

---- Open Loop, |e|=2.09%

——————— MPC Delay=2h, |e|=1.30%
MPC Delay=1h, |e|=0.86%

[ —— MPC Delay=0.5h, |e|=0.57%

— - — MPC Delay=10min, |e|=0.25%

Carbon percentages (%)
~
o

MPC Delay=5min, |e|=0.04%
Set Value

60

Time (Hour)

Fig. 5. Performance comparison under model plant mis-
match and varying measurement delay

proportion deviation in the fine product. 2.09% mean
deviation from the set value is observed during the 4.9
hour simulation. To improve this, a closed-loop approach is
desirable. All closed-loop results are better than the open
loop results as demonstrated in the Fig. 5. For instance,
the MPC results with one hour measurement delay results
in 0.70% deviation in the carbon percentage, which is one
third of that with the open loop control.

4.2 Measurement delay

Measurement of coal quality from the DMC process usual-
ly takes several hours. For the mine under investigation, it
is planning to install a the new sensor that could shorten
this delay to less than one hour. Consequently, to ensure
the applicability and effectiveness of the controller, the
controller’s tolerance on the measurement delay is inves-
tigated. Up to two hour measurement delays are inves-
tigated, which is suffice for practical application as the
measurement delay in practice is less than one hour.

As illustrated in Fig. 5, one can see that the larger the
measurement delay, the worse the performance of the
controller. |e| of those results shows a decreasing trend
with the decrease in the measurement delay. Specifically,
the tracking error with the open loop control is largest
(2.09%) while it is smallest with five-minute measurement
delay (0.04%).

Considering that the measurement delay is less than one
hour in practice, the closed-loop MPC approach achieves
the goal of keeping carbon content constant with less than
or equal to 0.7% tracking error. In comparison with the
open loop strategy, the MPC reduces the tracking error
by more than 66.5%. This verifies that, even though the
DMC feedback information is measured in a sampled and
delayed manner, the proposed MPC strategy can improve
the performance of the DMC plant significantly.

4.3 Implementation disturbance

Disturbance from implementing the optimal control is
considered here. For the DMC plant, the valve control
for the water and make-up medium addition module in
the DMC plant results in disturbances in the optimized
density of the medium. Therefore, robustness against the
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actuator disturbances is essential for the control approach
proposed. Simulations are also conducted to verify this.

In simulations, an implementation disturbance is intro-
duced to the control signal, which leads to

Ug = u +w,
where w is the white Gaussian noise.

The disturbed control signal ug4 instead of the optimized
u is implemented to the DMC plant in such a situation.
The performance of the closed-loop MPC controller and
the open loop controller are again compared to investigate
the robustness of the closed-loop MPC controller.

It is observed from Fig. 6 that, not surprisingly, the closed-
loop MPC approach is more effective in achieving desired
DMC performance in comparison to the open loop control.
Note that the 5% model plant mismatch is also considered
in this simulation.

The mean values of the deviations from the specified 75%
carbon content in the fines are 2.34% and 1.06% with the
open loop controller and the closed-loop MPC with one
hour measurement delay, respectively. This verifies that
the closed-loop MPC approach is capable of keeping the
carbon content in the fines to the desired level under the
disturbance from implementing the optimized control.

5. CONCLUSION

This study investigates the feasibility and advantages of
designing a closed-loop control approach to improve the
separation efficiency of coal beneficiation dense medium
cyclones in the presence of large delay and sampled mea-
surement feedback. A model predictive control approach,
which takes advantage of both the feed forward informa-
tion on the run-of-mine quality and the delayed fine coal
quality measurement, is proposed to improve the efficiency
of the dense medium cyclone plant. The density of the
heavy medium used to enhance the separation is taken as
the control variable. It is illustrated by simulations that
the controller can achieve desired performance with up to
two hour measurement delay. In addition, the controller is
designed based on a general cyclone model, which ensures
its applicability to similar dense medium cyclone circuits.
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