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Abstract: Energy is a universal concept that can be used across physical domains to describe complex 

large-scale industrial systems. This brief survey and framework gives a perspective on energy as a 

unifying domain for system modelling, supervision, and control. Traditionally, modelling and control 

problems have been approached by adopting a signal-processing paradigm. However, this approach 

becomes problematic when considering non-linear systems. A behavioural viewpoint, which incorporates 

energy as basis for modelling and control, is considered a viable solution. Since energy is seen as a 

unifying concept, its relationship to Euler-Lagrange equations, state space representation, and Lyapunov 

functions is discussed. The connection between control and process supervision using passivity theory 

coupled with a system energy balance is also established. To show that complex industrial systems 

comprising multiple energy domains can be modelled by means of a single electric circuit, its application 

to a large-scale thermo-hydraulic system is presented. Next, a simple non-linear transmission impedance 

electric circuit is used to illustrate how energy can be used to not only describe a system, but also serve as 

basis for system optimisation. An energy-based framework is proposed whereby energy is used as a 

unifying domain to work in, to analyse, and to optimise large-scale industrial systems.        

Keywords: Energy, modelling, supervision, control, multi-domain, large-scale, industrial systems, 

equivalent electric circuit. 



1. INTRODUCTION  

Large-scale industrial systems are characterised by a 

multitude of sub-systems exchanging matter and energy to 

accomplish a common goal. The interactions of the sub-

systems can be complex and take place across different 

physical domains such as thermal, chemical, fluid, 

mechanical, and electrical, to name but a few. Most physical 

systems also portray non-linear behaviour of varying 

complexity. Global system optimisation, meeting specific 

performance objectives while maintaining a healthy energy 

profile, is therefore a complex and multi-faceted problem. 

Energy is seen as a unifying concept that can be used across 

physical domains to characterise and describe complex large-

scale industrial systems. The engineering challenge can be 

described as one of achieving some global plant objectives 

through the effective manipulation and transformation of 

energy. The notion to consider energy as a measure of system 

stability is of course the basis of Lyapunov’s second stability 

criterion (Shinners, 1998), where the sum of the system’s 

kinetic and potential energy is considered as a function, and 

the time derivative of the function is taken. Haddad & 

Nersesov (2011) proposes the global optimisation of a 

complex system from an energy perspective, with a unified 

stability analysis and control design framework for large-

scale non-linear interconnected dynamic systems. The 

proposed framework stands on the legs of vector Lyapunov 

functions and passivity theory. In the analysis of large-scale 

non-linear industrial systems, several Lyapunov functions 

arise naturally from the stability properties of each individual 

subsystem. Furthermore, with many input, state, and output 

properties related to the supply, storage, transport, and 

dissipation of energy, extending classical dissipativity theory 

(Willems, 1972a, 1972b) to include storage and dissipation 

on the subsystem level, leads to a natural energy-based 

framework for large-scale industrial systems. Dissipativity 

refers to the system characteristic where a fraction of the 

energy supplied to the system is transformed into heat or 

losses. Passivity is a special case of dissipativity, where the 

energy stored in the passive systems cannot exceed the 

energy supplied by the external environment. It provides a 

fundamental framework for the analysis and design of control 

using a state space formalism based on system energy related 

considerations. 

Linear or non-linear complex systems have long been 

modelled by means of equivalent electric circuits. This is due 

to the striking similarity that exists between the differential 

equations that describe the behaviour of physical systems in a 
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variety of domains, ranging from electric circuits to 

mechanical movement and thermodynamics. The above 

mentioned pattern becomes even more evident when so-

called ''through'' and ''across'' variables are used (Dorf & 

Bishop, 2011). Examples of "through" variables (flow 

variables in Bond graph terminology) include current, force, 

torque, fluid volumetric flow rate, and heat flow rate. 

Examples of "across" variables (effort variables in Bond 

graph terminology) include voltage, velocity difference, 

angular velocity difference, pressure difference, and 

temperature difference. The energy contained in through 

variables is stored inductively in the form of inductors 

(electric circuits), springs (mechanical systems), and fluid 

inertia. The energy contained in across variables is stored 

capacitively in the form of capacitors (electric circuits), mass 

(mechanical systems), fluid capacitance, and thermal 

capacitance. Lastly, energy is also dissipated in a similar 

manner across various domains by means of resistors 

(electric circuits), dampers (mechanical systems), and 

thermal resistance. In addition, equivalent electric circuits 

typically represent lumped parameter models of the examined 

system. Combined with the use of either positive or negative 

feedback, it is therefore possible to approximate most 

systems (in a particular domain) by means of an equivalent 

electric circuit. 

The notion of using energy as basis for global optimisation is 

extended in this work to the more general concept of 

applying energy for the purpose of system representation. 

The idea stems from two apparently unrelated works. The 

first derives a generic procedure for state space model 

extraction of large-scale thermo-hydraulic systems, whereby 

the transparency of the system components is retained in the 

final model (Uren & van Schoor, 2013a, 2013b). In the state 

space model, each state represents stored energy associated 

with that particular state, and therefore, an important link can 

be made between energy as basis for modelling and control. 

In the second work, a methodology is devised to extract 

enthalpy and entropy fault signatures of a large-scale thermo-

hydraulic system for the purpose of fault detection and 

diagnosis (FDD) (du Rand & van Schoor, 2012a, 2012b). A 

connection is thus established between energy and process 

supervision, and visualising the condition of the system using 

energy signatures.  

Note that in this work, terminology in the field of process 

supervision and FDD are adopted according to the IFAC 

SAFEPROCESS Technical Committee (Isermann & Ballé, 

1997). Supervision constitutes a continuous task of 

determining the condition of the process (monitoring) 

whereby system anomalies are detected, diagnosed, and 

corrected. The diagnosis task comprises fault isolation (type, 

location, and time) and fault identification (magnitude and 

time-variant behaviour). Also, an energy signature does not 

signify a simple “best-fit” line between specific calculated 

indices (Belussi & Danza, 2012; Yu & Chan, 2005), but aims 

to optimally depict system knowledge based on energy 

indicators.      

This paper gives an energy perspective on modelling, 

supervision, and control of large-scale industrial systems in 

the form of a brief survey and proposed framework. The 

paper aims to establish an apparent relation between the tasks 

mentioned using energy as the unifying domain. The paper 

starts out in Section 2 with a historical development of 

energy as the basis for system modelling, supervision, and 

control. Section 3 presents the relevance of energy as a 

unifying domain for the tasks mentioned. A perspective on 

realistic systems is then given in Section 4, portraying 

equivalent electric circuits as representative of complex 

multi-domain industrial systems. Next, a non-linear electric 

circuit case study is examined in Section 5, demonstrating 

how energy can form the basis for global system 

optimisation. Section 6 describes an envisaged energy-based 

framework using energy formalisms as a unifying concept for 

system modelling, supervision, and control. Some final 

thoughts and concluding remarks are presented in Section 7.   

2. HISTORICAL DEVELOPMENT 

Considering the general history of control theory, it is 

interesting to notice that the control system design process 

has been traditionally approached from a signal theoretic 

perspective (R Ortega, van der Schaft, Mareels, & Maschke, 

2001).  This perspective can be traced back to the 1930s with 

the development of the first feedback amplifiers. In this 

paradigm, the sub-systems of the control system are viewed 

as signal processing devices that transform input signals into 

output signals. The design specifications are based on 

minimising error signals and reducing the effect of 

disturbance signals in the presence of model uncertainties.  

Mathematically this translates to the assumption that the 

disturbance signals and unmodelled dynamics are norm 

bounded. This means that the control performance is 

determined by the size of the operator gains that map the 

various input signals to the output signals.  The mathematical 

framework that supported the modelling, analysis, and 

synthesis of control systems was based on input-output ideas 

with Fourier and Laplace transforms being the dominant 

mathematical tools.  This paradigm worked particularly well 

in the case of linear time-invariant control systems since 

filtering using frequency-domain considerations can be 

implemented successfully. 

During the 1960s and 1970s, this paradigm took a new 

direction due to the introduction of the state-space formalism.  

In a mathematical framework, mapping between the inputs 

and outputs of the control system are based on the 

transformation of the internal state of the control system.  

Moreover, in this approach, the mathematical tools turned 

towards ordinary differential equations. The celebrated 

concepts of controllability, observability, and optimality were 

introduced that led to powerful controller design techniques.  

From the 1990’s research is focused towards the development 

of a paradigm that allows for the treatment of a more 

generalised class of systems, the goal typically being to 

consider non-linear systems represented by 

 ( , ),x f x u   (1) 

 ( , ).y h x u   (2) 

This notion was inspired by (Willems, 1991, 2007) and is 

generally referred to as the behavioural approach towards 
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systems modelling and control. In this paradigm a 

mathematical model is viewed as a subset of a universum of 

possible descriptions of reality.  That is, before a 

mathematical model is derived of the real system, all 

outcomes in the universum are in principle possible.  After a 

mathematical model is accepted as a convenient description 

of reality, only then a certain subset of outcomes is possible.  

This subset is called the behaviour of the mathematical 

model. Proceeding from this perspective, one arrives at the 

notion of a dynamical system as simply a subset of time-

trajectories.  This paradigm is not as restrictive as the 

input/output point of view.  In fact, most physical systems do 

not have a preferred signal flow direction, and it is important 

to let the mathematical structures reflect this.  The 

behavioural paradigm therefore starts from a mathematical 

model obtained from first principles resulting in a set of 

differential and algebraic equations. Among the vector of 

time trajectories satisfying these equations are components 

that are available for interconnection. The process of 

controller design reduces to defining an additional set of 

equations for these interconnection variables to impose a 

desired behaviour on the system.   

This paradigm naturally supports the fundamental concept of 

energy conservation.  Therefore, complex dynamic systems 

consisting of sub-systems and controllers are viewed as 

energy-transforming devices that interconnect via power 

conserving connections to achieve not only a desired 

response, but also an optimal system response.   

Considering the modelling and control of large-scale systems, 

the same kind of restrictions surface as with the signal 

theoretic paradigm. According to (Haddad & Nersesov, 

2011), the behavioural paradigm is a much more natural fit.  

It follows that energy-based modelling arises naturally in 

large-scale dynamic systems. Fig. 1 illustrates the two 

paradigms regarding the modelling and control of large-scale 

dynamic systems. Considering the behavioural paradigm, 

three modelling approaches can be followed using energy 

concepts (Janschek, 2011): 

 Energy-based modelling employing scalar energy 

functions using either Euler-Lagrange or Hamiltonian 

formalisms. 

 Multi-port modelling employing component-based 

system models with power-conserving rules utilising e.g. 

Kirchhoff networks or Bond/linear graph approaches.   

 A combination of the Hamiltonian and port-based 

modelling formalism called Port-Hamiltonian modelling. 

The port-Hamiltonian formalism is especially of great 

importance regarding the modelling of complex, large-scale 

systems due to the following advantages (Duindam, 

Macchelli, Stramigioli, & Bruyninckx, 2009): 

 It is highly scalable, and therefore naturally allows 

the modelling of very large interconnected multi-

physics systems. 

 Due to a strong differential geometric base, it has 

the ability to incorporate non-linearities while 

retaining underlying conservation laws. 

 It has the ability of treating both finite-dimensional 

and infinite-dimensional components. 

 

 

Fig. 1. Paradigms for modelling and control of large-scale 

dynamic systems. 

The port-Hamiltonian formalism is able to match the “old” 

framework of port-based network modelling of multi-domain 

physical systems with the “new” framework of geometrical 

dynamic systems and control theory.  This allows for the 

systematic approach of modelling, analysis, condition 

monitoring/fault detection and control, via 

 separation of the interconnection structure of the 

system from the constitutive relations of its 

components; 

 enforcing power conservative interconnections by 

means of Dirac structures;   

 analysing the system making use of the 

interconnecton structure and component constitutive 

relations; 

 the achievement of control by means of Casimir 

generation, energy shaping, energy routing and port 

and impedance control. 

From a geometric perspective, the Dirac structure lies central 

in describing port-Hamiltonian systems.  The Dirac structure 

has a strong link with bond graphs, especially 0- and 1-

juncionts are prime examples of the general concept of a 

Dirac structure.  Generalised flow and effort vectors ( , )e f   

are elements of abstract finite-dimensional linear spaces 

and  respectively.  The effort space is defined as the dual 

space of , that is 
*: .  The total space of flow and 

effort variables is 
* and is generally called the space of 

port variables.   
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On this total space of port variables, the power is defined by 

 *|   ( , ) ,P e f f e     (3) 

where |e f denotes the dual product, that is, the linear 

functional *e acting on f  .  A Dirac structure on 

*  is then a subspace *   such that 

 | 0, for all , ( , )e f e f    

 didi m .m    

This illustrates the notion that port-Hamiltonian system 

descriptions share common ground with geometric nonlinear 

control theory and geometric mechanics. 

Traditional and advanced methods for process supervision 

and FDD are well documented in the literature (Bokor & 

Szabó, 2009; Das, Maiti, & Banerjee, 2012; Hwang, Kim, 

Kim, & Seah, 2010; R Isermann & Ballé, 1997; Rolf 

Isermann, 1984; Qin, 2012; Venkatasubramanian, 

Rengaswamy, Kavuri, & Yin, 2003a, 2003b, 2003c). 

However, in the last few decades, FDD based on energy 

formalisms (i.e. not energy based signal transformations) did 

not develop to any great extent. The most notable 

contributions relate to an energy balance or conservation 

principle, which offers great possibilities due to its clear 

physical meaning and easy implementation (Wei Chen, 

2011). The energy can be representative of the true physical 

system energy, or an abstract energy function defined via 

Lyapunov theory.        

Model-based fault detection based on energy balance 

calculations takes its origins from chemical process control in 

the 1970s (Gertler, 1998 that refers to previous works of 

Himmelblau, 1978; Vaclavek, 1974). Berton & Hodouin 

(2003) introduced a conservation model obtained via linear 

and bilinear state equations describing mass and energy 

balances. Interactions between different conservation laws, 

i.e. mass and energy, are evaluated using single bilinear FDD 

residual vectors. (Sunde & Berg, 2003) successfully achieved 

the notion of fault detection by way of plant-wide mass and 

energy balances for a 3,300 MWt boiling water reactor 

turbine cycle. The balance equations were implemented as 

constraints to a minimisation problem. (Theilliol, Noura, 

Sauter, & Hamelin, 2006) exploits the energy balance of a 

SISO closed-loop system to generate residuals of the energies 

involved without an input-output model. Very often, such 

input-output models are almost impossible to obtain for 

complex large-scale industrial systems. In this case, the 

energy balance offers an intuitive way to perform FDD. 

Energy indices are used by (Tinaut, Melgar, Laget, & 

Domínguez, 2007) to investigate the interchange of energy 

between different engine components for the purpose of fault 

detection. An energy model corresponding to the change in 

total kinetic energy of the moving parts facilitates a 

transparent and straightforward FDD approach.                

Subsequent energy supported FDD works follow from 

passivity theory. (Yang, Cocquempot, & Jiang, 2008) 

constructs a global passivity energy relation by an inequality 

that comprises system states, inputs and outputs. FDD is 

realised by monitoring this inequality for “fault” energy. 

Since implicit FDD is only required for part of faults under 

the passivity framework, certain conditions on the system 

structure can be relaxed for implicit fault diagnosis (Gertler, 

1998). (W Chen, Ding, Khan, & Abid, 2010) extends the 

passivity framework to a more inclusive energy based 

framework taking into account the system’s dissipative 

properties. Therefore, unlike an energy inequality, an energy 

balance is achieved which offers optimal FDD. For 

unmeasurable system states, FDD is accomplished by an 

optimal approximation of the energy balance based on system 

inputs and outputs. In (Wei Chen, 2011), the energy balance 

based FDD is further developed to accommodate passive 

non-linear systems. FDD design procedures are established 

for two classes of passive non-linear systems namely input-

affine and Lagrangian systems. 

3. ENERGY AS A UNIFYING CONCEPT 

3.1  Prelude to energy as a universal concept 

Energy is a universal concept in systems and processes found 

in all domains, and therefore, also in multi-domain systems. 

In this work, the term system implies a closed environment 

that represents energy exchanges internal to the system, but 

also to and from the system. A simple example of a multi-

domain system demonstrating this concept is a permanent 

magnet DC motor, in which electrical energy is converted to 

mechanical energy and vice versa. Specifically, the armature 

current is converted to mechanical torque, which results in 

acceleration of the motor’s rotor. Conversely, the mechanical 

angular speed of the motor results in a back electromotive 

force. This inherently feeds back to the electrical subsystem 

of the motor, thereby controlling the magnitude of the rotor 

current. Consequently, the amount of mechanical torque 

produced is controlled. Another important point to be made is 

that the general theory of systems assumes that the examined 

system is linear, and if not, that the system can be linearised 

in the operating region of interest. An important salient 

feature of energy is that it applies equally to both linear and 

non-linear systems. Therefore, by considering a system from 

the viewpoint of energy, the very limiting requirement of the 

system to be linear proves to be superfluous and can thus be 

disposed of. 

3.2  Euler-Lagrange equations and energy  

The Euler-Lagrange equations used for deriving the 

differential equations that models a given problem forms part 

of the subject called Calculus of Variations. The basic 

problem herein is to infer a function x(.) (i.e. not a variable’s 

value) that minimises a specified definite integral. The 

integrand of the latter is a function of the original function as 

well as certain derivatives thereof. In its simplest form, the 

problem is that of determining a once-differentiable scalar 

function x(t) of a single independent variable t, for which the 

integral  

   
1

0

[ ( )] , ( ), ( )
t

t
I x t F t x t x t dt    (4) 
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is minimised.  The function F in (4) is called the Lagrange 

function. 

It follows readily (Hildebrand, 2012) that the function x(t) 

that minimises the integral (4) satisfies the Euler-Lagrange 

equation 

 0.
d F F

dt x x

  
  

  
  (5) 

Conversely, (5) is a necessary but not sufficient condition for 

a function x(t) to minimise the integral (4).  It is possible to 

generalise the above to problems involving n dependent and 

m independent variables.  The particular case of interest is 

that of modelling a system using an ordinary differential 

equation of order n with t as the independent variable. In this 

case, the set of Euler-Lagrange equations (Hildebrand, 2012) 

in (5) needs to be solved. 

 0,      for  1, ,
i i

d F F
i n

dt x x

  
   

  
  (6) 

For our purpose, the Lagrange function is selected to be the 

energy difference ( , , ) ( , ) ( ).F t x x T x x V x   Here, T and V 

represent the total kinetic and potential energy of the system 

respectively, and are expressed in terms of the variable set 

{x1,…,xn} called generalised coordinates, and their 

derivatives {ẋ1,…,ẋn}. Taking this set of generalised 

coordinates to be the state variables then links the Euler-

Lagrange equations to state space modelling. Therefore, by 

applying this method for the purpose of system modelling, a 

state space representation of the system can be obtained.  

Refer to (Jeltsema & Scherpen, 2009) for a more 

comprehensive discussion of Euler-Lagrange equations. 

3.3  Relationship between state space representation and 

energy 

Just as energy is a universal concept across various domains, 

it comes as no surprise that the state space representation is 

also a universal concept, allowing a system’s dynamical 

behaviour to be expressed as a set of first order ordinary 

differential equations (refer to equation (7) below). 

For an arbitrary multi-domain system, a particular state space 

representation, called the standard form, can be obtained by 

choosing the output of each energy storage element to be a 

state variable of the system (Shinners, 1998). Here, the output 

of a storage element is the dependent variable associated with 

the storage element as dictated by the given system’s 

configuration (e.g. the current passing through a voltage-fed 

inductor). For this particular state-variable assignment, the 

time average of a state-variable squared is easily shown to be 

proportional to the energy stored in the associated energy 

storage element. This confirms our suspicion that there exists 

a deep connection between energy flow in a system, and the 

state space representation of the system. Moreover, in more 

elaborate paradigms (e.g. as encountered in optimal control), 

even generalisations of power and energy namely cross-

power and cross-energy are considered.  Cross-power terms 

are those represented by the product of two different state-

variables. 

For an arbitrary n-th order driven system with m  outputs, the 

general form of the state space representation is given by the 

state equation 

 1( ) ( ( ), ),  : R R
n nx t f x t t f     (7) 

together with the output equation 

 1( ) ( ( ), ),  : R R
n my t h x t t h     (8) 

for all t ≥ t0 with x(t0) = x
0
. 

If the functions f and h are independent of time, then the 

system is said to be autonomous (i.e. not driven). A large 

class of non-linear driven systems can be represented in the 

form 

 ( ) ( ( )) ( ),  ( ) ( )x t g x t Bu t y t Cx t     (9) 

where u(t) represents the input vector of the system. In 

(Hrusak, Stork, & Mayer, 2009) it is shown that for the case 

where the function g is of the form g(x) = A(x)x, the 

instantaneous value of the output power P(t) and the 

corresponding average energy E(t) of the state, up to time t, 

are related by 

 
2

( ) ( ) .
dE

P t y t
dt

      (10) 

Then, for the zero input case, the energy present in the system 

at time instant t0 is 

 
0

2

0( ) ( ) .
t

E t y t dt


    (11) 

A state space representation with the A matrix of the form 

 

11 2

2 22 3

3 33

1

1 1, 1

0 0          0            0

    0          0            0

0           0            0

   0       0   0

   0       0         0     

   0       0         0 0

n

n n n n

n nn

A

 

  

 



  

 



  

 
 
 
 

 

  


  









  (12) 

exists and is termed physically correct (Hrusak et al., 2009).  

By (Hrusak et al., 2009), a large class of non-linear systems, 

all for which g(x) = A(x)x, can be represented by a state space 

representation for which (12) holds.  For the non-linear case, 

components of A in (12) depend on x. 

In (Hrusak et al., 2009) and references therein, it is shown 

that a necessary and sufficient condition for dissipativity of 

this class of non-linear systems is that α1 > 0, while a 

necessary and sufficient condition for conservativity is that α1 

= 0. A necessary but not sufficient condition for asymptotic 

stability is that α1 > 0. Refer to (Hrusak et al., 2009) for more 

detail. In (Mayer, Hrusak, & Stork, 2013), this energy state 

space approach is applied to gain insight into the mechanisms 
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responsible for chaotic behaviour of two non-linear coupled 

oscillators. 

3.4  Lyapunov functions and how they relate to energy 

Another subtle connection is worthwhile to emphasise.  In the 

theory of autonomous ordinary differential equations (ODEs), 

Lyapunov functions are scalar functions that enable stability 

analyses of an equilibrium point of the ODE.  For a system 

that can be represented by the state space representation (7), a 

once-differentiable function V : D × R→R, with D ⊂ R
n 

a 

neighbourhood of the state space’s origin, is called a 

Lyapunov test or candidate function if both V(x,t) > 0 for x ≠ 
0, and  

V(0,t) = 0 for all  t ≥ t0 (Jordan & Smith, 2007).  A Lyapunov 

candidate function that has the property of a non-positive 

orbital derivative, i.e. 

 0( , ) ( , ) ( , ) 0,    x

V
V x t V f x t x t t t

t


      


,  (13) 

is called a Lyapunov function for the system (7). The 

existence of a Lyapunov function then guarantees that the 

state space’s origin is stable. By coordinate translation, 

considering a signal that comprises the difference between 

the state vector of a system and a non-zero equilibrium point 

of the same system, the power of this signal is an indication 

of how far the signal travels from the equilibrium point and 

hence, is a Lyapunov candidate function for the equilibrium 

point. In (Stork, Hrusak, & Mayer, 2005), this approach is 

referred to as the energy-metric approach.  For a certain class 

of systems, this choice of candidate function does comprise a 

Lyapunov function for equilibrium points. By non-linear 

warping of the power as a function of the state variable x, 

Lyapunov functions for a larger class of non-linear systems 

may be obtained (Guckenheimer & Holmes, 1997). Clearly, 

for a large class of systems, Lyapunov functions for studying 

stability are intimately connected with the concept of power 

and hence to energy, relative to an equilibrium point in state 

space. 

Although not directly related to this paper’s focus, as a final 

note on Lyapunov functions, the reader is referred to the 

development presented in (Malisoff & Mazenc, 2009). As 

presented herein, Lyapunov functions are used to design 

controllers to satisfy specific stability requirements for the 

closed-loop system. 

3.5. Passivity and the energy balance 

It is noteworthy to show that passivity theory and the energy 

balance can be used as a unifying energy paradigm to 

perform both system control and FDD. Passivity theory is an 

established approach for stability analysis and control of non-

linear systems (Brogliato, Lozano, Maschke, & Egeland, 

2006; R Ortega et al., 2001). Consider a system with states x 

∈ R
n
, inputs  u ∈ R

m
, and  outputs y ∈ R

m
. The mapping 

u y is called passive if there exists a state function H(x), 

bounded from below, and a non-negative function d(t) ≥ 0 

such that 

            
0dissipatedstored energy

energy supplied energy

0 .
t

T

H x t H x d t u s y s ds      (14) 

A control action ( ) ( ( )) ( )u t x t v t  may be applied such 

that the closed-loop system is again a passive system, with 

energy function Hd (x(t)), with respect to v y , and such that 

Hd (x(t)) has a global minimum at a desired point x
*
(t). If a 

function ( ( ))x t can be found for some function Ha (x(t)) 

such that 

 
0

( ( )) ( ) ( ( )),

t

a

T x s y s ds H x t    (15) 

then the closed loop system will also be passive, with input 

v(t) and an energy function  

 ( ( )) ( ( )) ( ( )).d aH x t H x t H x t    (16) 

This methodology of assigning an energy function with a 

minimum at the desired values is generally referred to as 

energy shaping.  In some cases the natural dissipation term 

may be replaced by some function dd(t) ≥ 0.  This is called 

damping injection (Romeo Ortega, Schaft, Maschke, & 

Escobar, 2002). 

The notion of passivity based control adopting the energy 

balance is extended to process supervision as previously 

discussed (W Chen et al., 2010). The system in (13) is 

dissipative with respect to the supply rate S(u,y) = y
T
Mu and 

storage function V(x) = x
T
Px/2 if 

 0,
T

PA A P    (17) 

and 

 .
T

PB C M   (18) 

Assuming x(0) = 0, the energy balance is 

 

     
0

stored energy dissipated
energy

0

supplied energy

1 1

2 2

.

TT T T

T T

x T T xdtPx x PA A P

y Mudt

       





 (19) 

For the faulty case, (19) becomes an inequality. The energy 

balance for faults can therefore be expressed as 

 

   

 
0 0

1

2

1

2
.

T

f f f

T T
T T T

f f f

x T Px T

x PA A P x dt y Mudt

  
 

   
   

  (20) 

Fault detection is realised for component, actuator, and 

sensor faults by (20), (21), and (22) respectively. 

 
0 0

T T
T T

f f f fx P Ax dt x P Budt        (21) 
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0

T
T

f f ax PBf dt     (22) 

 
0

T
T

f sf Mudt     (23) 

In the equations, ∆A and ∆B are component faults, fa is an 

actuator fault, and fs is a sensor fault. To perform fault 

isolation, the type of energy change is first identified, i.e. 

stored or dissipative. Next, the fault location is established by 

writing (20) as a summation of energy-storing and energy-

dissipating components, and checking a hypothesis involving 

the system states. For input-affine and Lagrangian non-linear 

systems, the energy balances can be written as (Wei Chen, 

2011)  

   
0 0

stored energy
supplied energy

dissipated
energy

( ) ,
TV

x f x dt y udt
x

V
 







    (24) 

and 

     
0 0

stored energy supplied energy
dissipated

energy

0 .T TR
V V q dt q udt

q

 






      (25) 

4. A PERSPECTIVE ON REALISTIC SYSTEMS 

Equivalent electric circuits is a suitable choice to describe 

large-scale industrial systems using energy:  

 Energy and power are easily calculated in electric 

circuits.  

 Equivalent electric circuits can be used to model systems 

in a variety of domains. In fact, in the years predating 

digital computers, differential equations could be solved 

by means of analogue computers (Howe, 2005). In an 

analogue computer, operational amplifier circuits are 

used to model phenomena and solve the resulting 

differential equations.  

 In general, there is no restriction that the components in 

an equivalent electric circuit have to be linear. For 

example, hysteresis can be modelled by means of non-

linear inductors. Similar, amplifiers with saturation can 

be represented by voltage or current sources combined 

with both normal or Zener diodes. 

An example of a complex large-scale industrial system is the 

power conversion unit (PCU) of the pebble bed modular 

reactor (PBMR) concept (van Niekerk, Pritchard, van Schoor, 

& van Wyk, 2006). The PBMR PCU entails a three-shaft 

closed Brayton cycle and is depicted in Fig. 2. In addition to 

piping and valves, the PCU consists of a pebble bed nuclear 

reactor, high- and low-pressure turbines (HPT and LPT), a 

power turbine (PT), recuperator, pre-cooler, low-pressure 

compressor (LPC), intercooler, and a high-pressure 

compressor (HPC). 

The PCU can be simplified by assuming that the heat 

exchangers are all actively controlled, resulting in constant 

outlet temperatures (Uren & van Schoor, 2013b). After 

simplification, the conceptual model of the PCU is given in 

Fig. 3. In this figure, the helium injection and extraction 

components are modelled by two externally controlled mass 

flow sources. The equivalent electric circuit for the hydraulic 

domain is shown in Fig. 4. In this model, the turbines and 

compressors are modelled by non-linear frequency dependent 

current sources, while pipe elements are modelled using RLC 

networks. A number of RC networks, voltage dividers, and 

amplifiers can be used to model each individual turbine in 

more detail (see block diagram model of a generic turbine 

(Dynamic models for fossil fueled steam units in power 

system studies, 1991)). 

HPT LPT

PT

Shaft

Shaft Shaft

Intercooler

Core

Generator

Pre-cooler

R
ecu

p
erato

r

Low pressure 
injection

High pressure 
extraction
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valve

HPC LPC

High pressure 
side of system

Low pressure 
side of system

 

Fig. 2. PCU of the PBMR. 

HPT LPT
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Generator

HPC LPC

Constant inlet
temperature

Constant inlet
temperature

2S 1S

Heat 
source

 

Fig. 3. Conceptual model of the PCU. 

HPT LPT PT

LPCHPC

1S2S

 

Fig. 4. Equivalent electric circuit of the hydraulic sub-

systems of the PCU. 
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Note that the equivalent circuit shown in Fig. 4 is limited to a 

single domain. In the case of the PBMR, four domains, i.e. 

electrical, mechanical, hydraulic, and thermal, are tightly knit 

together into a single system. It is difficult to describe energy 

flows in such a system if the various domains are modelled 

by means of separate equivalent circuits. However, 

equivalent circuits representing different domains can be 

coupled by means of generalised transformers. Similar to the 

operating principle of an electrical transformer, a generalised 

transformer can be used to model the coupling between 

various energy domains (Cheng, Wang, & Arnold, 2007). In 

terms of electric circuit components, a generalised 

transformer can be constructed from two current controlled 

voltage sources. As an example, Fig. 5 shows the coupling 

between the mechanical and electrical domain in a magnetic 

energy harvesting device (Cheng et al., 2007). A single 

equivalent electric circuit can be obtained from the model by 

reflecting the impedances of one domain over to the other 

side (Cheng et al., 2007). 

Spring Damper

MassForce

Coil resistance

Load

Coil inductance

Mechanical domain Electrical domain  

Fig. 5. Equivalent circuits coupled by a generalised 

transformer. 

5. ELECTRIC CIRCUIT CASE STUDY 

In the previous section, a connection was made between 

realistic systems and equivalent electric circuits. Therefore, to 

illustrate the application of energy as unifying concept for 

system optimisation, consider the simple non-linear electric 

circuit in Fig. 6. Non-linearities are introduced to realistically 

represent actual industrial systems. The circuit takes the form 

of a typical transmission system with a source vs, a 

transmission impedance represented by non-linear resistances 

Rx1 and Rx2 associated with an inductance Lx1 and capacitance 

Cx2 respectively, and a load RL. 

The state space formulation of the circuit is given by 

 

1

1 11

1

2

2 2 2

1
1

1 1 1 1
0

x

x x

x s

x x x L

R

L Lx
L v

x

C C R R

  
  

                 
   

  (26) 

with the state variables x1 and x2 denoting the current through 

Lx1 and the voltage across Cx2 respectively. 

sv

1xR
1xL

2xC
2xR

LR

 

Fig. 6. Simple electric circuit. 

In accordance with (Seshu & Reed, 1961), the power of the 

individual components pi adds up to zero given by 

 
1

0.
N

i

i

p


   (27) 

In this case, the total number of components N equals six. 

The components can be grouped into power sources, energy 

storage elements, dissipative components, and load 

components. Equation (27) therefore translates to 

 

7 1 2 2 1

1 1 1 1 1

0

i si sti di Li

i si sti di Li

s st d L

p p p p p

P P P P

    

   

    

    
  (28) 

with psi, psti, pdi, and pLi representing the sources, storage, 

dissipation, and load power components respectively. Ps,  Pst, 

Pd, and PL represent the total power associated with the 

respective component groups. 

An optimal operating point from a power loss perspective 

will be at maximum power efficiency. The power efficiency 

can be written in terms of Pd and PL as follows 

 .L

P

L d

P

P P
 


  (29) 

Given that Rx1 and Rx2 are non-linear functions of  x1 and x2 

respectively, the total dissipation losses is 

 

22
2 2

1 1 1

1 2 2

( ) ,
( )

d di x

di x

x
P p x R x

R x

     (30) 

with the load power 

 

2

2 .L

L

x
P

R
   (31) 

Substituting (29) and (30) into (28) therefore results in 

 

2

2

2 2
22 2

1 1 1

2 2

.

( )
( )

L

P

x

L x

x

R

x x
x R x

R R x

 

 

  (32) 

For this case study, Rx1 and Rx2 are chosen to be non-linear 

functions of x1 and x2, as portrayed in Figs. 7 and 8 

respectively. Fig. 9 shows the mesh diagram of power 

efficiency as a function of x1 and x2. 

The theoretic maximum efficiency operating point (x1m,    x2m) is 

given by 

 
1 2

1 2 1 2
,

( , ) arg max ( , ).
R

m m P
x x

x x x x


   (33) 

This maximum point will be one of the critical points of ηP, 

determined from the partial derivatives of ηP 

 1 1 2 1 2

1

( , ) ( , ) 0P x Px x x x
x

 


 


  (34) 
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and 

 
2 1 2 1 2

2

( , ) ( , ) 0.P x Px x x x
x

 


 


  (35) 

Applying (34) and (35) to (32) results in 

 
1 1 1

1

2 0x x

d
R x R

dx
    (36) 

and 

 

3

2 2

1 1 22

22

2 0.x x

x

x d
x R R

dxR
    (37) 

Solving the expressions in (36) and (37) will give the maxima 

and minima of 
P , including the point 

1 2( , )m mx x . The 

simulation results in Fig. 9 produced a maximum power 

efficiency point of (2.98, 100.55), corresponding with an 

efficiency of 98.74 %. 

The concept of reachability (Ohta, Maeda, & Kodama, 1984) 

now becomes important to determine whether the point of 

maximum efficiency is reachable within finite time using a 

specific input. The concept of least norm input for 

reachability (Boyd, Ghaoul, Feron, & Balakrishnan, 1994) 

can be used to realise the desired state transition with the 

least amount of energy input. 

 

Fig. 7. Non-linear function
1 1( )xR x . 

 

Fig. 8. Non-linear function 2 2( )xR x . 

 
Fig. 9. Power efficiency vs. x1 and x2. 

In the context of global system optimisation through 

modelling, supervision, and control (the latter two are not 

shown), this case study demonstrates how an equivalent 

electric circuit can serve to represent an energy model with 

associated state space that is suitable for dissipativity 

analyses. The simple circuit representation of Fig. 6 can be 

extended to a more general system representation constituting 

sources (current and voltage), energy storage elements 

(inductive and capacitive), dissipative elements, and loads of 

which some elements can also be non-linear functions of the 

system states. The development of generic topological 

representations of such electric circuits is a topic for 

continued research, and is therefore not included in this 

paper. 

6. AN ENERGY-BASED FRAMEWORK 

The fact that energy is a universal concept that holds across 

different domains is the reason for us to focus on the use 

thereof for large-scale industrial system analyses. It is 

envisioned that unified energy formalisms can be established 

to facilitate modelling, supervision, and control of these 

energy systems.  Fig. 10 depicts the method implied by the 

vision. The system block represents any large-scale industrial 

system such as a power or petrochemical plant. In these 

systems, the principles described will not only apply on a 

global systems level, but also on sub-system or even 

component level.  

Reviewing Fig. 10, the examined system is firstly 

transformed to an equivalent electric circuit. The process of 

abstraction to obtain an energy signature implies obtaining a 

representation of the system based on an energy formalism. 

This can for instance denote the system’s energy distribution 

in terms of energy supplied, stored, transported, and 

dissipated. The energy formalism is then used for feature 

extraction to describe a reference energy signature. This 

transformation will entail finding a global optimum in terms 

of some global system objectives, encapsulated in an optimal 

energy distribution profile. It is envisaged that such an 

optimal energy distribution will be associated with an optimal 

set of system states. Comparing an actual energy signature 

with the reference case will serve to evaluate and supervise 
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system performance. The process of compiling an actual 

energy signature may include some measurement inference or 

estimation of system variables. Analogous to normal 

feedback control, the comparison of energy signatures yields 

a set of residuals. If this energy mismatch violates certain 

bounds, a fault is detected. The diagnosis task then 

establishes the fault location and type based on the energy 

fault signature. A control action finally aims to restore or 

optimise system performance (may also include system 

maintenance or conditioning).  

Feature 

extraction

Measurements

Abstraction

Control/Optimisation

Supervision

Feature 

extraction

Modelling

System

Equivalent 

electric 

circuit

Energy

formalism

Actual 

energy

signature

Reference 

energy

signature

Σ
+

Energy 

fault 

signature

Residuals

Error 

minimiser
FDD

 

Fig. 10. Energy-based framework for modelling, supervision, 

and control of large-scale industrial systems. 

Implementing the framework in Fig. 10 presents some unique 

challenges. The abstraction of an energy formalism that is 

usable from a global optimisation point of view is seen as the 

greatest challenge. Here the use of graph theory may provide 

a suitable platform to capture the energy attributes of the 

multi-domain equivalent electrical circuit in a structured 

manner.  

7.  CONCLUSION 

From this brief survey the tendency to use energy as a basis 

for system analysis and optimisation seems prevalent. 

Especially when considering a larger class of system such as 

non-linear systems, traditional signal-processing concepts 

that relate to modelling and control are limited. Considering 

the current research, a shift towards the development of a 

more general theory to describe and analyse non-linear 

systems is deduced. The root towards achieving this goal 

tends strongly to the adoption of a behavioural paradigm with 

energy as the core concept. The link between complex multi-

domain large-scale industrial systems and equivalent electric 

circuits provide a unified representation of multi-domain 

systems. The framework proposed, forms a direct analogy 

with conventional control theory, using energy as a basis for 

global system performance optimisation. The greatest 

challenge in terms of the proposed framework is the 

abstraction of usable energy formalisms and the subsequent 

transformation to energy signatures. This warrants further 

research to explore the viability of the energy-based 

framework. 
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