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Abstract: The use of Pyragas-Type controller proved interest in the stabilization of unstable
periodic orbits. The stabilization problem of a balancing inverted pendulum on an horizontally
moving cart by the use of such a controller is considered. The main objective of the paper is
to propose delayed control law containing only proportional gains able to stabilize the inverted
pendulum by avoiding the existence of a triple zero eigenvalue at the origin. We analyze the
center dynamics described by a three dimensional system of ordinary differential equations
(ODEs) with a codimension-three triple zero bifurcation. Furthermore, the stability analysis of
the corresponding linear time invariant system with two delays describing the behavior around
the equilibrium is also proposed. This analysis is done in order to characterize the possible local
bifurcations. Finally, the proposed control scheme is numerically illustrated and discussed.
Time-Delay, Stability, Delayed Feedback, Control, Center Manifold Theorem, Normal Forms,
Local Bifurcation, Inverted Pendulum.

1. INTRODUCTION

In this paper, a well known and classical engineering
problem which is the stabilization of a balancing inverted
pendulum on an horizontally moving cart is considered,
see for instance Atay [1999], Eker and Aström [1996],
Landry et al. [2005], Shiriaev et al. [2000], Sieber and
Krauskopf [2004]. This typical unstable nonlinear system
is often considered as a benchmark to discuss new ideas in
the field of nonlinear control and in the general theory of
dynamical systems. This is certainly due to the richness of
its dynamics even if the structure of the physical system
remains relatively simple. To cite only one application,
one thinks to the modeling of the human balance control,
see for instance, Campbell [2009]. It is well known that
the inverted pendulum has two equilibria, one is stable
and it corresponds to the pendulum pointing downward
while the other one is unstable and it corresponds to the
upward position of the pendulum. Therefore, the unstable
equilibrium of the system can be maintained only in the
presence of an appropriate control input.

Several approaches are developed in the open literature to
overcome the challenge of swinging up and maintaining the
pendulum in the upward position whereas, we are focusing
on the design of infinite dimensional controllers taking
into account only the delayed state. The starting idea of
the present paper is a result proposed in Niculescu and

Michiels [2004]. As proven there, a chain of n integrators
can be stabilized using n distinct delay blocks, where a
delay block is described by two parameters: ”gain” and
”delay”. The interest of considering control laws of the
form

∑m
k=1 γk y(t − τk) lies in the simplicity of the con-

troller as well as in its practical implementation facility.
The performances of delayed controllers to overcome the
challenge of stabilizing the inverted pendulum are empha-
sized in the following recent works Atay [1999], Sieber and
Krauskopf [2004], Landry et al. [2005].

In Atay [1999], the author pointed out that a simple posi-
tion feedback is not sufficient to obtain satisfactory perfor-
mance from the control system, and one needs additional
knowledge such as the rate of change of the position. Next,
a proportional minus delay controller (PMD) is proposed
to obtain asymptotic stability in second-order undamped
systems modeling an inverted pendulum Atay [1999]. This
strategy shows that the effect of the delay is similar to
the derivative feedback in modifying the behavior of the
system. It is worth noting here that replacing the deriva-
tive with its numerical approximation will not allow to
directly apply the results in Sieber and Krauskopf [2004].
Indeed, the behavior of a system (even a linear one) may
be different from the behavior of its approximation. In
Morărescu et al. [2013], it has been shown that using a
polynomial function (1 − s τn )n of arbitrary degree n to
approximate an exponential e−sτ allows finding stabilizing
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controller gains for the approximated system even they do
not necessarily exist for the original one.

To the best of the authors’ knowledge, PMD controllers
were first introduced by I.H. Suh & Z. Bien in Suh and Bien
[1979] where it is shown that the conventional P-controller
equipped with an appropriate time-delay performs an av-
eraged derivative action and thus can replace the PD-
controller, showing quick responses to input changes but
being insensitive to high-frequency noise. Recent idea of
J. Sieber and & B. Krauskopf for stabilizing the inverted
pendulum by designing a delayed PD controller has been
proposed in Sieber and Krauskopf [2004]. Moreover, they
established a linearized stability analysis allowing to char-
acterize all the possible local bifurcations additionally to
the nonlinear analysis. This analysis involves the center
manifold theory and normal forms which are known to be
powerful tools for the local qualitative study of the dynam-
ics. The study emphasized the existence of a codimension-
three triple zero bifurcation. It is also shown that the sta-
bilization of the inverted pendulum in its upright position
cannot be achieved by a PD controller when the delay
exceeds some critical value τc.

Finally, in Landry et al. [2005], S.A. Campbell et. al.
considered a proportional controller to locally maintain
the pendulum in the upright position. The authors shown
that when this proportional is delayed and the time-
delay sampling is not too large, the controller still locally
stabilizes the system. Among other results, they show the
loss of stability when the delay exceeds a critical value
and a supercritical Andronov-Hopf Bifurcation Kuznetsov
[1998] occurs generating stable limit cycles.

The main contribution of this paper consists in introducing
a Pyragas-type controller allowing the stabilization of the
inverted pendulum without the use of derivative measure-
ments. Usually, the use of PD controller needs the knowl-
edge of the velocity history but in general we are only able
to have approximate measurements due to technological
constraints. In absence of measurement of the derivative,
a classical idea is to use an observer to reconstruct the
state, but this might degrade the performance to some
extent Atay [1999] and it is, in general, computationally
involved for delay systems. To avoid such degradation and
since the position measurement can be easily obtained by
sensors, we restrict ourselves to delayed proportional gains.

Our analysis agrees with the above claim of F.M. Atay
Atay [1999] but extends it by proving that the knowledge
of the delayed derivative gain considered in the delayed
PD controller Sieber and Krauskopf [2004] can be replaced
by the knowledge of two delayed state positions. Our main
idea can be summarized as follows, we use MDP controllers
to reach the configuration of multiple-zero eigenvalue by
setting the parameters (delays and gains) values, then
we identify the appropriate parameters moving direction
allowing to stabilize the inverted pendulum avoiding this
singularity.

The use of proposed control law prove that the cubic
normal form of the solutions evolution on the center man-
ifold is exactly the same as the one for the delayed PD
considered in Sieber and Krauskopf [2004]. In some sense,
this can be seen as a discretization of the feedback state
derivative. By the way, such a constructive approach has

been adopted into different context in the controller design
developed in Niculescu and Michiels [2004], Kharitonov
et al. [2005]. The stability analysis of the delayed linearized
system employs the geometrical interpretation of the cor-
responding characteristic equation proposed in Morărescu
et al. [2007b], Gu et al. [2005], Morărescu et al. [2007a].
An alternative technique for studying the stability of this
class of systems is proposed in Sipahi and Olgac [2005].
For more details on the existing techniques, the reader is
referred to Insperger and Stepan [2011].

The remaining part of our paper is organized as follows:
First, the model of the inverted pendulum on a cart is
introduced and some mathematical notions used in the
analysis are given. Next, Pyragas-type control strategy is
presented and analyzed. The analysis includes the nor-
mal form of the cental dynamics and the linear stability
analysis pointing out the Andronov-Hopf Bifurcation. A
conclusion ends the paper.

2. SETTINGS AND USEFUL NOTIONS

2.1 Friction free model of an Inverted Pendulum on a Cart

Consider the friction free model presented in Sieber and
Krauskopf [2004] by adopting the same notations in the
sequel. Denote the mass of the cart M , the mass of the
pendulum m and let the relative mass be ε = m/(m+M).

In the dimensionless form, by neglecting the frictions, the
dynamics of the inverted pendulum on a cart in figure
1 is governed by the following ODE, see also Sieber and
Krauskopf [2005]:(

1− 3ε

4
cos2(θ)

)
θ̈+

3ε

8
θ̇2 sin(2θ)− sin(θ) +D cos(θ) = 0,

(1)
where D represents the control law that is the horizontal
driving force.
In Sieber and Krauskopf [2004], the authors consider D =

a θ(t− τ) + b θ̇(t− τ) and prove that the truncated cubic
central dynamics reduces to:

u̇ =

[
0 1 0
0 0 1
α β γ

]
u+

 0
0
u31

 ,
where α, β and γ are small parameters, showing that the
triple zero singularity can be avoided.

Fig. 1. Inverted Pendulum on a cart
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In the forthcoming section, the horizontal control force
will be designed just as position feedback as suggested in
Pyragas [1992] in the context of stabilizing an unstable
limit cycle. In the sequel, it is explicitly proven that
the triple zero singularity can be avoided using such a
controller.

2.2 Space decomposition for time-delay systems

Consider the general discrete delayed autonomous first-
order nonlinear system where its linear and nonlinear
quantities are separated as follows:

d

dt
x(t) =

n∑
k=0

Ak x(t− τk) + F(x(t), . . . , x(t− τn)),

(2)
where Ai are n × n real valued matrix and the delays τk
are ordered such that τi < τj when i < j and let τn = r
and τi ≥ 0.

The latter system can be written as:

d

dt
x = Lxt + F(xt), (3)

where xt ∈ Cr,n = C([−r, 0],Rn), xt(θ) = x(t + θ)
denotes the translation operator and L is a bounded
linear operator such that Lφ =

∑n
k=0Ak φ(−τk) and F is

assumed to be a sufficiently smooth function mapping Cr,n
into Rn with F(0) = DF(0) = 0. The linear operator L
can be written in the integral form by Lφ =

∫ 0

−r dη(θ)φ(θ)
where η is a real valued n× n matrix.

The linearization of (3) is simply given by

d

dt
x = Lxt, (4)

for which the solution is given by operator T (t) defined
by T (t)(φ) = xt(. , φ) such that xt(. , φ)(θ) = x(t + θ, φ)
for θ ∈ [−r, 0] is a strongly continuous semigroup with the

infinitesimal generator given by A = dφ
dθ with the domain

Dom(A) = {φ ∈ Cr,n :
dφ

dθ
∈ Cr,n,

dφ

dθ
= Lφ}.

It is also known that σ(A) = σp(A) and the spectrum of
A consists of complex values λ ∈ C satisfying the char-
acteristic equation p(λ) = 0, (see Michiels and Niculescu
[2007] for further details).

In the spirit of Diekmann et al. [1995], let us denote
by Mλ the eigenspace associated with λ ∈ σ(A). We
define C∗r,n = C([−r, 0],Rn∗) where Rn∗ is the space of
n-dimensional row vectors and consider the bilinear form
on C∗r,n × Cr,n as proposed in Hale and Lunel [1993]:

(ψ, φ) = φ(0)ψ(0) +

∫ 0

−r

∫ θ

0

ψ(τ − θ)dη(θ)φ(τ)dτ.

Let AT be the transposed operator of A, i.e., (ψ,Aφ) =
(ATψ, φ). The following result presented in Hale and Lunel
[1993] permits the decomposition of the space Cr,n:

Theorem 1. (Banach space decomposition). Let Λ be a
nonempty finite set of eigenvalues of A and let P =
span{Mλ(A), λ ∈ Λ} and PT = span{Mλ(AT ), λ ∈ Λ}.
Then P is invariant under T (t), t ≥ 0 and there exists
a space Q, also invariant under T (t) such that Cr,n =

P
⊕
Q. Furthermore, if Φ = (φ1, . . . , φm) forms a basis

of P , Ψ = col(ψ1, . . . , ψm) is a basis of PT in C∗r,n such
that (Φ,Ψ) = Id, then

Q = {φ ∈ Cr,n \ (Ψ, φ) = 0} and

P = {φ ∈ Cr,n \ ∃b ∈ Rm : φ = Φb}. (5)

Also, T (t)Φ = Φ eBt, where B is an m ×m matrix such
that σ(B) = Λ.

Consider the extension of the space Cr,n that contains
continuous functions on [−r, 0) with possible jump discon-
tinuity at 0, we denote this space BC. A given function
ξ ∈ BC can be written as ξ = ϕ + X0 α, where ϕ ∈ Cr,n,
α ∈ Rn and X0 is defined by X0(θ) = 0 for −r ≤ θ < 0 and
X0(0) = Idn×n. Then Hale-Verduyn Lunel bilinear form
Hale and Lunel [1993] can be extended to the space C∗r,n×
BC by (ψ,X0) = ψ(0) and the infinitesimal generator A
extends to an operator Ã (defined in C1) onto the space
BC as follows:

Ãφ = Aφ+X0[Lφ− φ′]. (6)

Under the above consideration one can write equation (3)
as an abstract ODE:

ẋt = Ãxt +X0F(xt). (7)

Due to the projection Π : BC → P defined by Π(ϕ +
X0α) = Φ[(Ψ, ϕ) + Ψ(0)α] and the state decomposition
such that xt = Φy(t)+zt where y(t) ∈ Rm and zt ∈ Q, then
the equation (3) can be splitted into two equations. Our
interest lies essentially in the evolution equation for the
finite dimensional part of the space i.e. the first equation
of the following system:{

ẏ = By + Ψ(0)F(Φy + z),

ż = ÃQz + (I − π)F(Φy + z).
(8)

For more details and insights, see for instance, Hale and
Lunel [1993], Faria and Magalhães [1995]. Assume now
that F depends on some parameter p, and if denote
the semiflow generated by (8) as S(t, y, z, p), then S is
equivalent to the semiflow generated by (3):

Theorem 2. (Properties of the Center Manifold). Let k >
0 and Uy ×Uz ×Up be a small neighborhood of (0, 0, p0) ∈
Rn × Q × Rm. There exists a graph ω : Uy × Up → Q of
smoothness Ck such that the following statements hold.

(1) (Invariance) The manifold {(y, z) ∈ Uy × Q : z =
ω(y, p)} is invariant with respect to S relative to
Uy × Uz.

(2) (Exponential attraction) Let (y, z) s. t. S(y, z, p) ∈
Uy × Uz ∀t ≥ 0. Then there exists ỹ and t̃ ≥ 0 such

that ‖S(t + t̃, y, z, p) − S(t, ỹ, ω(ỹ), p)‖ ≤ Ke
−t0
2 for

all t > 0.

3. MAIN RESULT: PYRAGAS-TYPE CONTROLLER

By Pyragas controller, we understand a controller of the
form

u(t) := α(θ(t)− θ(t− τ)).

It is worth mentioning that such a controller proved
interest in the stabilization of unstable periodic orbits,
see for instance, Pyragas [1992], Pyragas. Furthermore, in
Laplace domain, the corresponding characteristic function
includes an additional root at the origin.
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In this section we consider the control law

D(t) = a (θ(t)− θ(t− τ1)) + b (θ(t)− θ(t− τ2)) + c θ(t),

and consider the relative mass ε = 3/4. Equation (1) can
be written as a DDE of the form:

ẋ = f(x(t), x(t− τ1), x(t− τ2), λ), (9)

where x = (x1, x2)
>

=
(
θ(t), θ̇(t)

)>
and λ = (a, b, τ1, τ2).

The right hand side f : R2 × R2 × R2 × R4 → R2 is given
by:

f1(.λ) = x2,

f2(., λ) =
− 9

32 sin (2x1)x2
2 + sin (x1)

1− 9
16 (cos (x1))

2

− cos (x1) (a (x1 − y1) + b (x1 − z1) + cx1)

1− 9
16 (cos (x1))

2 ,

(10)

where y = (y1, y2)> = (θ(t − τ1), θ̇(t − τ1))> and z =

(z1, z2)> = (θ(t− τ2), θ̇(t− τ2))>.

3.1 Linear Stability Analysis

It is always possible to normalize one of the delays by a
simple scaling of time, let τ1 = 1. The linearization of f
with respect to its three arguments, x, y and z at the origin
is given by

∂1f(0, λ) =

 0 1

16 (1− a− b− c)
7

0
,


∂2f(0, λ) =

 0 0

16

7
a 0

 , ∂3f(0, λ) =

 0 0

16

7
b 0

 ,
where f(0, λ) designate f(0, 0, 0, λ). Then, the character-
istic function is given by

∆(λ) = λ2 +
16 (a+ b+ c− 1)

7
− 16

7
e−λ τ1a− 16

7
e−λ τ2b.

(11)
The stability analysis follows from Proposition 3.1 in Gu
et al. [2005].

Remark 3. The crossing set Ω associated to the system
described by the characteristic equation (11) consists of
a finite union of intervals. Moreover, when c 6= 1, all
the intervals are closed while for c = 1 all the intervals
are closed excepting the first one which has the left end
equals zero i.e. a value that does not belong to the crossing
set. The stability crossing curves are either open ended or
closed as explained in the classification proposed by Gu
et al. [2005] (see figure 2 for the case c = 1 which is relevant
for this study).

In the (a, b, c) parameter space instead of crossing curves
we have stability crossing surfaces referred to as A. The
corresponding crossing set is again dented by Γ. Thus, A is
the set of (a, b, c) such that ∆(z) has imaginary solutions
while Γ consist of those frequencies ω such that there exists
a parameter triple (a, b, c) such that ∆(jω, a, b, c) = 0. The
stability analysis in (a, b, c) parameter space is summarized
as follows:

Proposition 4. The crossing set Γ consist of all frequencies
satisfying

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20
Stability crossing curves

τ1

τ2

Fig. 2. The crossing curves associated to the first interval
(0, ωr] for a = 6

5 , b = 3
5 and c = 1. The curves T−u,v

and T+
u,v+1 are connected at ωr.

0 < ω <

∣∣∣∣ π

τ1 − τ2

∣∣∣∣ ,
and the crossing surfaces are defined ∀ω ∈ Γ by:

a ∈ R

b = − sin(ωτ1)

sin(ωτ2)
a

c = 1 +
7

16
ω2 − a− b+ a cos(ωτ1) + b cos(ωτ2)

.

It is easy to see that as ω approaches 0 the parameter c
approaches 1 (for illustration see figure 3).

Fig. 3. The stability crossing surface in the (ω, b, c) param-
eter space for τ1 = 1, τ2 = 1

2 and a = 2

The function ∆ with arbitrary gain c has a purely imagi-
nary root iw if:

a =
7 sin (wτ2)w2 + 16 sin (wτ2)− 16 sin (wτ2) c

16 sin (wτ2)− 16 sin (wτ2 − w)− 16 sin (w)
,

b =
−7 sin (w)w2 − 16 sin (w) + 16 sin (w) c

16 sin (wτ2 )− 16 sin (wτ2 − w)− 16 sin (w)
.

(12)

We note that substituting a and b into the second deriva-
tive of ∆ and by setting w = 0 one gets the relation
a τ1 = −b τ2 guarateeing a zero eigenvalue of algebraic
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Fig. 4. Hopf curves for (10)-(9) in the gains plan (a,b)
with c = τ1 = 1 and τ2 such that (top left) τ2 = 2
(top right) τ2 = 3 (bottom left) τ2 = 4 (bottom right)
τ2 = 1

2

multiplicity 2. Finally, a zero eigenvalue of algebraic mul-
tiplicity 3 is given by

a =
7

8

1

(τ1 − τ2) τ1
, b = −7

8

1

τ2 (τ1 − τ2)
, c = 1.

This shows that the configuration of a triple zero eigen-
value can not be achieved when one of the gains a or
b vanishes, in other words, two Pyragas controllers are
necessary to reach this multiplicity.

Equation (12) defines the curve of Hopf Bifurcation in the
(a, b) plane in figure 4 for c = 1 and several values of the
delay τ2, thus there are coexistence of Pitchfork and Hopf
bifurcation on this curves.

Note also, that when τ1 τ2 6= 0 a zero eigenvalue of
multiplicity 4 is not possible since the fourth derivative
at zero gives 2 (τ1 + τ2).

3.2 Central Dynamics

We show that a triple zero eigenvalue occurs for arbitrary
value of the delay τ2. Then let us restrict to the case of
a fixed value for the delay τ2 = 2, the parameter point
λ0 = (a0, b0, c0, τ1

∗, τ2
∗) = (− 7

8 ,
7
16 , 1, 1, 2) characterize a

triple zero eigenvalue at the origin. System (10)-(9) can be
normalized by setting τ1 = 1 leading to:

f1(., λ) = x2,

f2(., λ) =
− 9

32 sin (2x1)x2
2 + τ1

2 sin (x1)

1− 9
16 (cos (x1))

2

− τ1
2 cos (x1) (a (x1 − y1) + b (x1 − y1) + c x1)

1− 9
16 (cos (x1))

2 .

(13)

Let X be the Banach space R2 × C([−1, 0],R2). Consider

D(H) := {(y, ỹ) ∈ R2 × C1([−1, 0],R2) : ỹ(0) = y} ⊂ X,

and define the linear operator H

[
y
ỹ

]
=

[
∂1f(0, λ)ỹ(0) + ∂2f(0, λ)ỹ(−1) + ∂3f(0, λ)ỹ(−2)

∂sỹ

]
,

where the spatial variable in C1([−2, 0],R2) is denoted by
s. Let g be the nonlinear part of f i.e.

g

([
y
ỹ

]
, λ

)
=

[
g0(ỹ(0), ỹ(−1), ỹ(−2), λ)

0

]
, (14)

where:

g0(ỹ(0), ỹ(−1), ỹ(−2), λ) = f(ỹ(0), ỹ(−1), ỹ(−2), λ)−(
∂1f(0, λ)ỹ(0) + ∂2f(0, λ)ỹ(−1) + ∂3f(0, λ)ỹ(−2)

)
.

System (9)-(10) is equivalent to the autonomous evolution
equation:

ẋ = Hx+ g(x, λ). (15)

The decomposition of the Banach space X = P
⊕
Q such

that P is theH-invariant generalized eigenspace associated
to triple zero sigularity which is isomorphic to R3 and Q
also H-invariant of infinite dimension. Next, we compute
Φ a basis of P satisfying HΦ = ΦJ where

Φ(s) = [φ1, φ2, φ3] =


1 0 1

0 1 0

1 s
s2

2
+ 1

0 1 s

 , and J =

 0 1 0

0 0 1

0 0 0

 .
We compute the invariant spectral projection P : X → P
such that Px = Resz=0(z I − H)−1. In other words,
Px = l1(x)φ1 + l2(x)φ2 + l3(x)φ3 where:

l1(x) =
7

12
ỹ1 (0)− 131

144
ỹ2 (0) +

131

72

∫ 1

0

ỹ1 (t− 1) dt

− 131

144

∫ 2

0

ỹ1 (t− 2) dt+ 7/6

∫ 1

0

tỹ1 (t− 1) dt

− 7

12

∫ 2

0

tỹ1 (t− 2) dt−
∫ 1

0

t2ỹ1 (t− 1) dt

+ 1/2

∫ 2

0

t2ỹ1 (t− 2) dt,

l2(x) =ỹ1 (0) +
7

12
ỹ2 (0)− 7/6

∫ 1

0

ỹ1 (t− 1) dt

+
7

12

∫ 2

0

ỹ1 (t− 2) dt+ 2

∫ 1

0

tỹ1 (t− 1) dt

−
∫ 2

0

tỹ1 (t− 2) dt,

l3(x) =ỹ2 (0)− 2

∫ 1

0

ỹ1 (t− 1) dt+

∫ 2

0

ỹ1 (t− 2) dt,

which allows decomposing equation (15) to:
v̇ = Jv + Ψ(0)g0
˙̃w0 = ∂1fw̃0 + ∂2fw̃(−1) + ∂3fw̃(−2)

+ (I − Φ(0)Ψ(0))g0
˙̃w = ∂sw̃ − Φ̃Ψ(0)g0,

g0 designate g0(Φ̃(0)v + w̃0, Φ̃(−1)v + w̃(−1), Φ̃(−2)v +
w̃(−2)) and w̃0 = w̃(0) and
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Ψ(0) =


7

12
−131

144

1
7

12

0 1

 , Φ̃(s) =

 1 s 1 +
s2

2

0 1 s

 .
By using the Center Manifold Theorem presented in the
previous section and the following changes of coordinates:

a = −7

8
+

7

8
α r2, b =

7

16
+

7

16
β r2, c = 1 +

7

16
σ r2,

τ1 = 1 +
1

2
δ r4, v1 = r3u1 , v2 = r5u2 , v3 = r7u3 ,w = r3q ,

we arrive to the expansion of the graph (the center
manifold) in power of r which is of order 6 i.e. q(u, µ, r) =
r6q6(u, µ, r) where µ = (α, β, γ) and the expression of the
flow on the local center manifold:

u̇ =

 0 1 0
0 0 1
−α′ β′ γ′

u+

 0
0
u31

+ r2R(u, µ, r),

where α′ = δ (σ + β), β′ = 3δ, γ′ = α − σ − 3β and R is
the remainder, a smooth function in u, µ and r.

4. CONCLUDING REMARKS

The use of multiple delay blocks was suggested in
Niculescu and Michiels [2004], Kharitonov et al. [2005]
for stabilizing chains of integrators. In this paper, we pre-
sented a configuration of such multi-delayed-proportional
controller allowing to stabilize the inverted pendulum by
avoiding a triple zero eigenvalue singularity, a singularity
already identified in Sieber and Krauskopf [2004] through
the use of a delayed PD controller. These results agree
with the claim of Atay [1999], that is, the effect of the
delay is similar to derivative feedback in modifying the
behavior of the system, but extend it to the nonlinear
analysis by proving that the cubic truncated normal form
of the center manifold dynamics is the same as the one
obtained by using a delayed PD regulator. In an extended
version of the present investigation Boussaada et al. [2014],
another variant of multi-delayed-proportional controller is
considered and control loop latency is discussed.
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