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Abstract: Model predictive control (MPC) has attracted wide attention in process industries with its ability 
to handle constrained multivariable processes. Computational complexity can become a limiting factor 
when MPC is applied to large-scale systems with fast sampling times. In this paper, a control scheme 
known as multi-step robust MPC is presented for polytopic uncertain multi-input systems. Only one or 
several state feedback laws are optimized at each time interval to reduce computational complexity. A set 
invariance condition for polytopic uncertain systems is identified and the invariant set is determined by 
solving a linear matrix inequality (LMI) optimization problem. Based on the set invariance condition, a 
min-max multi-step robust MPC scheme is proposed. Numerical simulations show the effectiveness of the 
proposed scheme. 



1. INTRODUCTION 

Model predictive control technology has been widely used in 
complex constrained multivariable control problems 
including chemical processes, power systems, urban traffic 
systems and irrigation canals (Qin & Badgwell, 2003). The 
key idea of MPC technique is to use a linear process model of 
the system to predict the future states and control inputs. This 
is achieved by solving an online optimisation problem to 
obtain the optimal control sequence over a future time 
horizon. The first control input in the control sequence is then 
applied to the process. At the next sample, measurements are 
used to update the optimization problem, and the 
optimization is repeated (Mayne, Rawlings, Rao, & Scokaert, 
2000). This results in demanding online optimization. 
Computational complexity can become a limiting factor 
when applying MPC to large-scale systems with fast 
sampling times. Many works (i.e., distributed MPC, 
decentralized MPC, and multiplexed MPC) have been 
proposed to reduce the computational complexity.  

A widely investigated scheme is called distributed MPC 
algorithm, which decomposes the global system into 
subsystems and designs distributed MPC controllers 
independently (Giselsson, Doan, Keviczky, Schutter, & 
Rantzer, 2013; Maestre, Muñoz de la Peña, Camacho, & 
Alamo, 2011; Scheu & Marquardt, 2011; Zhang, Wang, & Li, 
2013; Zheng, Li, & Li, 2011). The iterative distributed MPC 
requires interactions among subsystems. The performance of 
closed-loop system is improved with the increase in number 
of iterations. Nevertheless, the computational time will 
increase with the increasing number of iterations. 

Another approach to reduce the computational complexity is 
the decentralized MPC, in which each subsystem makes 
control decision independently (Alessio, Barcelli, & 
Bemporad, 2011; Rivero, Farina, & Ferrari-Trecate, 2013; 

Sandell Jr, Varaiya, Athans, & Safonov, 1978). Information 
exchange including measurements and previous control 
inputs is allowed only before and after the decision making. 
There is no coordination between subsystems during the 
decision process. Nevertheless, it is known that such a 
decentralized control strategy may result in unacceptable 
control performance, especially when the couplings between 
subsystems are strong (Li, Zhang, & Zhu, 2005). 

Multiplexed MPC was introduced in (Ling, Maciejowski, 
Richards, & Wu, 2012; Siva, Maciejowski, & Ling, 2010). 
The idea of the multiplexed MPC scheme was to solve the 
MPC optimization problem sequentially and update the 
control inputs as soon as the solution is available. The 
multiplexed MPC was applied to the control of large 
commercial turbofan engine in (Richter, Singaraju, & Litt, 
2008). The results showed that the multiplexed MPC reduced 
the time required for computing the control feedback law 
with small performance degradation. Nevertheless, it was 
required that the fresh measurements are available at the 
reduced update intervals /T m , where T  was the sampling 
time and m  was the number of control inputs. 

The polytopic uncertain systems are widely investigated in 
recent years for MPC controller design (Canale, Fagiano, & 
Signorile, 2012; Huang, Li, Lin, & Xi, 2011; Huang, Li, & Xi, 
2013; Yun, Choi, & Park, 2010). The robust MPC controllers 
are obtained by solving LMIs optimization problem. The 
computation time is an important issue in on-line solving the 
LMI constraints. This motivates us to propose a new scheme 
to reduce the computational complexity in designing the 
robust MPC for large-scale systems. 

 In this paper, we propose a scheme known as multi-step 
robust MPC, in which only subset of control feedback laws 
are designed sequentially at each time interval. The 
motivation for this scheme is to facilitate applications of 
MPC when computation time is critical. The proposed multi-
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step robust MPC scheme results in reducing computation 
time in controller design.  

The rest of the paper is organized as follows. In Section 2, 
problem formulations are presented. Multi-step robust MPC 
algorithm is proposed in Section 3. Numerical example is 
given in Section 4 and the paper is concluded in Section 5. 

Notations: Throughout this paper, we use 
2 T

Q
x x Qx  to 

define the -Q weighted norm. x  denotes the absolute value 

of vector x . The double subscript notation  |k l k  denotes 

a prediction of a variable l  steps ahead from time interval k . 

kF  refers to the control feedback law optimized at time 

interval k . The operator ‘ mod ’ refers to the modulus after 
division. The symbol * denotes the matrix transpose.  

2. PROBLEM FORMULATIONS 

Consider the following discrete-time, linear uncertain system: 

1k k k k kx A x B u                               (1) 

where 1
n

kx R   denotes the measurable system state. 
m

ku R  denotes the control input, which is assumed to 

consist of m  independent sub-inputs  1u k ,  ,  mu k . 

The state matrix kA  and input matrix kB  are not exactly 

known, but are affine functions of a time-varying parameter 

vector    1 2 Lp k p p p  , ,
1

L

k kA p A 
 

  , 

,
1

L

k kB p B 
 

   with 0 1p   and 
1

1
L

p
 

 . That is, the 

system matrices varies inside a polytope c  whose vertices 

consist of L  local matrices: 

     , , ,, , 1c k kCo A B L                     (2) 

where Co  denotes the convex hull.  

In conventional centralized MPC scheme, all the control 
inputs are computed online at each time interval, which 
optimizes a performance index. The centralized MPC scheme 
requires online optimization, in which computational burden 
can become an issue when applying MPC to large-scale 
systems with fast response sampling times.  

Motivated by the deficiency of conventional centralized MPC 
algorithm, we propose a novel multi-step robust MPC 
scheme in this work. The structure of robust multi-step MPC 
is illustrated in Figure 1, which shows that only one or 
several state feedback laws are optimized at each time 
interval. We denote    |i i k lu k l k l F k l x     , 

    11 |i i k lu k l k l F k l x       .  

The state feedback laws that are not optimized at the current 
time interval keep their previous optimized values. im  state 

feedback laws are optimized in a single time interval with 

in m
iB R   and ,

im n
i kF R  . Then, each state feedback law is 

optimized for every M  time intervals, where / iM m m .   

Input

k 1k  2k  3k 

 1 |u k k

 2 |u k k

 3 |u k k

 1 1| 1u k k 

 2 1| 1u k k 

 3 1|u k k

 2 2 | 1u k k 

 1 3 | 3u k k 
 1 2 | 1u k k 

 3 2 | 2u k k 

 2 3 | 3u k k 

 3 3 | 2u k k 

Time interval

 4 |u k k
 4 1|u k k  4 2 | 2u k k   4 3 | 2u k k 

1, 4,

Optimize

k kF F 1, 1 2, 1

Optimize

,k kF F  3, 2 4, 2

Optimize

,k kF F  1, 3 2, 3

Optimize

,k kF F   

Fig. 1. Structure of multi-step robust MPC 

The control input in model (1) is rewritten into several 

subsets as 1, 2, ,

TT T T
k k k M ku u u u    , where 

     , 1 1i ii k imi mu u k u k 
    , , ,i k i k ku F x  and i  is 

decided by solving the following indexing function: 

 mod 1i k M                                    (3) 

Remark 1: In the proposed multi-step robust MPC scheme, 
only ,i kF  is optimized and the rest of the state feedback laws 

remains the previous one. For example, let 4m   and 

2im  , we have 2
i

m
M

m
  . At 3k  , we can compute i  

by  3 mod 2 1 2i    . This means that only 2,kF  is 

optimized at time interval 3k   and 1,kF  keeps the previous 

optimized state feedback law 1, 1kF  . Then, 1, 1

2,

k
k k

k

F
u x

F
 

  
 

 is 

applied to the plant at 3k  .  

System (1) can be rewritten as following distributed form: 

 1 , , , ,1

M

k k k i k i k j k j kj j i
x A x B u B u  

             (4) 

where   ,, 1 1 iii i imi i mB B B 
    .  

In model (4),  , 1 1ii i mB    denotes the   1 1 thii m   column 

of B . ,
im

i ku R  denotes the input to be computed at time 

interval k . ,
jm

j ku R  refers to the inputs that are not 

optimized for the current time interval k . ,j ku  can be treated 

as a known input over the prediction horizon 0k  . The 
polytope c  can be represented as follows: 

       , , , , , 1, , , 1, , ,,k i k j k L jco A B M iB j          (5) 

The constraints on system input and state are represented as: 
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 | , 0, =1, ,j ju k l k u l j m                       (6) 

 | , 0, =1, ,j jx k l k x l j n                       (7) 

where n n
j R   denote a matrix that the diagonal element 

 ,j j  is 1 and the rest elements are 0. 

3. MULTI-STEP ROBUST MPC 

In this section, we develop a multi-step robust MPC for 
polytopic uncertain systems.  At time interval k , the aim of 
multi-step robust MPC is to find state feedback laws 

 , | , | , 0, ,i k l k i k k l ku F x l                          (8) 

by solving following optimization problem: 

 
 

   
,, ,

|
,

,min max , . . 4 - 8
k i k j ki k

A ,B B
i k k

F

J s t


                    (9) 

where 
 

22 2

, | | , | , |
0 1

j
i j

M

i k k k l k i k l k j k
i

l tQ R R
l j j

J x u u



 



 


 
    

 
  .  

It is noted that the thj  (  1,j M , j i ) input is not 

optimized at time interval k . The state feedback law , jj tF  is 

obtained at time interval jt , where jt  is the previous time 

interval and decided by the following indexing function: 

,

,j

k j i i j
t

k j M i i j

  
     

                   (10) 

Substituting , jj tF  and (8) into (4), we obtain the following 

closed-loop system: 

   1| , , , , |1 j

M

k l k k i k i k j k j t k l kj j i
x A B F B F x

  
         (11) 

Considering the Lyapunov function  , | |i k l k k l kV x    

| , |
T
k l k i k k l kx P x   with , 0i kP  , we have: 

 
, | , 1| , |

1| , 1| | , |

i k l k i k l k i k l k

T T
k l k i k k l k k l k i k k l k

V V V

x P x x P x

   

     

  

 
         (12) 

Lemma 1: Suppose that the state feedback matrix ,i kF  is 

given and let |k k kx x  be the state measured at time interval 

k . If there exists a matrix ,
n n

i kP R   satisfying 

 

  
  
 

, , , , , , , ,1

, , , , , , ,1

, , , ,1 ,

0 1, , ,1, , ,

j

j

j

j

TM

k i k i k j k j t i kj j

M

k i k i k j k j tj

i

ij

MT T
i k i k i i k j t j tj i jj

A B F B F P

A B F B F

P Q F R F F R F

M Li

  

  



 













 

   

  

  






 

           (13) 

then, the ellipsoid  , ,,i k i kP   is an invariant set of the 

closed-loop system (11). Moreover, for any initial condition 

 , ,,k i k i kx P  , the performance index satisfies 

, ,,
T

i k k i k k i kJ x P x   . 

Proof: Substituting (11) into (12), we have, 

  
  

, | | , , , , ,1

, , , , , |1

j

j

TMT
i k l k k l k k i k i k j k j t i kj j

M

k i k i k j k j t i k k l kj

i

ij

V x A B F B F P

A B F B F P x

  







   
    




  

(14) 

We impose an upper bound on the performance index by 
introducing the following robust stability condition (as in 
(Huang, et al., 2013; Kothare, Balakrishnan, & Morari, 1996)) 
on (14), we have: 

 
 

, | | | , | , |

, | , |1 j j

T T
i k l k k l k k l k i k l k i i k l k

M T
j k l t j j ki l tj j

V x Qx u R u

u R u

    

  

   


            (15) 

Summing (15) from 0l   to l   , we have: 

 , | | | , |
T

i k k k k k k i k k kJ V x P x                        (16) 

Defining an upper bound , | ,i k k i kV  , we have: 

 , | ,i k k i kJ                                  (17) 

Then, the ellipsoid  , ,,i k i kP   is an invariant set of (11) if 

(15) holds. Furthermore, the robust stability condition  (15) 
can be represented as follows: 



  
, | | , ,

, , |1 j j

T T
i k l k k l k j k j j k

m T
j t j j t k l kjj i

V x Q F R F

F R F x
 

 



    


                    (18) 

Substituting (14) into (18), we have: 

  
  

 

| , , , , ,1

, , , , ,1

, , , , |1
0

j

j

j j

TMT
k l k k i k i k j k j t i kj j

M

k i k i k j k j t i kj j

MT T
i k k i

i

i

jk j t j j t k l kj i

x A B F B F P

A B F B F P Q

F R F F R F x







 







   

   

  





        

(19) 

Then, condition (19) will be satisfied if matrix inequalities 
(13) hold. This ends the proof. □ 

A multi-step robust MPC scheme for polytopic uncertain 
multi-input systems is presented as: 

      
, , ,, , , ,, | |0

min . . , 4 - 7 , 13
i k i k i k

i k k i k k k i k
T
kP F

s t x P x


 


     (20) 

It is noted that the presence of uncertainties and constraints 
makes the optimisation problem (20) intractable. In what 
follows, (20) will be cast into an LMI optimization problem 
to solve the state feedback law.  
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Letting 1
, , ,i k i k i kPW   , , ,ki k i kY F X , | , | ,k i k ik k k

T
kx P x   can be 

represented as: 

 , |
| |

| ,,

1
1 0

T
kT i k k

k k k
k k i ki k

k

P x
x x

x W
 

   
  

             (21) 

Using the Schur complement, (13) can be represented as: 

 

 

  

,

1
, , , , , , ,

1

2
,

,1

,1

1

2
,

* * *

* *

0 *

0 0

0 1, , ,

i k

M

k j k j t i k i k i kj j

M T

i

j t jj

i

j i

i

j

k

t

P

A B F B F P

Q F R F I

F

L

R I

  












 
 

  
 
 

 
 
 
 











     (22) 

Pre- and post-multiplying (22) with 1
,diag{ , , , }i kP I I I  results 

in: 

  
  

1

2
,

1
,

1 1
, , , , , , , , ,1

1
, ,1

1
12

, ,

* * *

* *

0 *

0

1, ,

0

0,

i

j t

i k

M

k j k j t i k i k i k i kj j

M T
j t j i kj

i i k i

j i

k

P

A B F B F P P

Q F R F P I

R F P

L

I

  




















 
 
  
 
 
 





 
  








 (23) 

Then, (23) can be simplified by multiplying with ,i k : 

  
  

1

2
, ,

,

, , , , , , , , ,1

, ,

,

1

1

2
,

* * *

* *

0 *

0 0

i k

M

k j k j t i k i k i k i kj j

M T
j t j i kj

i

i

j t i kj i

i k i k

W

A B F W B Y W

Q F R F W

R Y

  













 
 

  
 
 
 
 
 
  





1 ,, ,0 L                                                                  (24) 

To handle the constraints, the following lemma is obtained. 

Lemma 2: If there exist symmetric matrices ,i kW , iZ , and 

iX ; any matrix ,i kY ; and a scalar ,i k  satisfying (21), (24) 

and following LMIs 

  , 2
, ,

, ,

0, , 1, ,i i k
T i jj i j i

i k i k

Z Y
Z u j m

Y W

 
   

 
         (25) 

  , 2
,

,

0, , 1, ,
*

i i k
i jj j

i k

X W
X x j n

W

 
   

 
          (26) 

where 1=
TT T

n      and ,i jjZ , ,i jjX  are the thj  

diagonal element of iZ , iX , respectively, then the input and 

state constraints (6) and (7) can be satisfied. 

Proof: For the input constraint (6), we have: 

 

 

22

, , |

2 2

2

2

2

2
,

1
, , , |

0.5 0.5
, , , , |

0.5
, , ,

1
, , , ,

, 1, ,

i j k l k

i j i

i j i k i k k l k

i j i k i k i k k l k

i j i k i k

T
i j i k i k i k

Y W x

Y W W x

u

u

Y W

Y W

j m

Y












 






 







  

           (27) 

where ,i j  is the thj  row of im order identity matrix. By 

applying the Schur complement, the input constraint (6) is 
ensured by satisfying (25).  

Then, we consider the state constraint (7), we have: 
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


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










  

               (28) 

Similarly, by applying the Schur complement, the state 
constraint (7) is ensured by satisfying (26). This completes 
the proof. □ 

The multi-step robust MPC scheme (20) for polytopic 
uncertain multi-input systems can be transformed into 
following optimization problem with LMI constraints: 

 
, ,,, 0, , , ,min . . (21), (24)-(26)

i k i ki k i iW Z X iY k s t





           (29) 

Theorem 1: At time interval k , let |k k kx x  be the state of 

the uncertain system (4). The state feedback matrix ,i kF  can 

be obtained by solving , ,
1

,i k i k i kF Y W  , where ,i kY  and ,i kW  are 

solutions to (29). 

Remark 2: The dimensions of (24) are    3 3i in m n m    

for multi-step robust MPC and    3 3n m n m    for 

conventional robust MPC. The dimensions of (25) are 

i im m  for multi-step robust MPC and m m  for 

conventional MPC. There are   1 0.5 ( 3) 1im n n n     

variables in solving multi-step robust MPC and 

  1 0.5 ( 3) 1m n n n     variables for conventional robust 

MPC. It is noted that im m . By comparing with the 

conventional robust MPC, the multi-step robust MPC has 
advantages both on the dimensions of the LMIs and the 
numbers of the optimized variables. 

At each time interval, the online optimized state feedback law 
can be obtained by solving (29). Only subset of control 
feedback laws are designed sequentially. The solving 
procedure of the proposed multi-step robust MPC is 
summarized in Algorithm 1. 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8543



 
 

     

 

Algorithm 1: multi-step robust MPC 

Step 1: At time interval k , find and store ,kF  with 

 1, M   by solving (29). Apply the first inputs 

, | , |k k k k ku F x   to the process; 

Step 2: Set 1k k  . Obtain i  by solving (3) to decide the 
input to be optimized; 

Step 3: Compute t  by solving (10). Find and store ,i kF by 

solving (29); 

Step 4: Apply the optimized input , | , |i k k i k k ku F x , the stored 

inputs , | , |j k t j t k ku F x  with  1,j M , j i  into the plant; 

Step 5: Go to step 2. 

The stability of the closed-loop system with multi-step robust 
MPC algorithm is studied in the following theorem. 

Theorem 2: At time interval k , the state feedback solution 

, ,
1

,i k i k i kF Y X  , obtained from Algorithm 2, asymptotically 

stabilizes the closed-loop system (11),  where kA , ,i kB , ,j kB  

belong to the polytopic description defined in (5). 

Proof: This proof is based on the fact that the state feedback 
law obtained at time interval k  is feasible for the subsequent 
time intervals. The similar proof can be found in (Kothare, et 
al., 1996; Ling, et al., 2012). 

For the uncertain systems (4)-(7), assume that there is a 
feasible solution at initial time interval k  for the current 
measurement. Suppose that ,i kP  and 1, 1i kP   are optimal for 

(20) at time interval k  and 1k  , respectively. We have: 

 1| 1 1, 1 1| 1 1| 1 , 1| 1
T T
k k i k k k k k i k k kx P x x P x                          (30) 

This is because 1, 1i kP  is optimal, whereas ,i kP  is only 

feasible at time interval 1k  . We have 

1| , 1| | , |
T T
k k i k k k k k i k k kx P x x P x    for any 1, , ,, , , , ,k k i k M kA B B B     

  if | |k l k k k l ku F x  . Since the measured state 

1| 1 1k k kx x    equals (4) for some 1, , ,, , , , ,k k i k M kA B B B     

 , we have: 

 1| 1 1, 1 1| 1 | , |
T T
k k i k k k k k i k k kx P x x P x                     (31) 

Thus, , | | , |
T

i k k k k i k k kV x P x  is a strictly decreasing Lyapunov 

function for the closed-loop system (11), which implies that 
0kx   as k  . This ends the proof. □ 

4. NUMERICAL EXAMPLE 

In this section, the effectiveness of the multi-step robust MPC 
is studied and compared with that of the conventional MPC. 
We consider a process with three inputs and three outputs. 
The real process model is assumed to vary between the 
following two models: 

 
 

   

1

2 1

4.05 1.77 5.88

6 2 1 2 3
5.39 5.72 6.90

4 2 2 11
4.30 4.42 7.20

3 8 2 5 7

0.4

s s s

G s
s s s

s s s

G s G s

 
    
     
 
 
    



                     (32) 

State-space models are obtained on a canonical realization of 
(32) with sampling time of 0.3 seconds and not shown for 
brevity. The weighting matrices are  diag 5,5,5Q  and 

1 2 3 1R R R   . We consider the set-point regulation and 

disturbance rejection problem in this simulation.  

The set-point regulation problem is considered by regulating 

1 0.5y  , 2 1y  , and 3 0.5y  . The disturbance rejection 

problem is considered by setting 1 2y  , 2 1y  , 3 3y  , and 

introducing disturbances at 15k  . The disturbance is given 

as  0.5sin k  and removed after three seconds to avoid the 

steady-state offset. 
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Fig. 2. Dynamic responses for tracking of the conventional 
MPC (solid line) and the multi-step MPC (dashed line) 
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Fig. 3. Dynamic responses for the conventional MPC (solid 
line) and the multi-step MPC (dashed line) 
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Fig. 2 shows the dynamic responses of system outputs and 
computed inputs with the multi-step robust MPC and the 
conventional robust MPC. The multi-step robust MPC can 
track the set-point very similar to that of the conventional 
MPC. Fig. 3 shows that the multi-step robust MPC algorithm 
performs very similar overshoot and rise time to the 
conventional MPC with disturbance. Fig. 4 shows the 
computation time costs with the multi-step robust MPC and 
the conventional MPC at different simulation horizon. It is 
noted that all the simulations are carried out on a Core i5 
CPU 2.27 GHz computer. The computation time at initial 
time interval is much longer than the subsequent time interval 
due to the additional time cost, i.e., initialization time for 
MATLAB LMI Toolbox. The result illustrates that the multi-
step MPC is faster than the conventional MPC.  
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Fig. 4. Computation time for the multi-step robust MPC and 
the conventional robust MPC 

5. CONCLUSIONS 

In this paper, we present a multi-step robust MPC to reduce 
computational complexity. The proposed multi-step robust 
MPC scheme results in reducing computation time in 
controller design. The open problems are the investigations 
of the sub-optimality and conservatism. 
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