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Abstract: This paper discusses and illustrates core aspects in control education (prerequisites,
working conditions, course structure) necessary to empower students of general engineering
disciplines to understand and apply advanced optimal and robust control concepts. The results
of a master thesis on the robust and optimal control of a flexible beam laboratory setup
are presented and related to the skills formed during the undergraduate studies. Optimal
and robust control design methods are utilized for active damping of bending vibrations of
a simply supported thin structural aluminium beam. For this purpose a multi-input multi-
output (MIMO) control system setup is used, comprising four collocated piezo patch actuators
and sensors acting in longitudinal direction. An electrodynamic shaker introduces a disturbance
force in the direction of oscillation. The design plant is obtained by a measurement-data-driven
system identification. Also, finite element based modelling is carried out. The suitability of
Linear-Quadratic Gaussian (LQG) control with modal weighting, mixed-sensitivity Ho, control
and D(G)K-synthesized control for improving disturbance rejection of the experimental control
system setup is investigated and compared.
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1. INTRODUCTION

Control education is an integral part of electrical and
mechanical engineering studies. Mandatory courses typi-
cally cover fundamentals like transfer functions, stability,
and controller design for linear single-input single-output
(SISO) systems. In some curricula courses on the ba-
sics of state-space methods and multi-input multi-output
(MIMO) systems are also mandatory. However, specific
courses for advanced control methods such as H.-control
cannot be offered as mandatory courses in a general en-
gineering curriculum. This paper presents the results of a
master’s thesis in mechanical engineering (Dullinger, 2013)
and focuses on the educational framework necessary to
achieve such results.

At Vienna University of Technology (VUT) the curricula
for bachelor and master studies in mechanical engineering
each feature only one mandatory control education lecture
and the associated control lab, see VUT (2011). In order
to enable students to successfully implement advanced
control concepts such as Hoo-control several necessary
conditions must be fulfilled:

e a sound foundation in basic sciences (primarily
mathematics)

e availability of elective courses in control engineering
(preferably offering some flexibility with regards to
content)

e tried and tested experimental setups for implementa-
tion (to minimize implementation overhead)

Copyright © 2014 IFAC

At VUT the first condition is fulfilled by three consecutive
extensive mathematics courses with exercises, followed by
two courses focusing on numerical engineering mathemat-
ics and stochastics. The importance of ordinary differential
equations, the notion of stability, but also of linear algebra
as core parts must be stressed here, see Kheir et al. (1996).
Additionally, courses on mechanics, fluid dynamics, elec-
trical and electronic systems, and thermodynamics com-
plete the foundation of basic sciences during the bachelor
studies.

The second condition is fulfilled by a variety of more ad-
vanced control courses, however, no specific course for Ho-
control is currently being offered. This is compensated by
a seminar, an individually designed control project, and an
advanced control lab. These three courses enable a flexible
control education tailored for a specific implementation
goal. In the case of the work presented here, no custom
software tool was used although a variety of such tools ex-
ist: Senol et al. (2012); Ye et al. (2009); Kozek et al. (1999);
instead, standard textbooks for Ho-control provided the
subject background (Skogestad and Postlethwaite, 2005).

Note that all knowledge on robust control has been ac-
quired by the student during the master work.

The implementation of a closed-loop control together with
experimental work is of especially high educational value,
Kheir et al. (1996). On the one hand this poses a strong
motivation to go through more theoretical and mathemat-
ical procedures without losing focus, on the other hand
the students become familiar with many important aspects
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of real control implementations. In order to minimize the
sometimes frustrating work of setting up the basic func-
tionalities of the experimental setup, a tried and tested
lab setup of a flexible beam with Piezo-patch sensors and
actuators is utilized. Equally important is a user-friendly
interface which allows for quick and easily verifiable im-
plementation of the developed control algorithms.

In the remainder of this paper first the applied control
designs are presented and the corresponding curricula re-
quirements are outlined. Then the flexible beam labora-
tory setup is explained and the modelling task is briefly
addressed. The subsequent sections summarize the specific
control design tasks and the results of the experimental
controller implementation, thereby demonstrating the out-
come of the work.

2. MOTIVATION

Optimizing a construction for low weight generally leads
to structures with decreased overall stiffness and lower
natural frequencies of structure vibrations. Because of low
damping, occurring vibrations can grow to large ampli-
tudes. For these reasons, so-called “smart structures” are
increasingly employed. Due to their properties, such as low
weight, small dimensions, simple embeddability, efficiency,
and longevity, piezo patches are well-suited as actuators
and sensors for structural control applications. In this
domain, novel so-called macro fiber composites (MFC)
exhibit almost hysteresis-free, linear behaviour, see Smart
Material (2013).

In this work, structural models were obtained from mea-
surement data using a system identification method and
also via the finite element (FE) method. Model mismatch
— that is, differences between the actual system and the
model of the system which was used to design the con-
troller — were explicitly addressed in the controller design.
A control system is said to be robust if (by design) it is
insensitive to adequate definitions of model uncertainty.

As a simple tunable optimal design method, Linear-
Quadratic Gaussian (LQG) control (Athans, 1971; Zhou
et al., 1996) with modal weighting is well-suited to ad-
dress the damping of undesirable eigenmodes. However,
robustness can not directly be tuned or guaranteed, see
Schirrer (2011). This directly motivates the application of
optimal and robust H, control design methods in struc-
tural control which do provide suitable robustness guar-
antees. The robust H., control methods utilize frequency-
dependent weights, and their performance heavily depends
on an adequate uncertainty description. Mixed-sensitivity
Hoo-optimal control has implicit robustness properties
and is efficiently solvable in the standard framework of
Hoo-(sub)-optimal control design. A more complex design
method called D(G)K-iteration produces p- “optimal” con-
trollers and can exploit explicit uncertainty models in the
process, making it potentially even more powerful. The
quantity pu denotes the structured singular value. However,
a D(G)K design requires significantly more tuning effort
and often yields controllers of large dynamic order.

The aforementioned design methods are briefly reviewed
and commented in the following section, see also Skogestad
and Postlethwaite (2005).

3. DESIGN METHODOLOGY
3.1 Linear system representation

For linear systems the superposition principle

y(s) = G(s)u(s) + Ga(s)d(s) (1)
holds, where G(s) and Gq(s) are the transfer function
matrices of the plant and the disturbance model, respec-
tively. The vectors y, u and d denote the outputs to be

controlled, the control inputs, and the disturbance signals,
respectively.

In the following let a minimal state-space representation
of [G(s)|Ga(s)] be given by

G(s) = [‘é g} . Gals) = [é gﬂ .

3.2 Modally weighted LQG control

(2)

Linear Quadratic Gaussian (LQG) control assumes the
plant dynamics be linear and known with stochastic noise
excitation of known statistical properties,

&= Az + Bu+w (3)
y=Cz+ Du+7, (4)
where the process noise w and measurement noise U are
usually assumed to be uncorrelated zero-mean Gaussian
stochastic processes with known constant power spectral

density matrices W and V respectively, see Skogestad and
Postlethwaite (2005); Schirrer (2011).

Given the system (3)—(4) the LQG control problem is to
find the optimal control w(¢) which minimizes

_ li 1 T T T d
J=E{ lim T/o [z(t)" Qz(t) + u(t) Ru(t)] dt »

T—o0
(5)
where @ = QT > 0 and R = R" > 0 are appropriately
chosen constant real weighting matrices.

Due to the separation principle the solution of (5) can
be decomposed into the finding of the Kalman filter — an
optimal observer — and an optimal state feedback control
gain.

Choosing Q as a modal weighting matrix is appropriate for
cases in which certain undesirable eigenmodes of the plant
G(s) shall be weighted directly. This is of special interest
for active damping of flexible structures with low-damped
modes, where each mode is excited almost independently
and the total structural response is the sum of modal
responses, see Gawronski (2004).

Let the columns of S consist of n linearly independent
eigenvectors sy (for k = 1,...,n) of the state matrix A
and M be a diagonal matrix of scalar weighting factors
my > 0. Then, the state weighting matrix @ for modal
weighting reads:

~T~ ~ 1

Q=Q Q with Q=SMS (6)
Consequently, the kth eigenmode s; is weighted by the
value m?, assuming that ||sy|, = 1 holds.

Educational prerequisites for this design are linear algebra,
basics of state feedback control, and a sound understand-
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ing of optimization. Note that some curricula already
provide this knowledge via mandatory courses.

3.8 Mized-sensitivity Hoo optimal control

Utilizing frequency-dependent weights, the sensitivity
function § = (I + GK)™! is shaped along with other
closed-loop transfer functions. The specific design is ob-
tained by stacking these terms on top of each other in an
overall closed-loop performance transfer function matrix
N and minimizing its H, norm with respect to an inter-
nally stabilizing controller K:

min | N (K (7)

The design specifications are fulfilled (i.e. Nominal Perfor-
mance (NP) is achieved) if (¢ is the maximum singular
value)

[V = maxg (N(jw)) < 1. (8)

Figure 1 depicts the mixed-sensitivity H, control problem
for disturbance rejection. The exogenous input signal w
entering the generalized plant P is the disturbance d and
the control inputs are u. The measured outputs v are
fed back to the controller K(s). Utilizing a frequency-
dependent performance weight W (s) and an input weight

W(s), the exogenous output signal z = [z? ng]T,
where z; = Wiy and zo = —Wsu is defined and the
generalized plant P is given by
zZ1 WlGd WlG w
Z2|=|_0 |-W, [ﬂ (9)
v —Gd -G
P

Closing the lower feedback loop with the controller K
yields the closed-loop performance transfer function ma-
trix N:

z1| | WiSGq
|:Z2:| B |:W2KSGd:|w
| S —

N
It can be shown that because K .S is part of the stack in
(10), the design is robustly stable with respect to (full
complex) additive uncertainty Ea(s) = Gp(s) — G(s)
(with a perturbed plant G,) with 7 (Ea (jw))
if (8) holds.

The students need knowledge of advanced linear algebra
and of basics of frequency domain representations to un-
derstand the concepts of this design. Additionally, special
training in the concept of singular values is essential. Such
design methods are therefore typically taught in elective
courses or advanced seminars.

(10)

1
< FKSGe)
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3.4 DK synthesized - “optimal” control

The D(G)K-iteration (see Skogestad and Postlethwaite
(2005)) is an algorithm to design a u-(sub-)optimal con-
troller that minimizes a given u-condition for a general un-
certainty structure utilizing a normalized, block-diagonal,
linear time-invariant (LTT) perturbation matrix

A€ Ag & ||Al <1, A LTI, structured, and stable.
(1)
The choice of structure of the unknown but normalized
perturbation block A; (|||, < 1) is crucial. Frequency
dependent weights W, (s) are utilized to shape the uncer-
tainty over frequency.

If nominal stability (NS) of the design is fulfilled and the
robust stability (RS) p-value is less than one this corre-
sponds to a stable closed-loop for all considered uncertain-
ties. If additionally the robust performance (RP) u-value
is less than one, then also the formulated performance
requirements are fulfilled in all these cases.

Figure 2 shows a system with multiplicative input and
output uncertainties (“I”; “O”), as well as additive uncer-
tainty (“A”). The set of possible perturbed plants G (s)
(m x r) around the nominal model G(s) (m x r) is defined
by

Gp=I+AoWi0)(G + AsWiA)I+ AiWir). (12)

Thereby, I denotes the identity matrix, Ar(s) (r x r) and
Ap(s) (m x m) are considered as unknown but norm-
bounded (|| Ar]|,, <1 and ||Aol|,, < 1) complex diagonal
matrices, i.e. no coupling between different input channels
or output channels, respectively. This onset is commonly
used to model actuator respectively sensor magnitude
and phase uncertainty over frequency. In contrast, A (s)
(m x r) is considered as an unknown but norm-bounded
(|Aall < 1) full complex perturbation matrix, where
any coupling from its inputs to its outputs is possible, and
phase relations are unknown.

The generalized plant P, which is an open-loop system,
is obtained by opening all “loops” before and after the
controller K. For the system in Figure 2 with inputs and
outputs as evident from (13) P is given by (14).

Ya, uA,
Yaa ua
Yao | _ | Pu|Pr UAA (13)
z1 Py | Py w
z9 4 U
v
0 0 0 0 Wir
Wia 0 0 0 Wia
p_ WioG Wio 0 0 WioG (14)

WPG WP Wp WPGd WPG
0 0 0 0 Wy
-G I I G4 G

By closing the lower feedback loop between P and K using
a lower linear fractional transformation (LFT) the nominal
closed-loop system IN is derived:

N=F(P,K)= P+ P,K(I—- PyuK) 'Py (15)
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Figure 2. Augmented plant interconnection with uncertainties for DK-synthesized p-“optimal” control design.

Ya, ua,

zAA _ Nll N12 UAA (16)
ZAo. N1 |Nao UAo

zZ1 —’LU

Z2 N

Alternatively, N can be derived directly from Figure 2 by
evaluating the closed-loop transfer function from inputs to
outputs as evident from (16) without opening the “loops”
before and after the controller K.

Information on DK-iteration and a precise definition of the
control objectives in robust control is found in Skogestad
and Postlethwaite (2005) and Zhou et al. (1996). Although
the cited textbook is of high quality, the mathematical
and implementation demands are high even for graduate
students, and a successful design and implementation
heavily depends on individual coaching.

4. FLEXIBLE BEAM
4.1 Laboratory setup

The experimental setup utilized in this work is a vertically
mounted hinged-hinged structural bending beam shown
schematically in Figure 3, see also Jovanova et al. (2013).
On each side four MFC piezo patches are bonded to the
beam. The piezo patches at the front operate as actuators,
those at the back function as sensors (collocation).

Remark 1. Actuator/sensor placement affects the gains
and zeros of the system plant. A configuration optimized
for the first 4 bending modes has been found in the design
of the test bed setup.

Although piezo actuators and sensors in principle do
exhibit hysteresis behavior, this effect was not consid-
ered further in this work. It is justified to approximate
the utilized MFCs via a linear gain because they show
only minor nonlinearities, see Smart Material (2013). An
electrodynamic shaker introduces a traversal disturbance
force. MATLAB® and Simulink® were chosen as control
engineering tools. The student developed the required
functionality for controller design and system identifica-
tion using standard MATLAB® toolboxes, the ”robust
control toolbox” and the ”system identification toolbox”.
The controllers were realized and executed in real time via
the dSPACE ACE 1104 platform.

In this work, the sophisticated experimental MIMO test
bed of Figure 3 was already available. Its development
and implementation had been carried out in previous
student projects. This enabled a direct, frustration-free
and efficient controller implementation and measurement
data acquisition during the master work.

3 MFC piezo  MFC piezo
patch sensor patch actuator

Yy 5w Z,w

beam
(AlMg3)

shaker
attachment

acceleration

B

and force
sensor
- 1}3101)1
_ 2 stinger
a i
&
shaker
shaker
platform
rail
i piezo actua-
e tor amplifier
2 i
3 shaker /%\
i amplifier Control
7‘5 Desk®
shaker signal dSPACE
conditioner ACE 1104

— actuator signals

— measured signals

— user communication|

Figure 3. Schematic sketch of the experimental set-up

4.2 Identified (ID) Plant Model

In order to directly capture the physical couplings between
inputs and outputs a MIMO identification procedure was
used. Measurement data were filtered and down-sampled
to 100 Hz. Mean values were subtracted and linear trends
removed. Then the subspace algorithm N4SID (Overschee
and Moor, 1996) of the MATLAB® System Identification
Toolbox™ was applied to identify stable, linear state-
space models in discrete-time.

The model which achieved the best model fit in a cross-
validation was used for simulation purposes. An alter-
natively designed FE model of the beam revealed five
structural modes below 50 Hz. By modally truncating real-
valued poles a low-order model was obtained and used as
design plant. This approach also enabled the quantification
of model errors and their effects on stability and perfor-
mance by investigating simulated control behavior. More-
over, this enabled the engineer to robustify the controller
design by directly considering the model errors using DK-
synthesized p-“optimal” control.
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Figure 4. Singular values (disturbance model) for paramet-
ric and non-parametric (S) identified models

Remark 2. The system dynamics are infinite dimensional.
In Curtain and Zwart (1995) theory for control of infinite-
dimensional systems is presented. In Bontsema et al.
(1988) three partial differential equation models for a
flexible beam (with different types of damping and varying
parameter values) are obtained and robustly stabilized.
However, the task in this work focuses on obtaining a
finite-dimensional dynamic model and applying modern
optimal and robust control design methods.

In Figure 4 the “ID(ho)” (high-order) and the “ID” (used
for controller design) disturbance model are compared
with the “S model”, a non-parametric (identified), spec-
tral model. Static deformation cannot be measured by
the utilized sensors as evident in Figure 4 (“S model”,
“ID(ho)” at low frequencies). The reduced system (“ID”)
focuses on the modal dynamics and does not show this
behavior. Within the frequency range of interest spanned
by the natural frequencies of the first five structural modes
(peaks) the models match well. As evident from Figure 4
the modes, particularly the first and fourth, are only
weakly damped. Therefore, active damping of these lowest
damped structural modes was defined as control task.

Note that knowledge on system identification requires
stochastic fundamentals as well as specific courses on
parameter estimation and measurement procedures.

5. CONTROL DESIGN
5.1 Modally weighted LQG design

Because A had complex-conjugate eigenvalues (i.e. complex-
conjugate eigenvectors) the weighting factors m; in M (17)
were assigned in pairs. The first two diagonal elements of
M were utilized for weighting the first structural mode,
the next two diagonal elements of M for weighting the
second structural mode, and so on. A high value m; means
that the corresponding eigenmode s; is weighted strongly
in the (modal) state weighting matrix @ (by m?) and
thus the improvement of damping of this eigenmode s;
is important in terms of the objective function (5):

M = diag{120, 120, 30, 30, 50, 50, 100, 100, 50, 50}  (17)

Because all four piezo patch actuators are identical, the
input weighting matrix R was chosen as a matrix of diago-
nally repeated values, i.e. R = 2000-Ij4, 4. Thus, inputs of
the actuators are penalized equally. The covariance matri-
ces W and V were chosen based on covariance information
from identification data (see Dullinger (2013)).

5.2 Mized-Sensitivity Hoo design

The scalar performance weight Wi (z) was chosen as a
band-pass. Extra peaks were utilized to put strong weight
on the low-damped first and fourth modes. Thus, by
design of Wj(z), performance was not an issue at low
and high frequencies, where actuation was not desired
with the applied piezo patch actuators, respectively where
the system is simply unknown. The scalar input weight
Wa(z) was selected as a band-stop, thus inputs were highly
penalized outside the frequency range of interest.

The dynamics of the performance and input weights,
Wi(z) = ki - Wi(2) respectively Wa(z) = ko - Wa(z) were
chosen based on closed-loop simulations on the “ID(ho)”-
model. Then, a variety of designs was derived by changing
only the constant gain ko of Wa(z). Subsequently, a data
set for that design with the smallest value of ko which
achieved stability in the experiment was recorded and
evaluated.

Although uncertainty is not explicitly modelled by this
mixed-sensitivity Ho, design, it is robustly stable for all
perturbed plants G, with

7 (Gy(e) = G(eT)) < [Wia(eHT)

(1—¢)
F(KS5(@-T5))

Yw e R

(18)

where |Wya (el*T%)

small e € RT.

with an infinitesimally

5.3 DK synthesized p- “optimal” design

Here, the performance weight Wp(z) and input weight
W . (z) were chosen in a similar fashion as for the Mixed-
Sensitivity Ho, design (see Fig. 5). The uncertainty
weights Wii(s) and Wig(s) for complex diagonal multi-
plicative input/output uncertainty were chosen as scalar
band-stop filters. At those low and high frequencies where
the uncertainty weights Wii(s) and Wio(s) exceed 0dB,
the design allows for more than 100 % multiplicative (input
respectively output) uncertainty. Consequently, the phase
of each SISO transfer function representing a physical
system on the plant’s input respectively output side is
considered unknown.

For the additive uncertainty weight Wi (z) the following
approach was taken. Let the set of plants IT represented
by additive uncertainty contain the perturbed plants

Gp =G+ WipaAa
——

Ex

(19)

where A, is a full complex norm-bounded perturbation
(|Aalle £ 1) and where the scalar weight Wia(z) is
chosen such that at each frequency w

[Wia (@) > Ia(w) Yw eR (20)
holds. Then, at each frequency w the smallest scalar A (w)
is given by

Ia(w) =

max 7 (G, (e/T) —

T,
pax, G(e7)).

Ea(el@Ts)

(21)

Subsequently, G'P(to) (z) was considered as one perturbed
plant in (21), thus
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Figure 6. Simulated open-loop and closed-loop disturbance
behavior

Ia (W) _ liD(hO) (W) — 5_(GID(ho) (eijS) _ GID (eijs)).

ELD(hO)(Cj“’TS)

(22)
holds. Then a simplified scalar rational weight Wia(2)
was shaped so that at each frequency w the magnitude
of Wia(el“Ts) was larger than liD(ho) (w). This way, the
chosen shape of Wi (z) accounted for the neglected dy-
namics of GID(hO)(z). Figure 6 shows the open-loop and
closed-loop singular values on the nominal model (Ggq
respectively SGq), the worst-case gain of the closed-loop
disturbance path (u(Sp,Ga(e“T%)), called the skewed-
p-value, see Skogestad and Postlethwaite (2005)) and
the closed-loop disturbance performance with the plant
G'P1) () (811G Y. As ensured by the fact that the
design achieves robust stability (RS), applying the con-
troller K (z) on the particular perturbed plant GP®°)(z)
results in a closed-loop stable system. Furthermore, the
fact that the design accounts for the neglected dynamics
of G'P1°) () through additive uncertainty ensures that at
a given frequency (S Gy (e+T+)) < 15 (SpGa(eTx))
holds, where S0 — (1 + GIP(1) )~

6. EXPERIMENTAL RESULTS

The controllers designed in Sections 5.1 to 5.3 were im-
plemented on the dSPACE platform and validated on the
test bed. In order to obtain comparable results the same
discrete white noise signal was applied as disturbance sig-
nal d. In Figure 7 the experimental results are compared in
terms of singular values of spectral, non-parametric models
(from d to y) using built-in MATLAB® functions.

10

—10 F

Open-loop
Modally weighted LQQ |
Mixed-sensitivity
DK synthesized

—20 |
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—30 +

n I
100 10t 102
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Figure 7. Experimental validated (disturbance rejection)
performance in terms of singular values of identified
spectral models (d — y); design plant: ID model
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Figure 8. Experimental validated (disturbance rejection)
performance in terms of singular values of identified
spectral models (d — y); design plant: FE model

It is evident that the LQG controller with modal weighting
is well-suited to address the damping of the structural
modes. However, the mixed-sensitivity Ho, controller is
clearly superior.

In principle it is possible to obtain the presented mixed-
sensitivity Ho, controller by the DK synthesized pu-
“optimal” design method. Thus, the fact that the pre-
sented DK synthesized controller performs mostly inferior
means that the modelled uncertainty (and/or performance
weight) was chosen conservatively. Especially the additive
uncertainty model which accounts for the neglected dy-
namics of G'P1°)(2) limits control authority and perfor-
mance.

An alternative dynamic model of the flexible beam was
obtained by utilizing the FE method, see Dullinger (2013).
For the FE model the natural frequency of the lowest-
damped, fourth mode showed a large deviation (when
comparing it to the presumably more accurate identified
model). This critical model error lead to difficulties when
designing controllers based on the FE model. This chal-
lenging control task was best accomplished by a DGK-
synthesized controller with specific, tedious uncertainty
tuning for that mode. Figure 8 presents the achieved
results of the FE-model-based controllers. The LQG con-
troller failed in this task, and the mixed-sensitivity Ho
controller could only achieve a marginal improvement in
damping.

7. CONCLUSIONS

In this work Linear-Quadratic Gaussian (LQG) control
and optimal and robust H, control design methods were
investigated to achieve attenuation of the structural modes
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of a flexible beam. LQG control with modal weighting
quickly produced useful results, and mixed-sensitivity Hoo
control was most appropriate in terms of performance and
design effort. The potentially powerful D(G)K-synthesized
u-“optimal” design method requires considerable design
effort which was only justified in special cases — to specif-
ically tune control performance in the presence of large
uncertainties of the FE model utilized as design plant.

LQG control (with modal weighting) contributes to the
understanding of the principle of optimization by mini-
mizing an objective function of weighted quantities. This
provides a solid basis for H, control and should therefore
be part of mandatory control courses.

Mixed-sensitivity Heo control is ideal for getting started
with H.o control. Its structure, i.e. the generalized plant
P respectively the closed-loop performance transfer func-
tion matrix IN is relatively simple to understand and
the concept of closed-loop transfer function shaping by
utilizing frequency-dependent weights can be studied. The
tuning effort is kept within reasonable limits, and because
of its robustness properties mixed-sensitivity Ho, control
enables a first glance at robust control without the re-
quirement of a full p-synthesis. It is quite realistic to
teach this design in elective courses for master students
of engineering curricula as the additional mathematical
knowledge is manageable.

For a DK-synthesized design the recommendation is to
start simple using only a few and only complex-valued un-
certainty descriptions first. Then, in case of a continuous-
time plant one can also think of including a parametric
uncertainty description. Thereby, a modal form might fa-
cilitate its implementation and reduce the computational
load. However, due to the overall complexity of this de-
sign, a successful design and implementation can only be
expected from motivated master students.

Finally, the implementation on a test bed calls for a tried
setup with a simple and fast control implementation by
means of a user-friendly interface. This minimizes the
overhead for test runs and boosts the students’ motivation.
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