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Abstract:  

In this paper, we considered a failure-prone manufacturing system composed by a single-product 

machine, a stock and a customer who demands a stochastic quantity of product. To describe the proposed 

manufacturing system, a discrete flow model is adopted and which takes into account machine failure, 

lost demands and machine degradation. The goal of this paper is to determine the optimal production 

planning taken into account service level by minimizing the sum of production, inventory, lost sales and 

degradation costs. Perturbation analysis method is applied to the discrete flow model for optimizing the 

proposed system. Then the trajectories of production rate, stock level, degradation rate, and lost demands 

are studied and the perturbation analysis estimators are determined. These estimators are shown to be 

unbiased and then they are implanted in an optimization algorithm which determines the optimal 

production planning in the presence of service level.  

Keywords: Manufacturing system, discrete flow model, degradation machine, production planning, 

perturbation analysis. 



1. INTRODUCTION 

In recent years, the determination of an optimal production 

plan has been paying attention to manufacturing management. 

We find in the literature many works on optimal production 

planning. Dobos (2003) considered a reverse logistics system 

with constant demand and delay, the author determined the 

optimal inventory stores levels and production rate, the 

objective is to minimize the sum of the holding costs in the 

stores and costs of the manufacturing, remanufacturing and 

disposal. Sethi et al. (1997) considered a stochastic failure 

prone manufacturing system with a single machine and 

constant demand. The authors determined the optimal 

production planning and then they found the rate of 

production over time in order to minimize the average cost of 

production and surplus. Dahane et al. (2012) studied a single 

randomly repairable and failing manufacturing system 

producing two types of products. The authors used a genetic 

algorithm for determining simultaneously the optimal 

production rate of the first product during each period k (k 

periods over a finite horizon) and the optimal duration of the 

production interval of the second product in order to 

maximize the total expected profit. Turki et al. (2013) taken 

into account service level, the authors determined the optimal 

production planning which minimizes the sum of production, 

inventory, and lost sales costs. Besides, there is a few works 

in the literature that consider the machine degradation cost 

which has an influence on the optimal production planning. 

Ayed et al. (2012) considered a randomly failing 

manufacturing system which has to satisfy a random demand 

during a finite horizon given a required service level. In order 

to satisfy this demand, another subcontracting production 

system is considered. The authors integrated the effect of the 

machine degradation by introducing a unitary degradation 

cost, and then they determined the optimal production plan by 

minimising the sum of the production, the inventory and the 

degradation costs. In this paper, an optimal production 

planning will be determined under hypotheses of service level 

(Hajej et al. (2009)). This optimal production planning 

minimizes the sum of production, inventory, lost sales and 

degradation costs.  

Discrete flow model is used (Vasic and Ruskin (2011)) to 

describe the system and to consider the service level. The use 

of the discrete flow model is explained by the fact that this 

model is more realistic for discrete manufacturing systems 

than stochastic flow model (Markou and Panayiotou (2007)). 

Indeed, discrete flow model allows tracking individual parts 

part by part either in performance evaluation or real-time flow 

control and is generally easier to simulate. Under this model, 

an interesting optimization method will be developed which 

seeks to minimize the total expected cost via a simulation.  

Perturbation Analysis (PA) (Ho et al. (1979)) (Yu and 

Cassandras (2004)) is a technique which allows obtaining 

sample path derivatives of a random variable with respect to 

some parameters of interest (e.g., stock level, production rate 

…). The relevant advantage of PA method is that the 

simulation based on PA allows reducing the simulation time 

comparing to a classical simulation method. Indeed, the 

optimization algorithm based on PA computes at every step 

the gradient estimators which correspond to the new value of 

a parameter of interest. Therefore, the value of gradient 

estimator allows orienting quickly the algorithm to the 

optimal value. Yu and Cassandras (2004) applied perturbation 

analysis method to a stochastic flow model and then derived 

gradient estimators of throughput and buffer overflow metrics 

with respect to production control parameters, then they used 
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them as gradient estimators in simple iterative schemes for 

adjusting thresholds in order to optimize an objective function 

that trades off throughput and buffer overflow costs. The 

authors showed that these gradient estimators are unbiased 

before using them in the optimization algorithm. Indeed, the 

unbiasedness is the principal condition for making the 

application of PA useful in practice, since it enables the use of 

the sample PA derivative in control and optimization methods 

that employ stochastic gradient-based techniques. Then, these 

estimators could be used in stochastic approximation 

algorithm. Unfortunately to show the unbiasedness of the 

estimators in the discrete setting (discrete flow model) is more 

complicate than in the stochastic fluid model setting. Despite 

this disadvantage, we will use the discrete flow model to 

modeling our system by the fact this model is very realistic 

and more precise than stochastic fluid model which sometime 

does not maintain the identity of some important parameters 

of manufacturing systems (e.g., service level, delivery time). 

The main contribution of this paper is to apply the PA method 

on the discrete flow model and to study the trajectories of 

production rate, stock level, lost demands and failure rate in 

order to derive gradient estimators. These gradient estimators 

will be showed that are unbiased and they will be used in 

optimization algorithm for determining the optimal production 

planning. 

The paper is organized as follows. The manufacturing system 

with service level is presented in section 2. In section 3 the 

PA approach is applied on the discrete flow model. The 

optimisation algorithm and numerical results are presented in 

section 4. Finally, the last section concludes the paper and 

gives some perspectives to our work. 

 

2. PROBLEM FORMULATION AND EXPLANATION  

 

We consider a manufacturing system which produces one type 

of product and composed by a single machine M, a store S and 

a customer. We denote by d(k) the customer demand which is 

random and given by a Normal distribution. The demand d(k) 

is satisfied from the stock S with inventory service level α. 

The stock S is filled up by the machine M (see Fig. 1). The 

goal of this paper is to determine the optimal production 

planning taken into account service level. 

 

 
 

Fig. 1. Manufacturing system. 

The following parameters are used in the model formulation: 

Δt: length of a production period 

H : number of production periods in the planning horizon 

H.t : length of the finite planning horizon 
u(k): production rate of machine M during period k (k=0,1,…, H-

1) 

U={u(0), u(1), ..., u(H-1)} 

)(ˆ kd : average demand during period k (k=0, 1,…, H) 

Vd(k) : variance of demand during period k (k=0, 1,…, H) 
s(k): stock level at the end of period k (k=0, 1,…,H) 

ˆ( )s k : average stock level during period k (k=0, 1,…,H) 

s0(k) : initial stock level  

)(kL : number of unsatisfied demands at the end of period k 

cp: unit production cost of machine M 

cs: inventory holding cost of one product unit during one 

period at the stock S 


cs : unit lost sales cost 

cλ: unit degradation cost  
λ(k,t): failure rate over the horizon Ht 

Umax: maximal production rate of machine M 

Umin : minimal production rate of machine M 

α: probability index related to customer satisfaction and 

expressing the service level 

)(ku


: minimum cumulative production quantity during the 

period k. 

 

The stock level at the period k+1 equals to the stock level at 

the period k plus the production rate of machine M during 

period k, minus the customer demand during period k. 

Therefore, the stock level at the period k+1is given by the 

following equation: 

        ( 1) ( ) ( ) ( )s k s k u k d k                        (1) 

                         

                          

The service level requirement constraint for each period is 

expressed as follow: 

                         ( ( 1) 0)PROB s k                       (2) 
 

In what follows, we present a constraint which defines an 

upper and lower bounds on the production level for each 

period k: 

                           Umin u(k) Umax                                                           (3) 

 

However, for this service level constrain we have another 

important transformation which changes the service level 

constraint into equivalent, but deterministic inequalities by 

specifying through the following lemma a minimum 

cumulative production quantity depending on the service level 

requirements. 

Lemma 1: 

 ( ( 1) 0) ( ) ( ) 0,1, ....,PROB s k u k u k k H


            

Where ( )u k


 represents a minimum cumulative production 

quantity expressed as follows:  
 

     
1

,
,

ˆ( ) ; 0,1, ..., 1α d k
d k

u k V α d k s k k Hφ


      , with: 

,d kV : Variance of demand d(k) at period k 

 
,d k

αφ : Cumulative Gaussian distribution function with 

mean ˆ
kd and finite variance 0

kdV   

 
1

,d k

αφ


: Inverse distribution function. 

 

Proof of lemma1:        1s k s k u k d k     
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   Prob 1 0s k      

      Prob 0s k u k d k       

      Prob s k u k d k      

          ˆ ˆProb s k u k d k d k d k        

    

         

, ,

ˆ ˆ

Prob

d k d k

s k u k d k d k d k

V V


   
   

 
      

(A)  

With     












 

kd
V

kdkd

,

ˆ
 is a Gaussian random variable with an 

identical distribution as d(k). 

 

It is possible from (A) to determine a lower bound for the 

control variable, assuming that 
 
is a probability distribution 

function and f a probability density function. Hence, 

        

     

,
,

ˆ

( )
d k

d k

s k u k d k

V
A 

  
  
 
 


 (B)

 

Since 
,

0lim d k
 


 
and 

 ,
1lim

d k
 

  
we conclude that 

,d k
  

is 

strictly increasing.
  

We note that 
,d k

 is indefinitely 

differentiable, so we conclude that
 ,d k


 
is invertible. 

 

Thus (B)      
 

1

,
,

ˆ

d k
d k

s k u k d k

V


 
   

       
1

,
,

ˆ
d k

d k
s k u k d k V 



    
 

       
1

,
,

ˆ
d k

d k
u k V d k s k



    
 

Thus 

           
1

,
,

ˆProb 1 0
d k

d k
s k u k V d k s k 



       

 
Q.E.D. 

 

The number of unsatisfied demands during the period k 

depends on minimum cumulative production quantity and 

production rate of machine M during the period k. The 

number of unsatisfied demands is defined as follows:    

                                      

                 

m ax m ax
( ) ( )

( ) ( ) ( ) ( ) ( )

0 otherw ise

u k U If u k U

L k u k u k If u k u k

 

 

  


  




             (4) 

 

As we said in the introduction, we consider in this paper the 

machine degradation which has impact on the production 

plan. We note that we suppose that the failure rate λ(k,t) is 

increasing in both time and production rate u(k). As the 

machine production rate is variable over the horizon Ht, the 

degradation will be variable too. We consider that the failure 

rate is continuous and cumulative; then the failure rate is 

expressed as follow: 

                      
m ax

( )
( , ) ( ,Δ ) ( )n

u k
λ k t λ k t λ t

U
              (5) 

 

With (0, 0) (0)λ λ  and ( )nλ t  is the nominal failure rate 

corresponding to the maximal production rate. 

The failure rate function can be expressed in the following 

way by: 

        

1

max max1

( ) ( )
( , ) (0) ( ,Δ ) ( )

k

n n

l

u l u k
λ k t λ λ k t λ t

U U





     

   with    0,Δt t          (6) 

 

To study the influence of the degradation on the production 

plan, we consider a unitary degradation cost cλ.  

 

Remark1: to simplify the notation of the failure rate we 

replace ( , )λ k t by ( )λ k . 

 

The cost function at the period k, which is composed by the 

inventory cost, lost sales cost and degradation cost is given 

by: 
 

          
( ) . ( ) . ( ) . ( ) . ( )C k cp u k cs s k cs L k c k





               (7) 

 

The total cost over the horizon H is given by: 
 

                                 






1Hk

0k

kCCT )(                                    (8) 

 

We will study in the following section the sample path 

trajectories of u(k), s(k), L(k) and λ(k). This study will allow 

us to determine the PA estimators and prove that these 

estimators are unbiased. 
 

3. PA APPROACH 
 

In this section we turn our attention, for applying the PA 

method to the discrete flow model. Indeed, The PA is an 

approach intended to estimate gradients of performances 

metric with respect to some parameters of interest. The 

principle of this method consists in observing and analyzing 

two sample paths, one is the nominal sample path ( )(ku ), and 

the other is the perturbed sample path ( )(ku
 ) (see Fig. 2). 

We assumed that the production rate during period k is 

increased by a perturbation, denoted by . In this paper, we 

consider δ >0 (similar results could be easily obtained for δ 

<0) and we evaluate the resulting changes in stock level 

( )s k and number of unsatisfied demands )(kL  using 

geometric arguments. 
 

 
 

Fig. 2. Perturbed and nominal trajectories of the Production rate. 

 

We consider the following assumptions for PA study: 
 

- To comparing the both sample trajectories, the same 

distribution of random variables (demand customer, 
degradation law) is used. 
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- The maximal production rate, minimal production rate 

and unit costs are the same for both sample trajectories. 

- The initial stock levels for the nominal and perturbed 

trajectories are equals. 

- The initial failure rates for the nominal and perturbed 

trajectories are equals (i.e. (0) (0)
δ
λ λ ). 

The following notations are used: 

-   ( )s k
 : stock level during the period k for the perturbed 

trajectory; 

-   )(ku
 : production rate during the period k for the 

perturbed trajectory; 

- )(kL
 : number of unsatisfied demands during the period 

k for the perturbed trajectory. 

- )(ku



: minimum cumulative production quantity during 

the period k for the perturbed trajectory. 

- ( )k


 : failure rate during the period k for the perturbed 

trajectory. 
 

3.1 Trajectories study 

Stock level trajectories 

The stock level during the period k for the perturbed trajectory 

is defined as follows:    

 

     ( 1) ( ) ( ) ( )s k s k u k d k
  

                                  (9) 

 

Lemm2: ( ) ( ) .s k s k k


   for all H10k ,....,,  

 

Proof: ( ) ( 1) ( 1) ( 1)s k s k u k d k        

1 1

0 0

(0) ( ) ( )

k k

i i

s u i d i

 

 

    

( ) ( 1) ( 1) ( 1)s k s k u k d k
  

        

1 1

0 0

(0) ( ) ( )

k k

i i

s u i d i
 

 

 

    

We have (0) (0)s s


  (assumption) and 




.)())(()( kiukiuiu

1k

0i

1k

0i

1k

0i

 












, then 

1 1

0 0

( ) (0) ( ) . ( )

k k

i i

s k s u i k d i



 

 

     ( ) .s k k    

Q.E.D. 
 

Number of unsatisfied demands trajectories 

The number of unsatisfied demands during the period k for the 

perturbed trajectory is defined as follows:    

 

       

m ax m ax
( ) ( )

( ) ( ) ( ) ( ) ( )

0 otherw ise

u k U If u k U

L k u k u k If u k u k

 

 

    

 

  


  




         (10) 

with      
1

,
,

ˆ( ) ; 0,1, ..., 1
δ δ

α d k
d k

u k V α d k s k k Hφ


       

Lemma3: for all H10k ,....,, we have 

 

 

 

 

 

 

 

 

 

 

Proof: 
 

Based on equations (4) and (10) we have 7 cases  

 

 Case 1: if 
max

( )u k U



 and 

max
( )u k U


 , then  

max
( ) ( )L k u k U

 


  and 

max
( ) ( )L k u k U


  , thus we have 

max max
( ) ( ) ( ) ( ( ) )L k L k u k U u k U

 

 
      

   ( ) ( ) .u k u k s k s k k
 

 
      . 

 Case 2 : if 
max

( )u k U



  and ( ) ( )u k u k


 , we have 

max
( ) ( )L k u k U

 


  and ( ) ( ) ( )L k u k u k


   then 

max max
( ) ( ) ( ) ( ) ( ) ( ) ( . )L k L k u k U u k u k u k k U

 

 
         

 Case 3 : if 
max

( )u k U



 and )(ku


 

max
( )u k U , we have 

max
( ) ( )L k u k U

 


  and ( ) 0L k  then 

max
( ) ( ) ( )L k L k u k U

 


    

 Case 4 : if )(ku
 < )(ku




and if ( ) ( )u k u k


 , we have 

( ) ( ) ( )L k u k u k
  


  and ( ) ( ) ( )L k u k u k


   then 

( ) ( ) ( ) ( ) ( ( ) ( ))L k L k u k u k u k u k
  

 
      

. .( 1)k k         

 Case 5 : if )(ku
 < )(ku




and if )(ku


 

max
( )u k U , then 

( ) ( ) ( )L k u k u k
  


  and 0kL )(  then 

)()()()( kukukLkL





  

 Case 6 : if )(ku


 max
( )u k U


  and )(ku < )(ku


 , we 

have 0kL )(
 and ( ) ( ) ( )L k u k u k


  then 

)()()()( kukukLkL



  

 Case 7 : if )(ku



 

max
( )u k U


  and )(ku

 max
( )u k U , 

we have 0kL )(
 and 0kL )(  then 0kLkL  )()(

  

 

Q.E.D. 
 

Failure rate trajectories 

The failure rate during the period k for the perturbed trajectory 

is defined as follows:    

   
1

max max1

( ) ( )
( , ) (0) ( ,Δ ) ( )

k δ δ
δ

n n

l

u l u k
λ k t λ λ k t λ t

U U





     

                                                  with    0,Δt t           

(11) 

Lemma4:  

for all H10k ,....,,  

max max

max max

max max max

m

. ( ) ( )

( ) ( . ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) (1 ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

k If u k U and u k U

u k k U If u k U and u k u k

u k U If u k U and u k u k U

L k L k k If u k u k and u k u k

u k u k If u k u k and u k u k U



 



 

 

 

  

 

   

  







  

   

   

      

   
ax

max
( ) ( ) ( ) ( ) ( ) ( )

0

u k u k If u k u k u and u k u k

O therw ise

 

  
















    


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1

max max1

( ,Δ ) ( )
( , ) ( , ) . .( 1)

k

δ n n

l

λ k t λ t
λ k t λ k t δ k

U U





    
       
     

  

Proof: 
1

max1

( ,Δ )
( , ) ( , ) (0) (0) . ( ) ( )

k

δ δn

l

λ k t
λ k t λ k t λ λ u l u l

U





     
   

                      
max

( )
. ( ) ( )

δnλ t
u k u k

U

  
 

 

                    
1

max max1

( ,Δ ) ( )
. .( 1) .

k

n n

l

λ k t λ t
δ k δ

U U





   
     

 
  

  

1

max max1

( ,Δ ) ( )
. .( 1)

k

n n

l

λ k t λ t
δ k

U U





    
      
     

  

Q.E.D. 

 

In what follows, the PA estimators will be determined and 

their unbiasedness will be proved. 

 

3.2 PA estimators  

In this section we determine the estimators of the difference of 

each part (production, inventory, lost sales and degradation 

costs) of the expected cost. 

 

The expected cost for the nominal trajectory is given by: 
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The expected cost for the perturbed trajectory is given by: 
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The difference between the expected cost for the perturbed 

and nominal trajectories is given by: 
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According to lemmas 2, 3 and 4, we have: 
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For making these estimators useful in practice, the 

unbiasedness should be proved. 

 
Theorem: The estimators of the difference of each part of the 

expected average cost are unbiased, i.e.: 
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The proof of this theorem is similar to the the proof of theorem in 

Turki et al. (2013). 
 

4. PA BASED OPTIMIZATION 
 

In this section we will present how the PA estimators are 

determined by simulation and then used for determining the 

optimal planning. However, we will present in this section a 
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PA estimation algorithm which determines the PA estimators, 

an optimization algorithm and then the numerical results. 

4.1 PA estimation algorithm 

Let X, Y, Z and Q are the PA estimators (parameters) which 

will be used in the following algorithm. Indeed, for the first 

and second estimators are known and which are X=H and Y= 
H.(H+1)/2 (see the previous section). For Z and Q we have 

this algorithm.  
Beginning 

 

Q= 0, Z= 0, k=0 //Initialization 

 

Do 

 Z= Z+ ))()(( kLkL 


 

 Q= Q+ ( ( ) ( ))k k


   

  Advance k. 

 

While k<H 

(Third estimator=Z) 

(Fourth estimator=Q) 

 

End  

 

In what follows, an optimisation algorithm is presented and 

which determines the optimal production rate in a period k. 

Indeed, this algorithm is combined with Nelder-Mead method 

under MATHEMATICA software for determining the optimal 

production plan over the horizon H. 
 

4.2 Optimization algorithm 

Beginning 
 

ui= Umin , us= Umax   and um= uα(k) //Initialisation 

Do 

Step 1: u(k)= us 

Step 2: Determine the estimators X, Y, Z and Q which correspond 

to u(k)= us by using the PA estimation algorithm. 

Step 3: Determine the difference estimation of the cost function  

))(( kuV  by using the estimators X, Y, Z and Q with 

( ( )) (( . ) ( . ) ( . ) ( . )).V u k cp X cs Y cs Z c Q



     

Step 4: If 0kuV ))((  then ui = um and us= Umax return to step 1, 

else go to step 5.  

Step 5: um= int [(us+ ui)/2] then determine )(
m

uV . 

Step 6: If 0uV
m

)(  then ui= um else us= um. 

Step 7: If us <> ui  return to step 1, else go to step 8. 

Step 8: the optimal production rate for the period k is equal to um. 

End. 

 

4.3 Numerical results 

In this part, an example of optimal production planning is 

presented. The PA estimators are used in an optimization 

algorithm, which allows determining the optimal production 

planning. The following arbitrarily chosen input data are 

considered as an example to illustrate our approach: 
 

H=20 months.  

(i) Lower and upper boundaries of production capacities: 

Umin=5 and Umax=14. 

cp =2 mu (monetary unit) /k, cs =1 mu/k cs
-
 =400 mu/k and cλ 

=200 with λ0=0 (degradation law characterized by a Weibull 

distribution). 

(ii) The customer satisfaction degree, associated with the 

stock constraint, is equal to 95% ( = 0.95). 

 

In this part the PA estimators is used in an optimization 

algorithm, which allows us to determine the optimal 

production plan (u*(k)) in Table 1. 

 

Table1.  Optimal production plan 
  

d(k) 9 7 11 12 7 8 6 8 6 10 

u*(k) 13 6 10 7 5 3 11 6 9 9 

d(k) 9 11 11 7 12 5 6 8 10 8 

u*(k) 8 14 8 7 4 5 14 13 5 6 

 
5. CONCLUSIONS 

In this paper, a manufacturing system composed by a single-

product machine, a stock and a customer who demands a 

stochastic quantity of product is considered. A discrete fluid 

model is adopted to describe the system and take into account 

machine failure, lost demands and machine degradation.  The 

PA method is applied to the discrete fluid model. The stock 

level, lost demands and failure rate trajectories is studied and 

analyzed. The perturbation analysis estimators are determined 

and shown to be unbiased. These estimators are then 

implemented in an optimization algorithm for determining the 

optimal production planning.   

For future research, the production will be combined with 

maintenance and the PA method will be applied for determining 

the optimal production and maintenance plan. 
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