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Abstract: A zero-sum linear-convex differential game with a quality index that estimates a
set of deviations of a motion trajectory at given instants of time from given target points is
considered. A case when the saddle point condition in a small game, also known as Isaac’s
condition, does not hold is studied. The game is posed in classes of mixed control strategies of
players. A numerical method for computing the game value and optimal strategies is elaborated.
Results of numerical experiments in model examples are given.
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1. INTRODUCTION

We consider a zero-sum differential game (see, e.g.,
Krasovskii (1985); Krasovskii and Krasovskii (1995)). A
dynamical system is described by ordinary differential
equations that are linear with respect to the phase vector.
The system is subjected to bounded control actions of
two antagonistic players. The control process is evaluated
within a fixed time interval. The quality index of the
control process (the game payoff) is a norm of a set of
deviations of the motion trajectory from given targets at
given instants of time. In the case when the saddle point
condition in a small game (see, e.g., Krasovskii (1985)),
also known as Isaac’s condition, holds, the game has a
value and a saddle point in classes of pure control strategies
(Krasovskii and Krasovskii (1995)). In Lukoyanov (1997,
1998) a procedure for computing the game value by con-
structing upper convex hulls of auxiliary functions from
the method of stochastic program synthesis (Krasovskii
(1985)) was proposed. On the basis of this procedure and
the extremal shift (see, e.g., Krasovskii (1985); Krasovskii
and Krasovskii (1995)) in Kornev (2012) a numerical
method for solving differential games under such condi-
tions was elaborated.

This paper is devoted to the case when the saddle point
condition in a small game does not necessarily hold.
Under this assumption the considered differential game
has a game value and a saddle point in classes of mixed
strategies (see, e.g., Krasovskii and Krasovskii (1995)).
Below we show that after the introduction of the so-
called leader system the methods from Lukoyanov (1997,
1998); Kornev (2012) become applicable to solving games
in mixed strategies. In the process of construction of the
player’s optimal control strategy we apply the extremal
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shift to provide necessary guarantees for the quality of
the motion generated by the leader’s deterministic control,
while the proximity of the motions of the original system
and the leader system is obtained by means of stochastic
constructions from Krasovskii and Choi (2001); Krasovskii
and Krasovskii (2012).

2. PROBLEM STATEMENT

Consider a differential game for a dynamical system,
described by the following dynamic equation

ẋ = A(t)x+ f
(
t, u, v

)
, t0 ≤ t < ϑ,

x ∈ Rn, u ∈ U ⊂ Rnu , v ∈ V ⊂ Rnv , (1)

initial condition

x(t0) = x0 ∈ Rn, (2)

and quality index

γ = µ1

(
D1

(
x(ϑ1)− c1

)
, . . . , DN

(
x(ϑN )− cN

))
. (3)

Here x is a phase vector; t is time; ẋ(t) = dx(t)/dt; A(t)
and f(t, u, v) are jointly continuous matrix function and
vector function; u and v are values of control actions
of the first and the second player; t0 and ϑ are fixed
instants of time; sets U and V are compact; ϑi ∈ (t0, ϑ]:
ϑi+1 > ϑi, i = 1, N − 1, ϑN = ϑ, are given instants of
time of the motion quality evaluation; Di are constant
matrices with dimensions di × n (1 ≤ di ≤ n); ci ∈ Rn
are target vectors; µ1(g1, . . . , gN ) is a norm in a space of
N -tuples (g1, . . . , gN ) composed of di– dimensional vectors
gi, i = 1, N .

It is assumed that there exist such norms µi
(
gi, . . . , gN

)
and σi(gi, µ), for which, for i = 1, N − 1,

µi(gi, . . . , gN ) = σi(gi, µi+1(gi+1, . . . , gN )). (4)

In such a case (see Lukoyanov (1998)) quality index γ is
positional (Krasovskii and Krasovskii, 1995, p. 43).

Realizations u(·) =
{
u(t) ∈ U, t0 ≤ t < ϑ

}
and

v(·) =
{
v(t) ∈ V, t0 ≤ t < ϑ

}
are admissible if they
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are Borel-measurable. The system’s motion x(·) generated
by such realizations is an absolutely continuous function{
x(t) ∈ Rn, t0 ≤ t ≤ ϑ

}
that satisfies initial condition (2)

and together with u = u(t) and v = v(t) satisfies equation
(1) for almost every t.

The aim of the first player is to make quality index (3) as
small as possible. The aim of the second player is opposite.

Note that we do not assume that the saddle point condi-
tion in a small game holds for system (1), so there might
exist such a vector l∗ ∈ Rn, for which

min
u∈U

max
v∈V
〈l∗, f(t, u, v)〉 6= max

v∈V
min
u∈U
〈l∗, f(t, u, v)〉,

where 〈·, ·〉 denotes the inner product of vectors. In such
a case, differential game (1)–(3) might not have a value
and a saddle point in pure strategies u(t, x, ε), v(t, x, ε),
and it is appropriate to consider a formalization of the
game in classes of mixed strategies (see, e.g., Krasovskii
and Krasovskii (1995)). Here ε is an accuracy parameter,
whose value is assigned by the player at the beginning
of the process of forming the control actions and remains
constant.

Since compact sets U and V can be approximated by finite
sets, further we assume that U and V are finite initially:

U = {u[r] ∈ Rnu : r = 1, L}, V = {v[s] ∈ Rnv : s = 1,M}.
Put

P =
{

(p1, . . . , pL) ∈ RL : pr ≥ 0, r = 1, L,

L∑
r=1

pr = 1
}
,

Q =
{

(q1, . . . , qM ) ∈ RM : qs ≥ 0, s = 1,M,

M∑
s=1

qs = 1
}
.

Following constructions from Krasovskii and Krasovskii
(1995), let us describe differential game (1)–(3) in mixed
strategies from the point of view of the first player. Along
with original x-object (1) consider an auxiliary y-model
with a phase vector y ∈ Rn. This y-model will be used
as a leader (Krasovskii and Subbotin, 1988, p. 327) in the
process of forming of the first player’s control actions. The
motion of the y-model is described by the equation

ẏ = A(t)y +

L∑
r=1

M∑
s=1

f(t, u[r], v[s])p∗rq
∗
s , t0 ≤ t < ϑ,

y(t0) = y0 ∈ Rn, p∗ ∈ P, q∗ ∈ Q.
(5)

A mixed strategy Su of the first player is a triple{
pu(·), p∗u(·), q∗u(·)

}
of functions

pu = pu(t, x, y, ε) ∈ P, p∗u = p∗u(t, x, y, ε) ∈ P,
q∗u = q∗u(t, x, y, ε) ∈ Q,

t ∈ [t0, ϑ], x ∈ Rn, y ∈ Rn, ε > 0,

which are measurable with respect to x, y for fixed t, ε.

Within the formalization of differential game (1)–(3) in
classes of mixed strategies players form their control real-
izations using probabilistic mechanisms. It is assumed that
further constructions are based on a sufficiently rich prob-
abilistic space Π = {Ω, F , P}, where Ω = {ω} is a sample
space, F is a σ-algebra, P = P (B), B ∈ F is a probability
measure. For explanations on formal construction of the
appropriate space Π (see, e.g., (Krasovskii and Krasovskii,

1995, p. 250), and also (Krasovskii and Subbotin, 1988,
p. 402)).

A control law U of the first player is a triple
{
Su, ε, ∆δ

}
,

where ∆δ is a partition of the time interval [t0, ϑ]:

∆δ = {tj : 0 < tj+1 − tj ≤ δ, j = 0, k − 1, tk = ϑ}. (6)

From given positions {t0, x0} of the x-object and {t0, y0}
of the y-model the control law U in a pair with some
admissible stochastic control realization vω(·) =

{
vω(t) ∈

V, t0 ≤ t < ϑ, ω ∈ Ω
}

of the second player generates a
stochastic motion {xω(·), yω(·)} of the {x-object, y-model}
complex, which is defined as a solution of the following
step-by-step equations:

ẋω(t) = A(t)xω(t) + f
(
t, u(j)

ω , vω(t)
)
,

ẏω(t) = A(t)yω(t) +

L∑
r=1

M∑
s=1

(
f(t, u[r], v[s])·

·p∗ur
(
tj , xω(tj), yω(tj), ε

)
q∗us
(
tj , xω(tj), yω(tj), ε

))
,

xω(t0) = x0, yω(t0) = y0, tj ≤ t < tj+1, j = 0, k − 1,
(7)

where value u
(j)
ω ∈ U is determined as a result of a random

trial under the condition

P
(
u(j)
ω = u[r] | xω(tj), yω(tj)

)
= pur

(
tj , xω(tj), yω(tj), ε

)
.

The symbol P (·|·) denotes the conditional probability. It
is assumed that on each step tj ≤ t < tj+1 the realiza-
tion vω(·) is stochastically independent of the realization

uω(·) =
{
uω(t) = u

(j)
ω , tj ≤ t < tj+1, j = 0, k − 1, ω ∈ Ω

}
:

P
(
vω(t) ∈ B | xω(tj), yω(tj), uω(tj)

)
=

P
(
vω(t) ∈ B | xω(tj), yω(tj)

)
, B ⊂ V.

A guaranteed result of the control law U , for fixed positions
{t0, x0} and {t0, y0} and a number 0 < β < 1, is a value

ρ(U ; t0, x0, y0;β) = sup
vω(·)

min
{
α
∣∣P (γ ≤ α) ≥ β}, (8)

where the value γ of quality index (3) is calculated for the
motion xω(·).
A guaranteed result of the strategy Su, for a fixed initial
position {t0, x0}, is a value

ρ(Su; t0, x0) = lim
β→1

lim
ε→0

lim
η→0

sup
|x0−y0|≤η

lim
δ→0

sup
∆δ

ρ(U = {Su, ε,∆δ}; t0, x0, y0;β).

A strategy Su0 is called optimal if

ρ(Su0 ; t0, x0) = min
Su

ρ(Su; t0, x0) = ρ0
u(t0, x0).

The value ρ0
u(t0, x0) is the optimal guaranteed result of the

first player.

A control law U is (ζ, β)-optimal if

ρ(U ; t0, x0, y0 = x0;β) ≤ ρ0
u(t0, x0) + ζ. (9)

Similarly, considering differential game (1)–(3) from the
point of view of the second player, we introduce an
auxiliary z-model. Its motion is described by the following
equation
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ż = A(t)z +

L∑
r=1

M∑
s=1

f(t, u[r], v[s])p∗rq
∗
s , t0 ≤ t < ϑ,

z(t0) = z0 ∈ Rn, p∗ ∈ P, q∗ ∈ Q. (10)

A mixed strategy Sv of the second player is a triple{
qv(·), p∗v(·), q∗v(·)

}
of functions

qv = qv(t, x, z, ε) ∈ Q, p∗v = p∗v(t, x, z, ε) ∈ P,
q∗v = q∗v(t, x, z, ε) ∈ Q,

t ∈ [t0, ϑ], x ∈ Rn, z ∈ Rn, ε > 0,

which are measurable with respect to x, z for fixed t, ε.

A control law V of the second player is a triple
{
Sv, ε, ∆δ

}
.

From given positions {t0, x0} of the x-object and {t0, z0}
of the z-model together with some admissible stochastic
control realization u(·) =

{
uω(t) ∈ U, t0 ≤ t < ϑ, ω ∈ Ω

}
of the first player the control law V generates a stochastic
motion {xω(·), zω(·)} of the {x-model, z-object} complex,
which is defined as a solution of the step-by-step equations

ẋω(t) = A(t)xω(t) + f
(
t, uω(t), v(j)

ω

)
,

żω(t) = A(t)zω(t) +

L∑
r=1

M∑
s=1

(
f(t, u[r], v[s])·

·p∗vr
(
tj , xω(tj), zω(tj), ε

)
q∗vs
(
tj , xω(tj), zω(tj), ε

))
,

xω(t0) = x0, zω(t0) = z0, tj ≤ t < tj+1, j = 0, k − 1,
(11)

where the value v
(j)
ω ∈ V is determined as a result of a

random trial under the condition

P
(
v(j)
ω = v[s] | xω(tj), zω(tj)

)
= qvs

(
tj , xω(tj), zω(tj), ε

)
.

It is assumed that on each step tj ≤ t < tj+1 the realiza-
tion uω(·) is stochastically independent of the realization

vω(·) =
{
vω(t) = v

(j)
ω , tj ≤ t < tj+1, j = 0, k − 1, ω ∈ Ω

}
:

P
(
uω(t) ∈ B | xω(tj), zω(tj), vω(tj)

)
=

P
(
uω(t) ∈ B | xω(tj), zω(tj)

)
, B ⊂ U.

A guaranteed result of the control law V, for fixed {t0, x0},
{t0, z0} and 0 < β < 1, is the following value

ρ(V; t0, x0, z0;β) = inf
uω(·)

max
{
α
∣∣P (γ ≥ α) ≥ β}. (12)

Note that in accordance with definitions (8) and (12), for
any admissible mixed control laws U and V, for any value
0.5 < β < 1, the following inequality holds

ρ(U ; t0, x0, y0;β) ≥ ρ(V; t0, x0, z0 = y0;β). (13)

A guaranteed result of the strategy Sv is

ρ(Sv; t0, x0) = lim
β→1

lim
ε→0

lim
η→0

inf
|x0−z0|≤η

lim
δ→0

inf
∆δ

ρ(V = {Sv, ε,∆δ}; t0, x0, z0;β).

A strategy Sv0 is called optimal if

ρ(Sv0 ; t0, x0) = max
Sv

ρ(Sv; t0, x0) = ρ0
v(t0, x0).

The value ρ0
v(t0, x0) is the optimal guaranteed result of the

second player.

A control law V is (ζ, β)-optimal if

ρ(V; t0, x0, z0 = x0;β) ≥ ρ0
v(t0, x0)− ζ. (14)

It is known (Krasovskii and Krasovskii, 1995, p. 257) that
differential game (1)–(3) has a value

ρ(t0, x0) = ρ0
u(t0, x0) = ρ0

v(t0, x0) (15)

and a saddle point {Su0 , Sv0} in classes of mixed strategies.

The aim of this paper is to elaborate a numerical method
for approximate computation of the game value ρ(t0, x0)
and of the (ζ, β)-optimal control laws.

3. AUXILIARY DIFFERENTIAL GAME

Consider a differential game for y-model (5) with quality
index like (3):

γy = µ1

(
D1

(
y(ϑ1)− c1

)
, . . . , DN

(
y(ϑN )− cN

))
. (16)

In this auxiliary game p∗ is treated as control actions of
the first player, who is aimed to minimize quality index
(16), and q∗ is control actions of the second player, who is
aimed to maximize this quality index.

System (5) satisfies the saddle point condition in a small
game, that is why auxiliary game (5), (16) has a value
ρ∗(t0, y0) and a saddle point {p∗0(t, y, ε), q∗0(t, y, ε)} in
classes of pure strategies (Krasovskii, 1985, p. 228–234).
According to Lukoyanov (1997, 1998), value ρ∗(t0, y0) can
be calculated approximately by means of the following
procedure. This procedure is based on a partition ∆δ like
(6). All instants of time ϑi from quality index (16) are
included in this partition.

Denote

h(t) =

{
0, if t < ϑ1,
max{i = 1, N |ϑi ≤ t}, otherwise,

∆ψj(m) =

∫ tj+1

tj

max
q∗∈Q

min
p∗∈P

〈
m,

Ψ[ϑ, t]

L∑
r=1

M∑
s=1

f(t, u[r], v[s])p∗rq
∗
s

〉
dt,

m ∈ Rn, j = 0, k − 1.

(17)

Here Ψ[ϑ, t] is a fundamental solution matrix of the equa-
tion ẋ = A(t)x such that Ψ[t, t] = E, where E is the
identity matrix.

Step by step, in the reverse order, starting from the last
point of the partition ∆δ, we define sets Gj of vectors

m ∈ Rn and scalar functions ϕj(m), m ∈ Gj , j = 0, k, by
the following recurrent relations.

For j = k, we set

Gk = {m = 0}, ϕk(m) = 0, m ∈ Gk.
For the current j, if tj+1 is not equal to any instant of time
ϑi of the motion quality evaluation, i.e., h(tj) = h(tj+1),
we set

Gj = Gj+1, ϕ∗j+1(m) = ϕj+1(m), m ∈ Gj ,
otherwise, when tj+1 = ϑh, h = h(tj) + 1, we set

Gj =

m
∣∣∣∣∣m = νm∗ + Ψ>[ϑh, ϑ]D>h l,
ν ≥ 0, m∗ ∈ Gj+1,
l ∈ Rdh , σ∗h(l, ν) ≤ 1

 ,

ϕ∗j+1(m) = max
m∗,ν,l

[
νϕj+1(m∗)− 〈l,Dhch〉

]
, m ∈ Gj .

(18)
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Finally, in any case, for m ∈ Gj , we set

ψj(m) = ∆ψj(m) + ϕ∗j+1(m), ϕj(m) = {ψj}∗Gj (m). (19)

Here the superscript “>” denotes the matrix transposition;
σ∗h(·) is a norm dual to σh(·) from (4); the maximum is
calculated over all such m∗ ∈ Gj+1, ν ≥ 0, l ∈ Rdh ,
σ∗h(l, ν) ≤ 1, that satisfy the equality m = νm∗ +
Ψ>[ϑh, ϑ]D>h l; symbol {ψj}∗Gj denotes the upper convex

hull of the function ψj on the set Gj , i.e., the minimal
concave function that majorizes ψj(m) for m ∈ Gj .
Consider the system of values

ej(y) = max
m∈Gj

[
〈m,Ψ[ϑ, tj ]y〉+ ϕj(m)

]
, j = 0, k, y ∈ Rn.

(20)

It is known (Lukoyanov (1998)), that for any bounded
subset Y0 ⊂ Rn and any number ξ > 0, there exists a
number δ > 0 such that for any partition ∆δ like (6), the
following inequality holds

|ρ∗(t0, y0)− e0(y0)| ≤ ξ, y0 ∈ Y0. (21)

Put

ε(t) =
√
ε+ ε(t− t0) exp

{
λA(t− t0)

}
, ε > 0, t ∈ [t0, ϑ],

λA = sup
t∈[t0,ϑ], ‖x‖=1

‖A(t)x‖ < +∞.

(22)

Here and below ‖ · ‖ denotes the Euclidean vector norm.

On the basis of system of values (20) by means of extremal
shift to accompanying points (see, e.g., Krasovskii (1985);
Krasovskii and Krasovskii (1995)) we define a function
p∗eu ( · ; ∆δ):

p∗eu = p∗eu (t, y, ε; ∆δ) ∈ arg min
p∗∈P

max
q∗∈Q〈 Ψ>[ϑ, t]mu√

1 + ‖Ψ>[ϑ, t]mu‖2
ε(t),

L∑
r=1

M∑
s=1

f(t, u[r], v[s])p∗rq
∗
s

〉
,

(23)

where

mu ∈ arg max
m∈Gj

[
〈m,Ψ[ϑ, t]y〉+ ϕj(m)

−ε(t)
√

1 + ‖Ψ>[ϑ, t]m‖2
]
,

tj ≤ t < tj+1, j = 0, k − 1, y ∈ Rn, ε > 0.

For auxiliary game (5), (16), consider a control law{
p∗eu ( · ; ∆δ), ε,∆δ

}
, that, basing on the partition ∆δ

used to construct (20), forms a piecewise constant control
realization of the first player according to the rule

p∗(t) = p∗eu
(
tj , y(tj), ε; ∆δ

)
, tj ≤ t < tj+1, j = 0, k − 1.

As stated in Kornev (2012), this control law is ζ-optimal.
It means that for any bounded subset Y0 ⊂ Rn, for any
number ζ > 0, there exist a number ε∗y > 0 and a function
δy(ε) > 0, 0 < ε ≤ ε∗y, such that, for any y0 ∈ Y0, any
value 0 < ε ≤ ε∗y, and any partition ∆δ, δ ≤ δy(ε), the

control law
{
p∗eu ( · ; ∆δ), ε,∆δ

}
ensures the inequality

γy ≤ ρ∗(t0, y0) + ζ/2, (24)

for any measurable q∗(·) =
{
q∗(t) ∈ Q, t0 ≤ t < ϑ

}
.

On the other hand, considering the identical differential
game for z-model (2) and quality index γz like (16), basing
on values (20), define a function q∗ev ( · ; ∆δ):

q∗ev = q∗ev (t, z, ε; ∆δ) ∈ arg max
q∗∈Q

min
p∗∈P〈 Ψ>[ϑ, t]mv√

1 + ‖Ψ>[ϑ, t]mv‖2
ε(t),

L∑
r=1

M∑
s=1

f(t, u[r], v[s])p∗rq
∗
s

〉
,

(25)

where

mv ∈ arg max
m∈Gj

[
〈m,Ψ[ϑ, t]z〉+ ϕj(m)

+ε(t)
√

1 + ‖Ψ>[ϑ, t]m‖2
]
,

tj ≤ t < tj+1, j = 0, k − 1, z ∈ Rn, ε > 0.

Consider a corresponding control law
{
q∗ev ( · ; ∆δ), ε,∆δ

}
,

that forms a control realization for the second player
according to the rule

q∗(t) = q∗ev
(
tj , z(tj), ε; ∆δ

)
, tj ≤ t < tj+1, j = 0, k − 1.

For any bounded subset Z0 ⊂ Rn, for any number ζ > 0,
there exist a number ε∗z > 0 and a function δz(ε) >
0, 0 < ε ≤ ε∗z, such that, for any z0 ∈ Z0, any value
0 < ε ≤ ε∗z, and any partition ∆δ, δ ≤ δz(ε), the control
law

{
q∗ev ( · ; ∆δ), ε,∆δ

}
ensures the inequality

γz ≥ ρ∗(t0, z0)− ζ/2, (26)

for any measurable p∗(·) =
{
p∗(t) ∈ P, t0 ≤ t < ϑ

}
.

4. OBJECT-MODEL PROXIMITY

In original differential game (1)–(3) the first player during
the process of forming the stochastic motion {xω(·), yω(·)}
of complex (7) can ensure an appropriate proximity of
xω(·) and yω(·) by means of a proper choice of functions
pu(·) and q∗u(·) in its mixed strategy Su.

On the other hand, by means of a proper choice of qv(·)
and p∗v(·) in the mixed strategy Sv, the second player can
ensure proximity of xω(·) and zω(·) for the corresponding
motion {xω(·), zω(·)} of complex (11). Namely, the fol-
lowing lemmas are valid (see Krasovskii and Choi (2001);
Krasovskii and Krasovskii (2012)). Denote

λ(t, x, y) = ‖x− y‖2 exp{−2λA(t− t0)},
where constant λA is taken from (22).

Lemma 1. Let functions pu = pu(t, x, y, ε) and q∗u =
q∗u(t, x, y, ε) from the mixed strategy of the first player
Su = {pu(·), p∗u(·), q∗u(·)} be defined from the following
condition〈

x− y,
L∑
r=1

M∑
s=1

f(t, u[r], v[s])purq
∗
us

〉
= min

p∈P
max
q∈Q

〈
x− y,

L∑
r=1

M∑
s=1

f(t, u[r], v[s])prqs
〉
. (27)

Then, for any bounded subset X0 ⊂ Rn and any numbers
λ∗ > 0 and 0 < β < 1, there exist such values λ0 > 0
and δ > 0, that, for any initial x0 ∈ X0 and y0 ∈ Rn,
which satisfy the condition λ(t0, x0, y0) ≤ λ0, for any value
ε > 0, any partition ∆δ (6), and any stochastic motion
{xω(·), yω(·)} of complex (7), generated by the control law
U = {Su, ε,∆δ}, the following inequality holds

P
(
λ(t, xω(t), yω(t)) ≤ λ∗, t ∈ [t0, ϑ]

)
≥ β,

for any function p∗u(·) in the strategy Su and any admissi-
ble stochastic control realization vω(·) of the second player.
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Lemma 2. Let functions qv = qv(t, x, z, ε) and p∗v =
p∗v(t, x, z, ε) from the mixed strategy of the second player
Sv = {qv(·), p∗v(·), q∗v(·)} be defined from the following
condition

〈
z − x,

L∑
r=1

M∑
s=1

f(t, u[r], v[s])p∗vrqvs
〉

= max
q∈Q

min
p∈P

〈
z − x,

L∑
r=1

M∑
s=1

f(t, u[r], v[s])prqs
〉
. (28)

Then, for any bounded subset X0 ⊂ Rn and any numbers
λ∗ > 0 and 0 < β < 1, there exist such values λ0 > 0
and δ > 0, that, for any initial x0 ∈ X0 and z0 ∈ Rn,
which satisfy the condition λ(t0, x0, z0) ≤ λ0, for any value
ε > 0, any partition ∆δ (6), and any stochastic motion
{xω(·), zω(·)} of complex (11), generated by the control law
V = {Sv, ε,∆δ}, the following inequality holds

P
(
λ(t, xω(t), zω(t)) ≤ λ∗, t ∈ [t0, ϑ]

)
≥ β,

for any function q∗v(·) in the strategy Sv and any admissible
stochastic control realization uω(·) of the first player.

5. GAME VALUE AND (ζ, β)-OPTIMAL CONTROL
LAWS CONSTRUCTION

Define a mixed control law Uε∆δ
=
{
Su, ε,∆δ

}
, Su ={

pu(·), p∗u(·), q∗u(·)
}

of the first player. Assume that all
instants of time ϑi from quality index (3) are included
in the partition ∆δ like (6), the functions pu(·) and q∗u(·)
satisfy condition (27), and the function p∗u(·) is determined
from condition of the extremal shift (23) as follows

p∗u = p∗u(t, x, y, ε) = p∗eu (t, y, ε; ∆δ),

t ∈ [t0, ϑ], x ∈ Rn, y ∈ Rn, ε > 0.

Similarly, define a mixed control law Vε∆δ
=
{
Sv, ε,∆δ

}
,

Sv =
{
qv(·), p∗v(·), q∗v(·)

}
of the second player. Assume

that the functions qv(·) and p∗v(·) satisfy condition (28),
and the function q∗v(·) is determined from condition (25):

q∗v = q∗v(t, x, z, ε) = q∗ev (t, z, ε; ∆δ),

t ∈ [t0, ϑ], x ∈ Rn, z ∈ Rn, ε > 0.

Theorem 3. For any bounded subset X0 ⊂ Rn and any
numbers ζ > 0 and 0.5 < β < 1, there exist a number
ε∗ > 0 and a function δ(ε) > 0, 0 < ε ≤ ε∗ such that, for
any x0 ∈ X0, any value 0 < ε ≤ ε∗, and any partition ∆δ,
δ ≤ δ(ε), the control laws Uε∆δ

and Vε∆δ
are (ζ, β)-optimal

and the following inequality holds

|ρ(t0, x0)− e0(x0)| ≤ ζ.

Proof. Let X0 ⊂ Rn; ζ > 0; 0.5 < β < 1. Since game (1)–
(3) has a saddle point {Su0 , Sv0}, there exist control laws
U0 and V0 such that, for any x0 ∈ X0 the following holds

ρ(U0; t0, x0, y0 = x0;β) ≤ ρ(t0, x0) + ζ,
ρ(V0; t0, x0, z0 = x0;β) ≥ ρ(t0, x0)− ζ. (29)

Using Lemma 1, continuity of quality index (3) and ζ-
optimality of the auxiliary control law

{
p∗eu ( · ; ∆δ), ε,∆δ

}
,

find a number ε∗y > 0 and a function δ′y(ε) > 0, 0 < ε ≤ ε∗y,
such that the following relations hold

P (|γx − γy| ≤ ζ/2) ≥ β, γy ≤ ρ∗(t0, y0 = x0) + ζ/2,

for any x0 ∈ X0, 0 < ε ≤ ε∗y, and 0 < δ ≤ δ′y(ε).

From here, in accordance with (8), for the control law Uε∆δ

we obtain

β ≤ P (|γx − γy| ≤ ζ/2) ≤ P (γx ≤ ρ∗(t0, y0 = x0) + ζ),

ρ(Uε∆δ
; t0, x0, y0 = x0;β) ≤ ρ∗(t0, y0 = x0) + ζ. (30)

Consider a case, when in differential game (1)–(3) control
actions of the first player are chosen by the control law
Uε∆δ

and control actions of the second player are chosen
by V0. From inequalities (29), (13) and (30) we conclude

ρ(t0, x0)− ζ ≤ ρ(V0; t0, x0, z0 = x0;β)

≤ ρ(Uε∆δ
; t0, x0, y0 = x0;β) ≤ ρ∗(t0, y0 = x0) + ζ.

Similarly, using Lemma 2, continuity of quality index (3)
and ζ-optimality of the control law

{
q∗ev ( · ; ∆δ), ε,∆δ

}
,

find a number ε∗z > 0 and a function δ′z(ε) > 0, 0 < ε ≤ ε∗z
such that, for any x0 ∈ X0, 0 < ε ≤ ε∗z, and 0 < δ ≤ δ′z(ε),
the guaranteed result of the control law Vε∆δ

satisfies

ρ∗(t0, z0 = x0)− ζ ≤ ρ(Vε∆δ
; t0, x0, z0 = x0;β)

≤ ρ(U0; t0, x0, y0 = x0;β) ≤ ρ(t0, x0) + ζ.

Thus |ρ(t0, x0)− ρ∗(t0, y0 = x0)| ≤ 2ζ, hence

ρ(t0, x0) = ρ∗(t0, y0 = x0).

For ξ = ζ, find a number δ′ > 0 such that inequality (21)
holds. Put

ε∗ = min{ε∗y, ε∗z},
δ(ε) = min{δ′y(ε), δ′z(ε), δ

′}, 0 < ε ≤ ε∗.
Then, for any x0 ∈ X0, 0 < ε ≤ ε∗ and 0 < δ ≤ δ(ε), we
have

|ρ(t0, x0)− e0(x0)| ≤ ζ,
ρ(Uε∆δ

; t0, x0, y0 = x0;β) ≤ ρ(t0, x0) + ζ,

ρ(Vε∆δ
; t0, x0, z0 = x0;β) ≥ ρ(t0, x0)− ζ.

Taking (9), (14), and (15) into account, we conclude that
control laws Uε∆δ

and Vε∆δ
are (ζ, β)-optimal.

6. SOFTWARE IMPLEMENTATION

Details of the software implementation of the procedure
used to construct values (20) together with estimations of
time complexities of the algorithms in use can be found in
Kornev (2012); Kornev and Lukoyanov (2012).

In the implementation the so-called “pixel” approximation
is used for compact sets. Each compact set is covered
by a finite uniform ε-net. All elements of the set, which
belong to the ε-neighborhood of a node from this net, are
identified with that node and constitute the corresponding
pixel.

To calculate ∆ψj(m) from (17) we solve auxiliary matrix
games in mixed strategies by means of algorithms from
Williams (1966).

7. NUMERICAL EXPERIMENTS

Consider two differential games for a dynamical system,
described by the following dynamic equation

ẍ =
4u

1 + e 8(t−2)
+

(u+ v)2

2
+

2 v

1 + e 8(3−t) , 0 ≤ t < 4,

u ∈ U = {−1, 1}, v ∈ V = {−1, 1},
(31)
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initial condition

x(0) = 0, ẋ(0) = 0, (32)

and quality indices

γ(1) =
√
x2(1) + x2(4), (33)

γ(2) = |x(1)|+ |x(2)− 0.5|+ |x(4)|. (34)

The following values of the precision parameters were
used in the experiment: the diameter of the partition ∆δ

of the control interval [0, 4] was δ = 0.001, pixel sizes
∆m = ∆l = ∆ν = 0.01, ∆φ = π/360. The a priori

calculated value e
(1)
0 (x0), which approximates the value of

game (31)–(33), was equal to 0.3553, and the value e
(2)
0 (x0)

for game (31), (32), (34) was equal to 1.050. Three control
simulations were performed. In the first one, the control
actions of the both players were formed according to the

control laws Uε (1)
∆δ

, Vε (1)
∆δ

in the first game and Uε (2)
∆δ

, Vε (2)
∆δ

in the second game. Under these conditions, the resulting
values of the quality indices (33) and (34) were

γ
(1)
0 =

√
(0.0237)2 + (0.3551)2 ≈ 0.3559

≈ e(1)
0 (x0) = 0.3553,

γ
(2)
0 = |0.005|+ | − 0.045− 0.5|+ | − 0.516| ≈ 1.066

≈ e(2)
0 (x0) = 1.050.

In the second simulation, the control actions of the first

player were formed according to Uε (1)
∆δ

and Uε (2)
∆δ

, respec-
tively, and the control actions of the second player were
random. Under these conditions the resulting values of the
quality indices (33) and (34) were

γ(1)
u =

√
(0.0237)2 + (−0.0049)2 ≈ 0.0242

< e
(1)
0 (x0) = 0.3553,

γ(2)
u = |0.005|+ | − 0.046− 0.5|+ |0.034| ≈ 0.585

< e
(2)
0 (x0) = 1.050.

In the third simulation, the control actions of the first
player were random, the control actions of the second

player were formed according to control laws Vε (1)
∆δ

and

Vε (2)
∆δ

, respectively. The resulting values of the quality
indices were

γ(1)
v =

√
(0.4935)2 + (8.2750)2 ≈ 8.2897

> e
(1)
0 (x0) = 0.3553,

γ(2)
v = |0.505|+ |2.063− 0.5|+ |8.731| ≈ 10.799

> e
(2)
0 (x0) = 1.050.

The motion trajectories, that were obtained in the first
(thick line), the second (thin line), and the third simu-
lations (dashed line), are shown in the Fig. 1. The first
plot is related to the game with the quality index γ(1), the
second one is for the case of the quality index γ(2). Small
circles on the trajectories show the state of the system at
the instants of time of the motion quality evaluation.
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