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Abstract When solving the non linear non Gaussian filtering problem via orthognal series
expansions the involved probability density functions are approximated with truncated series
expansions. Inevitable the truncation introduces an error. In this paper an upper bound
on the 1-norm of the approximation error in the probability density function of the state
vector conditional on the system output measurements, due to the truncation, is derived and
numerically evaluated in a simulation example. The bound quantifies the proximity of the
obtained approximate solution to the true one. To explore the choice of orthonormal basis
as a degree of freedom in the proposed method, a comparison between the Fourier and Legendre
bases in a bearings-only tracking problem is performed.

1. INTRODUCTION

Nonlinear non-Gaussian filtering problems arise in nu-
merous signal processing and control applications such
as communication, radar and sonar target tracking and
satellite navigation, to mention a few.

The problem under consideration is to provide an estimate
of the state vector xt ∈ Rn, given the measurements
Yt = {y1, y2, ..., yt}, yt ∈ Rp, of the nonlinear discrete-time
system

xt+1 = f(xt) + wt, (1)

yt = g(xt) + vt, (2)

with the process and measurement noise wt ∈ Rn, vt ∈ Rp,
respectively, and t denoting discrete time. The probability
density functions (pdf:s) p(wt), p(vt) are assumed to
be known but are allowed to have arbitrary form. A
(known) input signal ut is omitted here for brevity, but
is straightforward to incorporate in the computations as a
deterministic quantity.

In the Recursive Bayesian Estimation (RBE) framework,
see e.g. Anderson and Moore (2012), Van Trees (2004),
that is the general underlying problem in this setup, the
state estimation problem above is solved by a recursive
construction of the pdf p(xt|Yt), via the recursive formula

p(xt|Yt) =
p(yt|xt)
p(yt|Yt−1)

×∫
p(xt|xt−1)p(xt−1|Yt−1)dxt−1, t = 1, 2, . . . , (3)

where p(xt|Yt) denotes the probability density for the
state xt given the measurements Yt. For linear systems
with white Gaussian process and measurement noise, the
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analytical solution to the RBE problem is given by the
Kalman filter, Kalman (1960). For more general system
structures, no analytical closed-form solution is available
and approximative approaches have to be resorted to.

There are several commonly used approaches such as grid-
based methods Jazwinski (1970), numerical integration
methods Ito and Xiong (2000), and Monte-Carlo methods
Doucet et al. (2001), Chen (2003), Budhiraja et al. (2007).
Another appealing approach with roots in stochastic pro-
cesses (see e.g. Cambanis (1971)) is to give an approxima-
tive solution to the recursive problem by expressing the
pdf:s in a orthogonal series expansion.

In the RBE framework, the posterior pdf p(xt|Yt) in (3)
is then approximated by a truncated orthogonal series
expansion

p(xt|Yt) ≈ p̂(xt|Yt) =

N∑
n=0

ct|tn φn(x),

where {φn(x)} are the orthogonal basis functions and

the coefficients {ct|tn } are recursively computed via the
prediction and update equations. Rosén and Medvedev
(2013) provides the formulas for solving the problem in
a general orthogonal basis while in Brunn et al. (2006),
Hekler et al. (2010) particularly study solutions in the
Fourier and wavelet bases.

While being of interest from an algorithmic point of view,
the main strength of RBE in orthonormal bases comes
from the computational properties and particularly its
parallelizability. Owing to the orthogonality of the basis
functions, the method has been shown to achieve linear
speedup in the number of cores on a shared-memory mul-
ticore implementation, Rosén and Medvedev (2013). Since
all high-performance and much of embedded hardware is
nowadays based on parallel processing, parallelizability of
an algorithm is highly desirable and crucial for software
scalability.
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However, no analysis of how the approximation error
propagates through the iterations, for the orthonormal
basis approach in RBE, has yet been performed. A worst
case scenario would be that the approximation errors, due
to the truncations of the expansions, would accumulate
in such a way that p̂(xt|Yt) is no longer a meaningful
approximation of p(xt|Yt).
The main contribution of this paper is to provide a bound
on the 1-norm for the approximation error in the pdf of
the state vector of (1) conditional on the measurements of
(2), i.e. ‖e(xt|Yt)‖1 = ‖p(xt|Yt)− p̂(xt|Yt)‖1 . The derived
bound, although not being sharp, serves as a tool to ensure
that the estimated pdf represents a sensible approximation
to the true pdf throughout the iterations. When solving
the RBE with orthogonal series expansions there is an
option of which basis functions to employ. A second
contribution of the paper is a comparison of the method
performance in a bearings-only tracking problem being
solved with the Fourier and Legendre basis functions.

The paper structure is as follows. In Sec. 2, background
material on the RBE by orthogonal series expansion is
given. A bound on the approximation error of the state
pdf is derived in Sec. 3. In Sec. 4 numerical experiments
in a bearings-only tracking problem are described and a
comparison between the Fourier and Legendre solutions is
performed. A discussion of the results is given in Sec. 5,
followed by the conclusions in Sec. 6.

2. BACKGROUND

Some background material and a method to solve RBE
by series expansions are provided in this section. Here, to
illustrate the ideas, only the one-dimensional problem will
be treated for brevity. The proposed method can though
be as extended to the multidimensional case as well.

2.1 Notation

Let {φn(x)}∞n=0 denote a set of complex basis functions
orthogonal on the domain Ω w.r.t. the inner product

< f(x), g(x) >

∫
Ω

f(x)g(x)dx.

Any square integrable function h(x) on Ω (h ∈ L2(Ω)), can
be expressed in terms of a series expansion in {φn(x)}∞n=0
with the coefficients an =< h(x), φn(x) >, i.e.

h(x) =
∞∑

n=0

anφn(x)

=

N∑
n=0

anφn(x)︸ ︷︷ ︸
ĥ(x)

+

∞∑
n=N+1

anφn(x)︸ ︷︷ ︸ .
eh(x)

In practice, the expansion is truncated to some order N .
The resulting expansion and the corresponding approx-

imation error are denoted ĥ(x) and eh(x), respectively.

When suitable, the notation ĥN (x) will be utilized to stress
the approximation order of the truncated series.

2.2 Solving the RBE via orthogonal series expansions

There exist many methods to solve the recursive Bayesian
estimation problem. Two examples are the Kalman filter,

which propagates the mean and covariance of the posterior
distribution, and the Monte Carlo methods that propagate
a sample from the posterior distribution. When solving
the recursive Bayesian estimation problem with orthogonal
basis functions, the posterior density is approximated as

p(xt|Yt) ≈
N∑

m=0

ct|tm φm(xt),

where the coefficients {ct|tm } are propagated through the

iterations. The expression c
t|t−1
m shall be interpreted as the

m:th coefficient at time step t given the measurements up
to time t − 1. As shown in Rosén and Medvedev (2013),

the coefficients c
t|t
m can be computed iteratively via the

prediction and update equations as

ct|t−1
n =

N∑
m=0

amnc
t−1|t−1
m , (4)

f tp =

N∑
k=0

bpkφk(yt), (5)

c
t|t
l =

N∑
n=0

N∑
p=0

f tpgnplc
t|t−1
n , (6)

where gnlp is a coefficient in the orthogonal expansion of
the product of the n:th and complex conjugated l:th basis
functions

φn(x)φl(x) =

N∑
p=0

gnlpφp(x)

and amn and bpk are the coefficients in the truncated
expansions

p̂(xt|xt−1) =

N∑
m=0

N∑
n=0

amnφn(xt)φm(xt−1),

p̂(yt|xt) =

N∑
p=0

N∑
k=0

bpkφk(yt)φp(xt),

of the pdf:s p(xt|xt−1), p(yt|xt) that are implicitly defined
by the system model. Notice that the approach above
requires far fewer expansion terms to approximate the
pdf than e.g. a grid (in grid based methods) or a random
sample (Monte Carlo methods). This fact lays the ground
to the relatively low computational cost of the method.

2.3 Legendre and Fourier basis functions

In the example presented in Sec. 4, the filtering problem
is solved by making use of the Legendre (Koekoek et al.
(2012)) and Fourier basis functions (Vretblad (2010)).
The Legendre basis functions {Ln(x)} are orthogonal over
the interval [−1, 1] and recursively defined by Bonnet’s
formula as

L0(x) = 1

L1(x) = x

Ln+1(x) =
2n+ 1

n+ 1
xLn(x)− n

n+ 1
Ln−1(x),

n = 1, 2, ..., N − 1. The rescaled and normalized poly-
nomials, L̃n(x) = 2√

a(2n+1)
Ln(x

a ), are orthonormal over
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the interval [−a, a], a ∈ R. The complex Fourier basis
functions {ϕn(x)}, orthonormal over the interval [a−π, a+
π] for any a ∈ R, are given by

ϕ0(x) = 1

ϕ2n−1(x) = ϕ2n(x) =
1√
2π
einx

n = 1, 2, ..N−1
2 .

3. AN ERROR BOUND

In this section, an expression for the approximation error
in an orthogonal expansion of the recursively computed
posterior pdf and a 1-norm bound on it are derived. The
non-normalized recursion expressed by (3) can be written
in the form

gt+1(z) = v(y|z)
∫

Ω

f(z|x)gt(x)dx, t = 0, 1, . . . , (7)

where v(y|z), f(z|x) and gt(x) are pdf:s. For tractability,
the equations with the notation in (7) rather than (3) will
be studied. In this problem formulation, the pdf gt(z)
corresponds to p(xt|Yt) in (3) and is the main target
of the approximation. When solving the recursion with
orthogonal basis expansions, the truncated expansions

v̂(y|z), f̂(z|x) and ĝt(x) are used in place of the true
pdf:s. It is of interest to know how the error caused
by the truncation propagates through the iterations. An
expression for the approximation error et+1

g (z) = gt+1(z)−
ĝt+1(z) is therefore sought. Assuming that g(x) has the
same approximation order in the x-dimension as f(z|x)
does, the following two relations hold in virtue of the
orthogonality of the basis functions∫

Ω

f̂(z|x)eg(x)dx= 0,∫
Ω

ef (z|x)g(x)dx=

∫
Ω

ef (z|x)eg(x)dx.

Then it follows that

ĝt+1(z) = v̂(y|z)
∫

Ω

f̂(z|x)ĝt(x)dx

= v̂(y|z)
∫

Ω

f̂(z|x)[gt(x)− etg(x)]dx

= v̂(y|z)
∫

Ω

f̂(z|x)gt(x)dx− v̂(y|z)
∫

Ω

f̂(z|x)etg(x)dx

= [v(y|z)− ev(y|z)]
∫

Ω

[f(z|x)− ef (z|x)]gt(x)dx

= v(y|z)
∫

Ω

f(z|x)gt(x)dx− v(y|z)
∫

Ω

ef (z|x)gt(x)dx

− ev(y|z)
∫

Ω

[f(z|x)− ef (z|x)]gt(x)dx

= gt+1(z)− v(y|z)
∫

Ω

ef (z|x)etg(x)dx

− ev(y|z)
∫

Ω

f(z|x)gt(x)dx+ ev(y|z)
∫

Ω

ef (z|x)etg(x)dx

= gt+1(z)− [v(y|z)− ev(y|z)]
∫

Ω

ef (z|x)etg(x)dx

− ev(y|z)
∫

Ω

f(z|x)gt(x)dx.

This gives the expression for the approximation error

et+1
g (z) = gt+1(z)− ĝt+1(z)

= v̂(y|z)
∫

Ω

ef (z|x)etg(x)dx+

ev(y|z)
∫

Ω

f(z|x)gt(x)dx. (8)

From (8) the following result can be derived:

Theorem 1. For etg(z) given by (8), it holds that
∥∥etg(z)

∥∥
1
≤

γt, t = 0, 1, . . . , where

γt =

rtQt
∥∥e0

g

∥∥
1

+Rq
1− rtQt

1− rQ
if rQ 6= 1∥∥e0

g

∥∥
1

+ tRq if rQ = 1
(9)

and

Q := max
y

∫
|v̂(y|z)|dz

q := max
y

∫
|ev(y|z)|dz

r := max
x,z
|ef (z|x)|

R := max
x,z

f(z|x)

Proof. The triangle inequality yields∥∥et+1
g (z)

∥∥
1

=

∫
Ω

|et+1
g (z)|dz =∫

Ω

|v̂(y|z)
∫

Ω

ef (z|x)etg(x)dx

+ ev(y|z)
∫

Ω

f(z|x)gt(x)dx|dz ≤∫
Ω

[|v̂(y|z)|
∫

Ω

|ef (z|x)||etg(x)|dx

+ |ev(y|z)|
∫

Ω

|f(z|x)||gt(x)|dx]dz ≤∫
Ω

[|v̂(y|z)|r
∫

Ω

|etg(x)|dx+ |ev(y|z)|R
∫
|gt(x)|dx]dz =∫

Ω

|v̂(y|z)|dz · r
∫

Ω

|etg(x)|dx+

∫
Ω

|ev(y|z)|dzR ≤

rQ
∥∥etg(z)

∥∥
1

+Rq

i.e. ∥∥et+1
g (z)

∥∥
1
≤ rQ

∥∥etg(z)
∥∥

1
+Rq. (10)

The right hand side in (10) is a monotonically increasing
function in

∥∥etg(z)
∥∥

1
. An upper bound γt on

∥∥etg(z)
∥∥

1
hence obeys the recursion γt+1 = rQγt+Rq, whose closed-
form expression is given by Eq. (9).

Note that q, Q, r and R in (9) only depend on constant
quantities that can be computed offline and before the
recursion starts.

Corollary 2. If rQ ≤ 1,
∥∥ekg(z)

∥∥
1

is asymptotically

bounded by Rq
1−rQ .

Proof. If rQ < 1

lim
t→∞

γt = lim
t→∞

rtQt
∥∥e0

g(z)
∥∥

1
+ Rq

1− rtQt

1− rQ
=

Rq

1− rQ
(11)
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Figure 1. An object with position xt traveling along a path.
Noisy bearing measurements, Yt, are taken by a sensor
(black dot), positioned a distance d from the path.

4. NUMERICAL EXPERIMENTS

A nonlinear non-Gaussian bearings-only tracking problem
is studied. It arises in defense and surveillance applications
as well as in robotics. It exhibits a severe non-linearity
in the measurement equation and is known to require
nonlinear filtering to avoid divergence of the estimate,
Aidala (1979). For comparison, the filtering problem is
solved both with the Fourier basis functions and the
Legendre basis functions. Numerical experiments were
conducted in order to experimentally verify the error
bound derived in the previous section, and also to explore
its conservatism.

4.1 The system

An object travelling along a path is detected within the
range xt ∈ [−π, π]. Noisy bearing measurements yt of its
position xt are taken by a sensor stationed at a distance
d = 1 from the road, see Fig. 1. The tracking filter employs
the model

xt+1 = xt + wt (12)

yt = tan−1(xt/d) + vt, (13)

where wt is normally distributed with the mean µw = 0
and standard deviation σw = 0.3. The measurement noise
vk obeys the multi-modal pdf

pv(v) =
p1

σv1
√

2π
e
− 1

2 (
v−µv1
σv1

)2

+
p2

σv2
√

2π
e
− 1

2 (
v−µv2
σv2

)2

with p1 = 0.5, p2 = 0.5, σv1 = 0.3, σv2 = 0.3, µv1 = 0.45,
µv2 = −0.45. The system was simulated up to time step
T = 40.

4.2 Solution with orthogonal basis functions

The filtering problem to estimate the pdf p(xt|Yt) for
system (12)-(13) was solved by using the Legendre and
Fourier basis functions, as described in Sec. 2. The esti-
mated pdf:s obtained by the orthogonal series method were
cross-validated against the results obtained by applying
a particle filter to the same data set, to ensure correct
implementation.

The filtering problem was solved for the approximation
orders N = 9 + 4k, k = 0, 1, . . . , 14. The upper bound
γt(N) on ‖e(xt|Yt)‖1 was computed according to (9) for
each N using both the Fourier and Legendre basis while
the empirical values of ||e(xt|Yt)||1 were evaluated as

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

time step k

||e
gk || 1

 

 
E

t
(N)

γ
t
(N)

Figure 2. Theoretical bound γt(N) and empirically mea-
sured values of the approximation error in 1-norm,
Et(N) for the solution obtained with the Fourier basis
functions and approximation order N = 25.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

time step k

||e
gk || 1

25

 

 
E

t
(N)

γ
t
(N)

Figure 3. Theoretical bound γt(N) and empirically mea-
sured values of the approximation error in 1 norm,
Et(N) for the solution obtained with the Legendre
basis functions and approximation order N = 25.

‖e(xt|Yt)‖1 ≈

Et(N) =

∫
xt∈Ω

|p̂65(xt|Yt)− p̂N (xt|Yt)|dx,

where p̂N (xt|Yt) denotes the approximation of p(xt|Yt)
of the approximation order N . As p̂65(xt|Yt) can be
considered a very close approximation to the true pdf
p(xt|Yt), Et(N) can be deamed a good approximation to
‖e(xt|Yt)‖1.

In Fig. 2 and Fig. 3, the empirical and theoretical bounds
Et(N) and γt(N) are shown for N = 25, using the Fourier
basis and the Legendre basis respectively, where γt(N)
denotes the theoretical bound for an approximation order
N .

For all N studied, the bound converges to the value given
by (11) and the value of γt(N) is basically constant after
time step t = 10 in all cases. To illustrate the empirical
and and theoretical bound for each N , the steady-state
value γ30(N), the mean and maximum of the empirical
value Et(N)

µ(N) =
1

30

40∑
t=11

Et(N),

ρ(N) = max
t∈[11,40]

Et(N)
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Figure 4. Theoretical bound γ(N), the mean µ(N) and
maximum ρ(N) of the empirically measured values of
Et(N), when solving the problem with Legendre basis
functions.
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Figure 5. Theoretical bound γ(N), the mean µ(N) and
maximum ρ(N) of the empirically measured values of
Et(N), when solving the problem with Fourier basis
functions.
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Figure 6. The root mean square error, for the estimation
error as a function of the approximation order N .

were computed on the stationary interval t ∈ [11, 40]. The
results are shown for the Fourier basis and the Legendre
basis in Fig. 4 and Fig. 5, respectively.

Point estimates, x̂t = E[xt|Yt] from the approximated
pdf:s were computed. To compare and quantify the es-
timation quality, the root mean square error

Ermse(x̂1:T ) =

√√√√ 1

T

T∑
t=1

(xt − x̂t)2

was calculated for the estimated states and is shown in
Fig. 6 for different approximation orders N , for the Fourier
and Legendre basis functions.
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t)
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Fourier
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Figure 7. The true pdf p(xt|Yt) and p̂9(xt|Yt) for t = 25,
for the Fourier and Legendre solutions, N = 9.
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Figure 8. The true pdf p(xt|Yt) and p̂25(xt|Yt) for t = 25,
for the Fourier and Legendre solutions, N = 25.
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Figure 9. The true pdf p(xt|Yt) and p̂33(xt|Yt) for t = 25,
for the Fourier and Legendre solutions, N = 33.

For the particular time instant t = 25, the true pdf p(xt|Yt)
and the estimated pdf:s p̂(xt|Yt) obtained with the Fourier
and Legendre basis functions are shown for N = 9, 25, 33
in Fig. 7, Fig. 8 and Fig. 9, respectively.

5. DISCUSSION

In the studied bearings-only tracking problem, it can be
concluded that the Fourier basis functions generally give
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a better approximation to the problem than the Legendre
basis functions do, which phenomenon is especially promi-
nent for lower approximation orders N . It can be seen that
for low N , (N = 9, Fig. 7), both the Fourier and Legendre
basis functions fail to capture the multi-modal shape of the
true density. Yet the Fourier basis based solution yields
a closer approximation than that of Legendre functions,
measured in the 1-norm of the approximation error. When
N is in the medium range (N = 25, Fig. 8), the Fourier
basis solution gives an almost perfect approximation, while
the Legendre functions still show some difficulties in fully
capturing the multi-modality of p(xt|Yt). For high approx-
imation orders (N = 33, Fig. 9), both the Legendre and
Fourier bases produce close to perfect approximations.

However, as can be seen from Fig. 6, a better pdf fit does
not necessarily translate into a superior point estimate of
the state x̂t. The root mean square error for the Fourier
and Legendre solutions are practically the same for N ≥
20, even though the Fourier basis solution provides a better
fit of the actual underlying pdf.

Another aspect that should be taken into account is the
numerical properties of the basis functions. With the
Legendre basis functions it is not possible, in the given
implementation, to go above N = 65 due to numerical
problems, while no numerical problems are encountered
using the Fourier basis functions. However, as virtually
perfect approximation is reached already for N = 33, it is
not an issue with the Legendre basis solution in this case.

From Fig. 4 and Fig. 5, the bound can be seen to be
close to tight for some N values, but more conservative
for other N values. For the Legendre case, the bound is
conservative for small values of N as a consequence of
the poorly approximated pdf:s p(xt|xt−1) and p(yt|xt) in
some intervals. The bound accounts for the worst case
effects of this poor approximation, which scenario does not
apparently realize in the final estimate, for the particular
problem and implementation at hand.

In the derivation of the bound the inequality∫
f(z|x)g(x)dx ≤ max

x,z
f(z|x)

was used. This relationship holds if f and g are pdf:s, but
appears in some cases to be a rather conservative bound.
By imposing assumptions on e.g. the smoothness of f and
g, this bound can be tightened and hence bring about an
improvement of the final bound.

6. CONCLUSIONS

A bound on the 1-norm of the approximation error in
the estimate of the posterior distribution in the recursive
Bayesian estimation problem solved by means of orthogo-
nal series expansions is derived. The bound is instrumental
in preventing unlimited growth of the approximation error
that renders the approximative solution useless. A compar-
ison between the use of Fourier and Legendre basis func-
tions is also conducted with the conclusion that the Fourier
basis provides a more suitable option for the particular
bearings-only tracking problem under consideration.
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