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Abstract: Compared to finite automata, Extended Finite Automata (EFAs) allows us to
efficiently represent discrete-event systems that involve non-trivial data manipulation. However,
the complexity of designing supervisors for such systems is still a challenge. In our previous
works, we have studied model abstraction for EFAs using natural projections with observer
property on events as well as data. In this paper, we provide sufficient conditions for verifying
the observer properties and further enhance the EFAs when the property does not hold. To this
end, we introduce symbolic simplification techniques for data and generalize existing algorithms
in the literature for the events to compute natural observers for EFAs. The importance of this
combined abstraction and symbolic simplification method is demonstrated by synthesis of a
nonblocking controller for an industrial manufacturing system.
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1. INTRODUCTION

Automatically computing the controllers that supervise
and coordinate manufacturing plants enhance the perfor-
mance and reduce the cost of production processes in the
industries. The main challenge, however, is to guarantee
the safety properties and to avoid deadlocks. Supervisory
Control Theory (SCT), established by Ramadge and Won-
ham Ramadge and Wonham [1989], is a formal frame-
work for modeling and control of Discrete-Event Systems
(DES). Problems that SCT can address include dynamic
allocation of resources, the prevention of system blocking,
etc. and, within these constraints, maximally permissive
system behavior.

Nevertheless, the industrial acceptance of SCT is still
scarce. Main issues are the discrepancy between the signal
based reality and the event-based SCT framework, the lack
of a compact representation of large models, and com-
putational complexity. To overcome these problems, Ex-
tended Finite Automata (EFAs), Skoldstam et al. [2007],
are introduced to provide efficient and compact modeling
solutions for complex DES with data manipulation. Al-
though EFAs ease the modeling experience, SCT analysis
is performed on their underlying automata models and
therefore, the fundamental obstruction to the development
of SCT, i.e., the computational complexity of synthesizing
nonblocking supervisors, still remains. Indeed, the non-
blocking supervisory control problem for DES is NP-hard,
Gohari and Wonham [2000].

Researchers are therefore seeking effective model abstrac-
tions for DES, see Feng and Wonham [2008], Schmidt
and Breindl [2011], Wong and Wonham [2004]. The most
effective model abstraction operator in SCT is the causal
reporter map having the observer property, Wong and
Wonham [1998]. In Feng and Wonham [2008], a model
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abstraction, only with natural observers, i.e., natural pro-
jections, Wonham [2013], with the observer property, is in-
troduced. However, DES modeled by EFAs, beside events,
carry data and therefore, the observer concept needs to be
defined for the data as well. In Shoaei et al. [2012a] and
Shoaei et al. [2012b], a hierarchical control architecture
for EFAs is studied where the abstraction is achieved by
natural projections with event and data observer proper-
ties. Recently, in Mohajerani et al. [2013], a compositional
nonblocking verification of EFAs based on generalization
of observation equivalence is also proposed.

In this paper, we provide a sufficient condition for the
verification of the observer property for natural projections
and address the case where the verification fails, i.e., when
natural projections violate event- and/or data-observer
conditions. For the latter case, we use a symbolic interpre-
tation and execution technique in Shoaei and Lennartson
[2014] and further introduce guard propagation rules for
EFAs. Recent experience shows that without these gener-
alizations we would often have limited or none abstraction
possibilities for EFAs.

In the case that the event-observer conditions are not
fulfilled, we generalize the existing algorithms in the liter-
ature to compute projections which respect event-observer
property. Finally, we formulate the computation of ap-
propriate natural projections with both event- and data
observer properties for the nonblocking control of EFAs
by an observer extension algorithm. This algorithm calls
the simplification techniques for EFAs and the event set
extension algorithm in Feng and Wonham [2008], until an
appropriate alphabet extension is found.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly describes EFAs and their semantics. In Sec-
tion 3, we introduce natural observers for EFAs and their
properties. Section 4 explains the observer computation
together with simplification techniques for EFAs. A man-
ufacturing example has been modeled and abstracted in
Section 5 and we conclude our work in Section 6. The
proof details are referred to the appendix.
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2. PRELIMINARIES

In this section, we recall some basic definitions and con-
cepts to be used later.

2.1 Predicate Logic

Syntax The formulas of our logic are quantifier-free
first-order logic with equality over a countable set V of
individual variables x, y, . . . , and a signature set Θ con-
sisting of n-ary function symbols f ∈ Θ, where constants
are denoted by nullary functions, predicate symbols p ∈ Θ
including the binary equality symbol =, 1, 0, and the
propositional connectives↔,→,∧,∨,¬. A term t ∈ TΘ(V )
is a (well formed) expression over symbols in Θ and V . A
term is called a ground term if it contains no variables.
Formulas φ, ψ, . . . are defined inductively as follows. A
formula is either an atomic formula p(t1, . . . , tn) where p
is an n-ary predicate symbol and t1, . . . , tn are terms, a
spacial formula ⊥ (resp. ⊤) which is always false (resp.
true), or of the form ¬ϕ or ϕ ⊲ ψ where ⊲ ∈ {↔,→,∧,∨}
and ϕ, ψ are formulas.

Semantics Terms and formulas constructed over Θ and
V take on meaning when interpreted over a structure
called model. A model is a pair M=(D, I) consisting of:
A finite and nonempty set D called domain (or universe),
where we distinguish the values of an individual variable
x by a nonempty set Dx ⊆ D; and an interpreter function
I that assigns an n-ary function fI : Dn → D to each
n-ary function symbol f ∈ Θ where we regard constants
(nullary functions) as just elements of D, and an n-ary
relation pI ⊆ Dn to each n-ary predicate symbol p ∈ Θ.

Fix I and let D be the domain of variables. We define
a valuation map η : TΘ(V ) → D on terms TΘ(V ) over
variables V . A valuation is uniquely determined by its
values on V , since V generates TΘ(V ). Moreover, any map
η : V → D extends uniquely to a valuation η : TΘ(V ) → D
by induction. A substitution is a mapping η : TΘ(V ) →
TΘ(V ). For a term t, η(t) = t[x/η(x)|∀x ∈ V ] is a new
term obtained by “substituting” all (free) occurrences of
xi in t with ti (1 ≤ i ≤ n) and we denote by ǫ the
empty substitution such that ǫ(t) = t. The substitution
is done for all variables in t simultaneously. Furthermore,
we write η[x/t] (or η[x 7→ t]) to denote a new substitution
µ constructed from η such that µ(x) = t and µ(y) = η(y)
for y 6= x. We also write η[x 7→ ǫ] to denote that we drop
the substitution x/t from η. In this paper, without loss of
generality, we consider valuations as substitutions where a
valuation substitutes all variables to their ground terms.

The satisfaction relation � (also called semantic entail-
ment) is defined inductively on the structure of formulas
as usual [see Gallier, 2003]. If η � ϕ holds, we say that ϕ
is true (in M) under valuation η, or that η satisfies ϕ (in
M). If Γ is a set of formulas, we write η � Γ if η � ϕ for
ϕ ∈ Γ. If ϕ is true in all models, then we write � ϕ and say
that ϕ is valid. Two formulas φ, ψ are said to be logically
equivalent, denoted φ ≡ ψ, if � φ↔ ψ.

2.2 Extended Finite Automata

An Extended Finite Automaton (EFA) is a finite-state
automaton whose transitions are augmented with data
Skoldstam et al. [2007] to symbolically represent DES. In
this paper, we formulate the data flow in systems by means
of conditions, which are predicate formulas over variables,
on transitions.

EFA Syntax The behavior of DES, Wonham [2013] and
Cassandras and Lafortune [2008], can be recognized by a
finite-state automaton (FA) G = 〈Q,Σ, 7→, Q◦, Qm〉 with
the (finite) set of states Q, the (nonempty) alphabet Σ,
the transition function δ : Q × Σ → Pwr(Q), where Pwr
is the power set, the set of initial state Q◦ and a set of
marked states Qm ⊆ Q. We write δ(q, σ)! if δ(q, σ) 6= ∅.
The set of transitions in G is

7→:= {(q, σ, q′) ∈ Q× Σ×Q | δ(q, σ)! and q′ ∈ δ(q, σ)}.

We sometimes write q
σ
7−→ q′ instead of (q, σ, q′) ∈ 7→. Let

Σ∗ be the set of all finite strings over Σ, including the
empty string ε. We write st ∈ Σ∗ for the concatenation
of two strings s, t ∈ Σ∗ and s ≤ t when s is a prefix of
t. Further, the notation δ is extended to strings in Σ∗ in
usual way [see Cassandras and Lafortune, 2008].

For a subset of events Σ0 ⊆ Σ, a function P : Σ∗ → Σ∗
0

is called natural projection according to P (ε) = ε, and
P (sσ) is either P (s)σ if σ ∈ Σ0, or P (s) otherwise.
The effect of P on a string s ∈ Σ∗ is just to erase the
events in s that do not belong to Σ0, but keep the events
in Σ0 unchanged. The inverse image of P is a function
P−1 : Pwr(Σ∗

0) → Pwr(Σ∗), where Pwr is the power set.

Consider a set of variables V . In order to describe the
data flow on transition system of EFAs, we add a second
set of variables V ′, where each variable x in V has a
corresponding (next-state) variable x′ in V ′ over the same
domain. Let GV denote the set of formulas over V called
guard formulas (or just guards), and AV denote the set
of formulas over V ′ and/or V called action formulas (or
just actions). Now, conditions c ∈ CV are formulas of the
form c ≡ φg ∧φa for φg ∈ GV and φa ∈ AV . Further, for a
condition c ∈ CV , we denote by vars(c) (resp. vars′(c)) the
set of all variables x (resp. x′) appearing in c. Note that,
if V = ∅ then it is assumed that CV = {⊤,⊥}.

Definition 1. (Extended Finite Automaton). An extended
finite automaton is a tuple E = 〈V, L,Σ, T, ℓ◦, c◦, Lm〉,
where V is a finite set of variables, L is a finite set of
locations, Σ is a nonempty finite set of events (alphabet),
T ⊆ L × Σ × CV × L is the transition relation, where CV
is the set of conditions over V and/or V ′, ℓ◦ ∈ L is the
initial location, c◦ ∈ GV is the initial guard, and Lm ⊆ L
is the set of marked (desired) locations.

We denote by ℓ
σ:c
−−→ ℓ′ the presence of a transition in E,

from location ℓ to location ℓ′ with event σ ∈ Σ and
condition c ∈ CV . Further, we let ℓ

s:C
−−→ ℓ′ denote the

existence of a path in E of the form

ℓ = ℓ0
σ1:c1−−−→ ℓ1

σ2:c2−−−→ · · ·
σn:cn−−−→ ℓn = ℓ′ (n > 0)

such that s = σ1σ2 · · ·σn and C = c1; c2; . . . ; cn, where ; is
the sequential valuation operator for conditions. We write
vars(C) :=

⋃n
i=1vars(ci) and in a similar way for vars′(C). In

what follows, we ignore the distinction between a sequence
C = c1; . . . ; cm and ordered (by index) set C :={c1,. . . , cm}
thus interchange them without essential loss.

To be able to relate EFAs to language-based approaches,
we define a EFA transition function µ : L× L → Pwr(L),
where L ⊆ Σ × CV is a set of transition labels where we
write σ : c instead of (σ, c) ∈ L. We say that µ(ℓ, σ : c) is

defined, denoted µ(ℓ, σ : c)!, if there exists ℓ
σ:c
−−→ ℓ′ ∈ T for

some ℓ′ ∈ L, and write |µ(ℓ, σ :c)| for the cardinality of the
set of locations given by µ(ℓ, σ :c).

The transition function µ is extended to strings recursively
as follows: µ(ℓ, ε :⊤) := ℓ, µ(ℓ, sσ :C; c) := µ(µ(ℓ, s :C), σ :c)
for s = σ1 · · ·σm ∈ Σ∗ and C = c1; . . . ; cm; and µ(ℓ, sσ :
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C; c)! iff µ(ℓ′, σ :c)! for ℓ′ = µ(ℓ, s :C). Sometimes, when no
confusion is possible, we skip writing the conditions C and
write µ(ℓ, s) instead of µ(ℓ, s :C).

EFA Semantics An instantaneous snapshot of data
flow at any moment in executing EFAs is determined
by the values of variables. Thus our locations contains
valuation of variables over the domain 1 .

Let η and η′ be two valuations of the variables V and V ′,
respectively, over the domain D. Then, we associate the
pair (η, η′) with a condition c if (η, η′)� c. We call η and
η′ the present-state and the next-state valuation.

For a condition c and subset of variables W ⊆ V , let
c∧,W ≡ c ∧

∧

y∈W−vars′(c) y
′ = y denote a new condition

in which variables in W whose values are not updated by
c keep their current values. The semantics of the sequential
valuation operator ; for two conditions c1, c2 is defined by

COMP
(η, η′′) � c1,∧,V , (η′′, η′) � c2,∧,V

(η, η′) � c1; c2

For example, let x be a variable over domain {0, . . . , 5}
and assume c ≡ x > 2 ∧ x′ = x + 1. Given current-state
valuation η[x/3], we have that (η[x/3], η′[x′/4])�c, results
in the next-state valuation η′[x′/4] whenever the transition
is fired. But, if η[x/0] or η[x/5], then (η, η′) 2 c1 for any
η′ and the transition is disabled.

The semantics of an EFA is given by means of an FA.

Definition 2. (EFA Semantics).
Let E = 〈V, L,Σ, T, ℓ◦, c◦, Lm〉 be an EFA. The finite-state
automaton G(E) of E is the tuple 〈QE ,ΣE , 7→E , Q

◦
E , Q

m
E 〉

where QE = L × D, ΣE = Σ, Q◦
E = {〈ℓ◦, η◦〉|η◦ �

c◦ for valuation η◦}, Qm
E = Lm × D, and the explicit

transition relation 7→E⊆ QE × ΣE ×QE is defined by

SEM
ℓ

σ:c
−−→ ℓ′, (η, η′) � c∧,V

〈ℓ, η〉
σ
7−→ 〈ℓ′, η′〉

.

Intuitively, the states of G(E) are the reachable states of
E, and each state consists of a location ℓ together with
a valuation η. The transitions of G(E) are defined by the
above inference rule, stating that whenever there exists

a transition ℓ
σ:c
−−→ ℓ′ in E and two valuations η and η′

such that (η, η′) � c∧,V , there also exists a transition

〈ℓ, η〉
σ
7−→ 〈ℓ′, η′〉 in G(E). Note that, in the rule SEM,

the abbreviation ĉ is used to be a new condition obtained
from c such that those variables in V whose values are not
changed in c keep their current value.

EFA Behavior and Properties The behavior of E is
given by the language generated by its underlying explicit
transition system G(E). The language of E is defined as

L(E) := {u ∈ Σ∗|(∃p ∈ QG(E)) q
◦ u
7−→G(E) p}.

In addition, for E, we define the implicit language

S(E) := {s ∈ Σ∗ | µ(ℓ◦, s :C)!}

in accordance with the structure of E without considering
the data flow.

1 Note that, in this paper we fix the interpretation over the theory
of equality and integers with standard interpretation of arithmetic
symbols. However, any other interpretations and theories can be used
as long as a proper semantics is provided.

Definition 3. (EFA properties). An EFA E is called (i)
structurally deterministic (or just Σ-deterministic) if for
any ℓ ∈ L and σ ∈ Σ the following cases hold: (a)

|µ(ℓ, σ)| ≤ 1, (b) for any ℓ1, ℓ2 where ℓ
σ:ci−−→ ℓi (i = 1, 2)

always implies that GV (c1) ∧ GV (c2) ≡ ⊥, and (c) for

any two transitions ℓ
σ:ci−−→ ℓ′ (i = 1, 2), it follows that

AV (c1) ≡ AV (c2); (ii) structurally nonblocking (or just
Σ-nonblocking) if (∀ℓ ∈ L; ∃s ∈ S(E))ℓ = µ(ℓ◦, s)⇒ (∃t ∈
Σ∗)µ(ℓ, t) ∈ Lm; and (iii) (explicitly) deterministic and
nonblocking iff G(E) is deterministic and nonblocking.

Note that, in Def. 3-(i), if E is not Σ-deterministic, it does
not imply that G(E) is also nondeterministic. For large
systems, however, the verification of (explicit) determin-
ism and nonblocking properties for E is computationally
expensive, since it demands the actual value of the vari-
ables to be known. In the sequel, we model DES by Σ-
deterministic EFAs and whenever we say nonblocking we
mean Σ-nonblocking, unless otherwise stated. Hence, we
consider µ : L× L → L as the EFA transition function.

A realistic DES is often composed from a group of EFA
components. Consider a discrete-event system

DES := {E1, . . . , En} (1)

consisting of n deterministic and nonblocking EFA com-
ponents over the respective alphabet Σ1, . . . ,Σn and
variables V1, . . . , Vn, for which we want to synthesize
a controller. Each component, Ei, can share events as
well as variables with other components. These sets of
shared events and shared variables are defined as Σi,∩ :=
⋃n

j=1,j 6=i(Σj ∩ Σi) and Vi,∩ :=
⋃n

j=1,j 6=i(Vj ∩ Vi), respec-
tively. Also, some variables values might only be changed
by one component in the system. The set of such variables
in Ei is defined as V a

i := {x ∈ Vi|x ∈ (vars′(CVi
) −

⋃n
j=1,j 6=i vars

′(CVj
))}.

EFAs, similar to ordinary finite automata, are composed
by extended full synchronous composition (EFSC).

Definition 4. (EFSC).
Let Ek = 〈Vk, Lk,Σk, Tk, ℓ

◦
k, c

◦
k, L

m
k 〉, k = 1, 2, be two

EFAs. The Extended Full Synchronous Composition of E1
and E2 is the tuple E1‖E2 = 〈V, L,Σ, T, ℓ◦, c◦, Lm〉, where
V = V1 ∪ V2, L = L1 × L2, Σ = Σ1 ∪ Σ2, ℓ

◦ = 〈ℓ◦1, ℓ
◦
2〉,

c◦ = c◦1 ∧ c◦2, L
m = Lm

1 × Lm
2 , and T is defined by the

following rules:

SYN1
ℓ1

σ:c1−−→ ℓ′1, σ ∈ (Σ1 − Σ2)

〈ℓ1, ℓ2〉
σ:c1−−→〈ℓ′1, ℓ2〉

SYN2
ℓ2

σ:c2−−→ ℓ′2, σ ∈ (Σ2 − Σ1)

〈ℓ1, ℓ2〉
σ:c2−−→〈ℓ1, ℓ′2〉

SYN3
ℓ1

σ:c1−−→ ℓ′1, ℓ2
σ:c2−−→ ℓ′2, σ ∈ (Σ1 ∩ Σ2)

〈ℓ1, ℓ2〉
σ:c1∧c2−−−−−→〈ℓ′1, ℓ

′
2〉

Note that, in the rule SYN3, if the condition c1 ∧ c2 tries
to simultaneously change the value of a variable to differ-
ent values (nondeterministic assignment), the underlying
transition in G(E1||E2) is not defined, see Def. 2.

Quotient EFA Given an EFA E = 〈V, L,Σ, T, ℓ◦, c◦,
Lm〉, a subset of events Σ0 ⊆ Σ, and an equivalence
relation π ∈ E(L) with the associated canonical projection
pπ : L→ L/π, a (nondeterministic) quotient of E mod π
is an EFA
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Eπ,Σ0
= 〈V, L/π,Σ0 ∪ {ε}, T̃ , [ℓ◦]π, c

◦, Lm/π〉, (2)

where [ℓ]π:={ℓ′ ∈ L|ℓ′≡π ℓ} for any ℓ∈L is the equivalence
class of ℓmodulo π. The possibly nondeterministic induced
transition relation T̃ is defined by

QUO
ℓ1

σ:c
−−→ ℓ2 ∈ T, ℓ̃1 := pπ(ℓ1), ℓ̃2 := pπ(ℓ2)

ℓ̃1
σ:c
−−→ ℓ̃2 ∈ T̃ if σ ∈ Σ0

ℓ̃1
ε:c
−−→ ℓ̃2 ∈ T̃ if σ∈Σ−Σ0 and ℓ̃1 6= ℓ̃2

In the above rule, for any transition in T , if neither of
σ ∈ Σ0 or σ ∈Σ−Σ0 and ℓ̃1 6= ℓ̃2 hold then no transition
is defined in T̃ . Throughout the paper, we use quotient
Eπ,Σ0

of E as the abstraction of E w.r.t. π and Σ0.

3. NATURAL OBSERVERS

In this section, we introduce the notion of natural observers
and its conditions w.r.t. event and data for discrete-
event systems with data. Later, we provide an algorith-
mic approach to verify these observer conditions on the
abstracted models.

In the sequel, let DES be the system in (1). Further, for
any Ei (1 ≤ i ≤ n) in DES with Σi and Vi, we denote

by ℓ
σ:c
=⇒ ℓ′ the existence of a transition ℓ

σ:c
−−→ ℓ′ ∈ Ti

s.t. σ ∈ Σi − Σi,∩, vars(c) ⊆ V a
i , and vars′(c) = ∅. In

a straightforward way, we extend this notation to paths:

ℓ0
s:C
=⇒ ℓm for s = σ1 · · ·σm and C = c1; . . . ; cm s.t.

ℓj
σj+1 :cj+1

======⇒ ℓj+1 for all 0 ≤ j ≤ m − 1. Again, we skip
writing the conditions on paths =⇒ explicitly, when no
confusion is possible.

Observer Conditions Contrary to the ordinary au-
tomata, transitions of EFAs are augmented with data.
Therefore, the observer condition on natural projections
w.r.t. the events of the system needs to be extended to
data as well. Before that, we restate the observer condition
in Wong and Wonham [1996] for EFAs.

Definition 5. (Event-Observer). Let E be an EFA with
alphabet Σ and the corresponding implicit-languageS(E).
Let P : Σ∗ → Σ∗

0 be the natural projection for Σ0 ⊆ Σ. P
is an event-observer for E iff for all s ∈ S(E) and t ∈ Σ∗

0,
it holds that

P (s)t ∈ P (S(E)) ⇒

∃u ∈ Σ∗ s.t. su ∈ S(E) and P (su) = P (s)t.

That is, P is event-observer for E if whenever E can
reach a marked location via paths with silent events, the
reduced EFAmust also be able to followE and reach to (an
equivalence class of) a marked location with some “high-
level” paths.

In order to introduce the notion of observability w.r.t. data
for EFAs, for any Ei ∈ DES, first we let Eω

i be a new
marked EFA constructed from Ei such that

Eω
i = 〈Vi, Li,Σ

ω
i , T

ω
i , ℓ

◦
i , c

◦
i , L

m
i 〉, (3)

where Σω
i := Σi ∪ {m} s.t. m /∈ Σi is a new event label

called marking label, Tω
i is defined as Tω

i := Ti∪{ℓ
m:⊤
−−−→ ℓ :

∀ℓ ∈ Lm
i }, i.e. bring in a new self-looped transition ℓ

ω:⊤
−−→ ℓ

to “flag” each marked location ℓ ∈ Lm
i , and leave the other

elements intact. It is assumed that always ω ∈ Σω
i,∩. For

brevity, in what follows we drop superscript ω from Eω
i .

Note that, this marking label treatment is only used for
the definition of data-observer and later for the natural

observer verification. We shall use the original EFA Ei
anywhere else.

Definition 6. (Data-Observer). Let Ei be an EFA with
alphabet Σi and set of variables Vi. The natural projection
Pi : Σ

∗
i → Σ∗

i,0 for Σi,∩ ⊆ Σi,0 ⊆ Σi is data-observer for
Ei if for all u ∈ (Σi − Σi,0)

∗, σ ∈ Σi,0, and ℓ, ℓ′ ∈ L

s.t. ℓ′ = µ(ℓ, uσ : H; c), it holds that (i) ℓ
u:H
=⇒ ℓ′ and (ii)

(η, η′) � c⇒ (η, η′) � H; c for any valuations η, η′.

In words, a natural projection Pi is data-observer for Ei,
if for every path in Ei labeled by uσ s.t. Pi(uσ) = σ and
for any h ∈ H, it holds that (i) h has no action and only
guards using variables that are changed by Ei and (ii)
if the condition c on the immediate observable transition
labeled by σ is true under some valuations, so is the
sequence H; c. Hence, if an observable event σ is possible
after a “silent” string u in Ei, then σ is also possible in the
underlying (explicit) transitions of Ei. Note that, if σ=ω
then condition (ii) requires that h≡⊤ for all h∈ H since
cω ≡ ⊤ for the marked self-looped transition.

Definition 7. (Natural Observer). The natural projection
Pi is called a natural observer for Ei (or just Ei-observer)
if Pi is event- and data-observer for Ei.

Let us denote by
∼

DES the abstraction of DES by Pi
for i ∈ {1, . . . , n}. It is stated in Shoaei et al. [2012b]-
Theorem 1 that if Pi is natural observer Ei then DES

is nonblocking iff
∼

DES is nonblocking. Thus, synthesis of
subsystems are achieved through their model abstractions
rather than their global model.

Observer Verification Given the EFA Ei = 〈Vi, Li,
Σi, Ti, ℓ

◦
i , c

◦
i , L

m
i 〉 in DES with the subset of events Σi,∩ ⊆

Σi,0 ⊆ Σi, we are interested to algorithmically verify if the
natural projection Pi : Σ∗

i → Σ∗
i,0 is an observer for Ei.

Let Eω
i be the marked EFA of Ei given by (3). Again, for

brevity, we drop index i and superscript m from Eω
i .

To address the conditions for the event-observer in Def. 5
we define two functions ∆Σ

σ and ∆Σ
ω such that

∆Σ
σ : L→ Pwr(L) : ℓ 7→ {µ(ℓ, uσu′)|uú ∈ (Σ− Σ0)

∗},

∆Σ
ω : L→ Pwr(Lm) : ℓ 7→ {µ(ℓ, uω)|u ∈ (Σ− Σ0)

∗}.

Further, we introduce the function ∆V
σ : L → Pwr(L) to

check the data-observer condition as in Def. 6 such that

∆V
σ (ℓ)=















∆Σ
σ (ℓ) if ∀u ∈ (Σ− Σ0)

∗ s.t. µ(ℓ, uσ :H; c)!

it holds that ℓ
u:H
=⇒ℓ′′ for ℓ′′ ∈ L and

[∀η, η′] (η, η′) � c⇒(η, η′) � H; c
∅ otherwise.

Now, let D=(L, {∆Σ
σ | σ ∈ Σ0}∪∆Σ

ω ∪{∆V
σ | σ ∈ Σ0}) be a

dynamic system. According to Wong and Wonham [2004],
the coarsest quasi-congruence πΣ0

∈ E(L) for D,

π∗
Σ0
=sup{πΣ0

∈E(L)|π ≤
∧

σ∈Σ0

(π◦(∆Σ
σ ∩∆

V
σ ))∧π◦∆

Σ
ω} (4)

exists and can be computed with the algorithm in Fernan-
dez [1990] with a complexity of O

(

|L|3.|T |
)

.

For E, Σ0, and the quasi-congruence π∗
Σ0

, we refer to a
quotient Eπ∗

Σ0
,Σ0

as the reduction of E, which we denote

by P (E,Σ0). The natural observer condition can now be
verified by means of the reduced EFA P (E,Σ0).

Theorem 1. The natural projection P is an observer for E
iff P (E,Σ0) is deterministic.
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E

1

2 3

4

γ:⊤

b:x<2

λ:x≥2

c:⊤

β:y′=x

α:x′=x+1
J.K

==⇒

JEKx

1,{x/0}

2,{x/0} 3,{x/0}

4,{x/0}γ:⊤

b:⊤
c:⊤

β:y′=0

...α
1,{x/50} 2,{x/50}

3,{x/50}

4,{x/50}

γ:⊤

λ:⊤

c:⊤

β:y′=50

α:⊤

P
===⇒

P (JEKx,Σ0)

1,{x/0}

2,3,4,{x/0}

γ:⊤ β:y′=0

...
α:⊤

1,{x/50}

3,4,{x/50}

2,{x/50}
γ:⊤

λ:⊤ β:y′=50

α:⊤

Fig. 1. EFA E, its interpreted EFA JEKx for η◦ = [x/0], and the reduced EFA P (JEKx,Σ0) with Σ0 = {α, β, γ, λ}.

4. COMPUTATION OF NATURAL OBSERVERS

In the previous section, Theorem 1 provides sufficient
condition for the verification of observer property for any
natural projections. In this section, we address the case
where the verification fails due to event- or data-observer
conditions as in Def. 5 and Def. 6. For the latter case,
we employ a symbolic interpretation technique in Shoaei
and Lennartson [2014] and further introduce three guard
propagation rules for EFAs, where these techniques can
be (repeatedly) applied on each component to logically
weaken and/or propagate the conditions on the successor
transition so that the projections become data-observer.

For the event-observer condition, we use the existing event
set extension algorithm in Feng and Wonham [2008] over
the stage-language of EFAs. In that, the algorithm it-
eratively adds events to the set Σ0 to remove any ε-
transitions and/or resolve the possible nondeterminism in
the abstracted model P (E,Σ0). Finally, we formulate the
computation of appropriate natural projections for the
nonblocking control of EFAs by an observer extension al-
gorithm. This algorithm calls the simplification techniques
for EFAs together with the event set extension algorithm
in Feng and Wonham [2008] until an appropriate alphabet
extension is found.

4.1 Simplification Techniques for EFAs

Symbolic Interpretation In practice, many systems
use “internal” variables. Hence, it is of great interest if
we could symbolically interpret systems modeled by EFAs
w.r.t. their internal variables, in a way that more events
become available for the projection. To this end, we use
a symbolic interpretation technique for EFAs in Shoaei
and Lennartson [2014] in order to “interpret and execute”
EFAs w.r.t. their internal variables.

The interpretation process can be described as follows:
For an EFA E with a set of variables V and a subset
of (internal) variables Vint ⊆ V , the interpreter J.K starts
from the initial location of E with initial substitution
of variables in Vint; iterates over the transitions of E,
and by passing each transition, it symbolically interprets
and partially evaluates (executes) the condition on that
transition w.r.t. the known values of variables Vint from
the previous step, and leaves the other variables intact.
Further, it stores the obtained values (ground terms) as
substitutions on the locations; and when it terminates, i.e.,
reaching a fix point that no more condition is left on the
transitions or the evaluation results in the same condition,
it returns the interpreted parts of E in form of a residual
EFA, denote by JEKVint

, with the set of variables V −Vint.

For example, consider EFA E in Fig. 1 over two integer
variables x, y with the domain {0, . . . , 50} and c◦ ≡ x = 0∧
y = 0. Assume that Vint := {x} and let P : Σ∗ → Σ∗

0 be a
natural projection with Σ0 = {α, β, γ, λ}. Clearly, P is not
a data-observer for E because the guard on β-transition is
true for any value of x but it is not true for the condition

x < 2 on b-transition when, e.g., x is 2. Thus, the condition

Def. 6-(i) is violated by the path 2
b:x<2
===⇒ 3

c:⊤
==⇒ 4

β:y′=x
−−−−→ 1.

Therefore, we compute JEKVint
for Vint = {x}, see the

residual EFA JEKx in Fig. 1. Now, P becomes an observer
for E. Thus, we can use P as the model abstraction for
JEKx, see P (E

⋆,Σ0) in Fig. 1. Observe that P (E⋆,Σ0) is
blocking for x ≥ 2.

In this paper, we use the interpreted EFAs in the interme-
diate step of the natural observer extension algorithm.

Guard Propagation The interpreter J.K symbolically
interprets and executes EFA w.r.t. their internal variables.
This is, however, sometimes require, in the worse case,
expands their domains. To avoid this, we introduce three
rules on the transitions of EFAs which might help us to
verify the data-observer conditions without applying the
interpretation.

Consider an EFA E with a location ℓ′ s.t. ℓ′ 6= ℓ◦. Further,

for a set X and α ∈ X , let α
X
 β denote X := (X−{α})∪

{β}. We now define three rules based on the incoming and
outgoing transitions of ℓ′ with the following intuitions:

GP1: ℓ′ has only one incoming transition with the prop-

erty ℓ
τ :h
==⇒ ℓ′ and ℓ 6= ℓ′, and some outgoing transitions.

Then the guard on its incoming transition can be propa-
gated to (conjuncted with) all conditions of its outgoing
transitions.

GP2: ℓ′ has m (m > 1) incoming transitions with the

property ℓj
τj :hj

===⇒ ℓ′ and ℓj 6= ℓ′ for all j ∈ m, where m is
the index set {1, . . . ,m}, and all with logically equivalent
conditions, i.e., (∀j ∈ m− 1) hj ≡ hj+1. Then the guard
on one of its incoming transition can be propagated to all
conditions of its outgoing transitions.

GP3: ℓ′ has m (m > 1) incoming transitions where at

least one of them has the property ℓj
τj :hj

===⇒ ℓ′ for some
j ∈ m, and only one outgoing transition. Furthermore, ℓ′

does not belong to any silent cycle in E. Then, the location
ℓ′ can be split into m equivalent new locations ℓ′j (j ∈ m)

each of which has one of the incoming transitions of ℓ′ and
a copy of its outgoing transition. Further, if ℓ′ ∈ Lm then
ℓ′j ∈ Lm for all j ∈ m.

Note that, we use the result of rule GP3 to construct an
intermediate model for which we can apply rule GP1. The
above rules are illustrated in Fig. 2.

Proposition 1. Let E be an EFA and ℓ′ (ℓ′ 6= ℓ◦) be a
location in E. Consider Ē be the result of applying the
guard propagation rules in Fig. 2 to ℓ′. Then E and Ē has
the same global behavior.

Corollary 1. In the statement of Prop. 1, consider Ēn be
the result of n times applying the guard propagation rules
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ℓ′ ℓ′T

. . .

τ :h

σ1:c1 σn:cn
. . .

τ :h

σ1:c1∧h σn:cn∧h

GP1

ℓ′ ℓ′T

. . .
τ1:h τm:h

σ1:c1 σn:cn

. . .
τ1:h τm:h

. . .
σ1:c1∧h σn:cn∧h

GP2

ℓ′ ℓ′1 ℓ′mT,L . . .

. . .
τ1:h1 τm:hm

σ:c

τ1:h1 τm:hm

σ:c σ:c

GP3

Fig. 2. Guard propagation rules for a location ℓ′. Here,
X
 denote the modified set after applying the rule.

E

1

2 3

4

γ:⊤

b:x<2

λ:x≥2

c:⊤

β:y′=x

α:x′=x+1

2xGP3

Ē2

1

2 31

32

42 41

γ:⊤

b:x<2

λ:x≥2

c:⊤

c:⊤

β:y′=x

β:y′=xα:x′=x+1

2xGP1

Ē4

1

2 31

32

42 41

γ:⊤

b:x<2

λ:x≥2

c:⊤

c:x<2

β:y′=x

β:y′=x∧x<2α:x′=x+1

P
===⇒

P (Ē4,Σ0)

1{2,31,41} {32,42}

λ:x≥2

β:y′=xγ:⊤

β:y′=x∧x<2

α:x′=x+1

Fig. 3. Applying guard propagation rules on E and then computing the reduced EFA P (Ē4,Σ0) for Σ0 = {α, β, γ, λ}
based on the intermediate simplified EFA. Here, the bold formulas denote the propagated guards.

to all locations ℓ′ in E s.t. ℓ′ 6= ℓ◦. Then E and Ēn has
the same global behavior.

For example, consider EFA E and the natural projection
P in the previous example. First, we apply rule GP3
on locations 3 and 4, respectively, resulting in the split
locations 31, 32 and 41, 42, and rule GP1 on locations 31
and 41, propagating the guard x < 2 on the b-transition
to the c- and the following β-transition, see Ē2 and Ē4 in
Fig. 3. Now, for the guard propagated EFA Ē4, the natural
projection P becomes an observer. Thus, we use P as the
model abstraction for Ē4, see P (Ē4,Σ0) in Fig. 3. Note
that, JP (Ē4,Σ0)Kx results in the same EFA as P (E⋆,Σ0)
in Fig. 1, though, we obtain the abstraction without
expanding the domain of x. However, in general, the
interpretation technique often results in better abstraction
possibilities than the guard propagation.

4.2 Natural Observer Extension Algorithm

In Feng and Wonham [2008] a polynomial-time ob-
server computation algorithm was presented (w.r.t. event-
observer) that returns a reasonable extension of a given
projection alphabet such that the natural projection be-
comes an (event) observer. We generalize that algorithm
by Algorithm 1 to consider both data- and event-observer
conditions for EFAs, defined in Section 3, and use the
simplification techniques, as above.

Algorithm 1 first propagates guards and/or symbolically
interprets the given EFA. Then it computes the reduced
EFA w.r.t. the quasi-congruence πΣ0

. If the verification
of the natural observer condition according to Prop. 1 is
successful it returns the current Σ0 otherwise, an extension
of Σ0 is computed by the event set extension algorithm
in Feng and Wonham [2008] where it adds events to Σ0
in order to eliminate nondeterminism and ε-transitions in
the reduced EFA. The observer algorithm iterates until an
appropriate alphabet extension is found.

5. APPLICATION

In this section, we apply the proposed approach to a mod-
ified version of the cluster tool example in Su et al. [2010].
The cluster tool is an integrated manufacturing system
used for wafer processing. It consists of one entering load

Algorithm 1 (Natural Observer Computation for EFAs)

Require: An EFA E and an observable event set Σ0.
1: Let Ē be the simplified model of E using the rules in

Fig. 2 and/or JEKVint
w.r.t. internal variables Vint ⊆ V

2: repeat
3: Compute the quasi-congruence πΣ0

as in Eq. (4)

4: Compute the reduced Ẽ := P (Ē,Σ0) as in Eq. (2)

5: if Ẽ is deterministic then return Σ0
6: Event set extension of Σ0 as in Feng and Wonham

[2008]
7: until true

C11 C21 C31 C41

C
4
2

C12 C22 C32 C43

Lin

Lout
B1 B2 B3

R1 R2 R3 R4

Fig. 5. Structure of Cluster Tool example.

lock (Lin) and one exit load lock (Lout), nine chambers
(Cij , where, for i = 1, 2, 3, we have j = 1, 2, and for
i = 4, we have j = 1, 2, 3), three one-slot buffers (Bk

for k = 1, 2, 3), and four transportation robots (Ri for
i = 1, 2, 3, 4), see Fig. 5.

To compute a nonblocking supervisor, we first model the
system using EFAs. These models are depicted in Fig. 4. In
this, the variables Ri and Cij with domain {0, 1} models
the robot and chambers status, respectively, where 1 (resp.
0) states that the machine is busy (resp. idle). Further,
the variable Bk representing the buffers capacity of one,
where 1 (resp. 0) means that corresponding buffer is full
(resp. free). In Fig. 4, the desired routing specification
are represented by guard formulas on EFAs Rij and
specifications Bk.

At first, we let Σi,0 := Σi,∩. However, because of the
structure of the system, none of the events in Σi−Σi,0 can
be abstracted since each of them has action formulas. To
end this problem, first we synchronize the robots models
Ri = ‖Rij (i, j = 1, . . . , 4). Then, we apply the partial
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Robot 1: R11 ℓ0 ℓ1 R12 ℓ0 ℓ1 R13 ℓ0 ℓ1 R14 ℓ0 ℓ1

R1-pk-Lin:R1=0∧
R′

1=1

R1-dp-C11:C11=0∧
R′

1=0∧C′

11=1

R1-pk-C11:R1=0∧C11=1∧
R′

1=1∧C′

11=0

R1-dp-B1:B1=0∧
R′

1=0∧B′

1=1

R1-pk-B1:R1=0∧B1=1∧
R′

1=1∧B′

1=0

R1-dp-C12:C12=0∧
R′

1=0∧C′

12=1

R1-pk-C12:R1=0∧C12=1∧
R′

1=1∧C′

12=0

R1-dp-Lout:
R′

1=0

Robot 2,3:

i=2,3 & j=i−1

Ri1 ℓ0 ℓ1 Ri2 ℓ0 ℓ1 Ri3 ℓ0 ℓ1 Ri4 ℓ0 ℓ1

Ri-pk-Bj:Ri=0∧Bj=1∧
R′

i=1∧B′

j=0

Ri-dp-Ci1:Ci1=0∧
R′

i=0∧C′

i1=1

Ri-pk-Ci1:Ri=0∧Ci1=1∧
R′

i=1∧C′

i1=0

Ri-dp-Bi:Bi=0∧
R′

i=0∧B′

i=1

Ri-pk-Bi:Ri=0∧Bi=1∧
R′

i=1∧B′

i=0

Ri-dp-Ci2:Ci2=0∧
R′

i=0∧C′

i2=1

Ri-pk-Ci2:Ri=0∧Ci2=1∧
R′

i=1∧C′

i2=0

Ri-dp-Bj:Bj=0∧
R′

i=0∧B′

j=1

Robot 4: R41 ℓ0 ℓ1 R42 ℓ0 ℓ1 R43 ℓ0 ℓ1 R44 ℓ0 ℓ1

R4-pk-B3:R4=0∧B3=1∧
R′

4=1∧B′

3=0

R4-dp-C41:C41=0∧
R′

4=0∧C′

41=1

R4-pk-C41:R4=0∧C41=1∧
R′

4=1∧C′

41=0

R4-dp-C42:C42=0∧
R′

4=0∧C′

42=1

R4-pk-C42:R4=0∧C42=1∧
R′

4=1∧C′

42=0

R4-dp-C43:C43=0∧
R′

4=0∧C′

43=1

R4-pk-C43:R4=0∧C43=1∧
R′

4=1∧C′

43=0

R4-dp-B3:B3=0∧
R′

4=0∧B′

3=1

B1

ℓ1 ℓ0 ℓ2

R1-dp-B1:⊤

R2-pk-B1:⊤ R2-dp-B1:⊤

R1-pk-B1:⊤

B2

ℓ1 ℓ0 ℓ2

R2-dp-B2:⊤

R3-pk-B2:⊤ R3-dp-B2:⊤

R2-pk-B2:⊤

B3

ℓ1 ℓ0 ℓ2

R3-dp-B3:⊤

R4-pk-B3:⊤ R4-dp-B3:⊤

R3-pk-B3:⊤

Fig. 4. EFA models of robots (Rij) with the routing specification as guard formulas and buffer specifications Bk.

ℓ0

ℓ2

ℓ4 ℓ5

ℓ3 ℓ1

ℓ7 ℓ9

ℓ8

ℓ11

ℓ10 ℓ6

R1-pk-Lin R1-dp-C11

R1-pk-C11
R1-dp-B1:

B1=0∧B′=1

R1-pk-B1:
B1=1∧B′=0

R1-dp-C12

R1-pk-C12

R1-dp-Lout

R1-pk-in R1-dp-C11

R1-pk-C11
R1-dp-B1:

B1=0∧B′=1

R1-pk-C12

R1-dp-Lout

R1-pk-B1:
B1=1∧B′=0

R1-dp-C12

(a)

ℓ̃0

ℓ̃1

ℓ̃2

R1-pk-B1:
B1=1∧B′=0

R1-pk-B1:
B1=1∧B′=0

R1-pk-Lin

R1-pk-C11

R1-dp-B1:
B1=0∧B′=1

(b)

Fig. 6. (a) EFA R⋆
1 = JR1K{R1,C1j} and (b) the reduced

EFA PR1
(R⋆

1,Σ
R1
0 ). For brevity, the ⊤ condition are

dropped on transitions.

flattening on these synchronized models where we obtain
the residual EFAs R⋆

i = JRiK{Ri,Cij}, in each of which the
variables Ri and Cij are flattened while the variable Bk

remains. The residual EFA R⋆
1 for the synchronized model

R1 is shown in Fig. 6(a), where for the sake of space we
drop the variables value in each location. Now, within the
residual models, we can see that most of the transitions
contains true formula.

In the next step, we use Algorithm 1 to get the extended
sets ΣRi

0 such that the natural projection PRi
: Σ∗

Ri
→

(ΣRi
0 )∗ are natural observers for R⋆

i (i = 1, . . . , 4). For
example, using R⋆

1 and ΣR1
0 = {R1-dp-B1,R1-pk-B1} as

the inputs of the Algorithm 1, we get the extended set
ΣR1

0 = {R1-pk-Lin,R1-pk-C11,R1-pk-B1,R1-dp-B1}, where the
events R1-pk-Lin and R1-pk-C11 are added to avoid nonde-
terminism in the reduced model of PR1

(R⋆
1,Σ

R1
0 ). With

four natural observers PRi
, as above, we compute the

reduced models PRi
(R⋆

i ,Σ
Ri
0 ). For EFA R⋆

1, the reduced
model PR1

(R⋆
1,Σ

R1
0 ) is depicted in Fig. 6(b), where the

locations ℓ̃0 = {ℓ0, ℓ1, ℓ3, ℓ7}, ℓ̃1 = {ℓ4, ℓ5, ℓ6, ℓ8, ℓ10, ℓ11},

and ℓ̃2 = {ℓ2, ℓ9} denote the equivalent classes of original
locations. Now using these reduced models together with
the buffer specifications Bk, we use the DES tool Suprem-
ica Akesson et al. [2006] to synthesize a nonblocking su-
pervisor with modest effort. The nonblocking supervisor to
achieve a nonblocking control based on the original models
has 237 648 states, while the supervisor using the reduced
models has 9 682 states.

6. CONCLUSION

We have extended our previous work on model abstrac-
tion by natural observers for DES modeled by EFAs and
provide sufficient condition for the verification of observer
properties over events and data in the system. We further
address the case where the verification fails due to ob-
server conditions. To this end, we introduce simplification
techniques for EFAs and generalize existing algorithms
to compute natural projections for EFAs with observer
property. The symbolic simplification techniques, involv-
ing both interpretation and propagation, are here turned
out useful in order to obtain a significant state reduction
in the abstracted models. A manufacturing system demon-
strates the practical usage of the proposed approach.

APPENDIX

Proof of Theorem 1

The proof needs the following lemmas. In what follows,
for any E, let π ∈ E(L) be a quasi-congruence on D and
pπ : L→ L/π the associated canonical projection.
Lemma 1. Let E be an EFA with Σ and V and domain
D. Let Σ0 ⊆ Σ and define P : Σ∗ → Σ∗

0. Consider a path

ℓ
s:C
−−→ ℓ′ in E. If P is observer for E then for any η, η′,

〈[ℓ]π, η〉
P (s)
7−−−→ 〈[ℓ′]π, η′〉 exists in G(P (E,Σ0)) implies that

〈ℓ, η〉
s
7−→ 〈ℓ′, η′〉 also exists in G(E).

Proof. Assume ℓ
s:C
−−→ ℓ′ is of the form ℓ = ℓ0

σ1:c1−−−→
· · ·

σn:cn−−−→ ℓn = ℓ′ such that s = σ1 . . . σn and C =
c1; . . . ; cn. Split this path into sub-paths of the form

ℓm
u:H
−−→ ℓm+i−1

σm+i:cm+i

−−−−−−−→ ℓm+i for 0 ≤ m < m + i ≤ n
and u ∈ (Σ−Σ0)

∗, σ ∈ Σ0 s.t. uσm+i : cm+i is a substring

of s. Let [ℓm]π
σm+i:cm+i

−−−−−−−→ [ℓm+i]π be a path in P (E,Σ0).
Since P is event-observer, we have ℓm, . . . , ℓm+i−1 ∈ [ℓm]π
and ℓm+i ∈ [ℓm+i]π. Further, because P is also data-

observer, we only need to show that if 〈[ℓm]π, ηm〉
σm+i

7−−−→
〈[ℓm+i]π, ηm+i〉 for some ηm, ηm+i exists in G(P (E,Σ0)),

there also exists 〈ℓm, ηm〉
uσm+i

7−−−−→ 〈ℓm+i, ηm+i〉 for some
u ∈ Σ∗ in G(E) s.t. σm+i = P (uσm+i). But, data-

observer implies that ℓm
u:H
=⇒ ℓm+i−1 and ∀ ηm, ηm+i we

have (ηm, ηm+i) � c ⇒ (ηm, ηm+i) � H; c. Thus, it must

be true that 〈ℓm, ηm〉
u
7−→ 〈ℓm+i−1, ηm〉

σm+i

−−−→ 〈ℓm+i, ηm+i〉
exists in G(E). For the cases that σm+i ∈ Σ−Σ0, the sub-
path is not projected and explicit path exists in G(E).
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Lemma 2. Consider an EFA E and let P : Σ∗ → Σ∗
0 with

Σ0 ⊆ Σ be an E-observer. Then for all s1, s2, s
′
1 ∈ Σ∗, if

s1s
′
1 ∈ S(E) and P (s1) = P (s2), then it follows that there

exists s′2 ∈ Σ∗ s.t. s2s
′
2 ∈ S(E) and P (s′1) = P (s′2).

Proof. Because P is an E-observer and nonblocking, we

know that there exists two paths ℓ◦
si:Ci−−−→ ℓi

ti:Ti−−−→ ℓ′′i for
some ti ∈ Σ∗ (i = 1, 2) s.t. ℓ′′i ∈ Lm, P (t1) = P (t2).

Evidently, taking any path of the form ℓi
u:U
−−→ ℓ and

ℓi
u′:U′
−−−→ ℓ′ for u, u′ ∈ Σ∗ such that u, u′ ≤ t, we can see

that P (u) = P (u′). Consider s′1 = u and s′2 = u′ and we
obtain the result as required.

Back to the proof of Theorem 1.
(if) We shall show that if P is an E-observer then P (E,Σ0)
is deterministic. Suppose to the contrary that P (E,Σ0) is
nondeterministic. Then, there are two cases: (i) P (E,Σ0)

contains two transitions [ℓ]π
σ:c
−−→ [ℓi]π (i = 1, 2) for σ ∈ Σ0

s.t. [ℓ1]π 6= [ℓ2]π. Then, by Lemma 1, there also exist

ℓ
uσu′:U;c;U′

−−−−−−−→ ℓi (i = 1, 2) in E for u, u′ ∈ (Σ − Σ0)
∗, ℓ ∈

p−1
π ([ℓ]π), ℓi ∈ p−1

π ([ℓi]π). Because [ℓ1]π 6= [ℓ2]π implies
that ℓ1 6= ℓ2. Since P is an E-observer there must exist

two paths ℓi
ti:Ti−−−→ ℓ′i for ti ∈ Σ∗ and ℓ′i ∈ Lm s.t.

P (t1) 6= P (t2). This is in contradictory to the result of
Lemma 2 that if P is an observer then P (t1) = P (t2).
Hence, it must be true that P is not an observer for
E, which is a contradiction. (ii) P (E,Σ0) contain a ε-
transition. Then there exist [ℓi]π ∈ L/π (i = 1, 2) and

[ℓ1]π 6= [ℓ2]π such that [ℓ1]π
ε
−→ [ℓ2]π. Recall that π is

quasi-congruence. If this is the only outgoing transition
from [ℓ1]π then it must be the case that ℓ1 ≡π ℓ2 for all
ℓ2 ∈ p−1

π ([ℓ2]π), i.e., [ℓ1]π = [ℓ2]π, which is a contradiction
to the assumption that [ℓ1]π 6= [ℓ2]π. Hence, there must

exist also a transition [ℓ1]π
σ:c
−−→ [ℓ′2]π in P (E,Σ0) for

σ ∈ Σ0, [ℓ
′
2]π ∈ L/π such that [ℓ2]π 6= [ℓ′2]π. Now, by

a similar reasoning as in (i), we conclude that P is not
an E-observer. Combining (i) and (ii), we conclude that
P (E,Σ0) must be Σ-deterministic.
(Only if) We shall show that if P (E,Σ0) is Σ-deterministic

then P is an E-observer. Let E
s
−→ ℓ1 be a path in E.

Assume ℓ1 can continue in E by a path ℓ1
uσu′

−−−→ ℓ′1 for
u, u′(Σ−Σ0)

∗, σ ∈ Σ0 s.t. ℓ′1 ∈ Lm. There is a correspond-

ing path [ℓ1]π
σ:c
−−→ [ℓ′1]π in P (E,Σ0). Clearly, [ℓ

′
1]π ∈ Lm/π.

Let ℓ′2 ∈ L be a location s.t. ℓ′2 ∈ p−1
π ([ℓ′1]π). Since

P (E,Σ0) is Σ-deterministic and contains no ε-transitions,

by Lemma 1, there is a path ℓ2
wσw′:W;c;W′

−−−−−−−→ ℓ′2 in E for
w,w′ ∈ (Σ − Σ0)

∗ s.t. ℓ2 ∈ p−1
π ([ℓ1]π). This implies that

P (wσw′) = P (uσu′). By a similar reasoning, we can show
this for all paths in E. Hence, P is E-observer.

Proof of Proposition 1

The sketch the proof as follows. The proof follows from
the fact that ℓ 6= ℓ◦ and the incoming transition(s) is not
a self-loop. Furthermore, by the definition of the paths
=⇒, we have that the event τ (resp. events τj) is unique
in E and the guard h has no action and only guards
over the internal variables of E. Hence, for the rules GP1
and GP2, straightforwardly we can show that if h is true
in some valuation, then immediately we have c ∧ h ≡ c.
Otherwise, if h is false, the transition is disabled and all
its outgoing transitions will be unreachable in E. We have
the similar behavior when we propagate h to the conditions

on the outgoing transitions, namely, h ≡ ⊥ ⇒ c ∧ h ≡ ⊥.
Regarding the rule GP3, clearly, the new locations ℓ′j are

bisimilar (cf. Milner [1989]) to ℓ′, namely, (∀j) ℓ′j has the
same future behavior as ℓ′ in E.
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