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1. INTRODUCTION

Subspace identification method is remarkably developed
and widely applied to real systems. Some famous ap-
proaches are CCA(Larimore (1990)),N4SID(Van Over-
schee and De Moor (1994)), MOESP(Verhaegen and
Dewilde (1992a,b); Verhaegen (1993, 1994)), etc., and the
asymptotic variances of the estimates in these methods are
analyzed and are now emerging. (Bauer et al. (1997, 1999);
Bauer and Jansson (2000); Bauer et al. (2000); Bauer and
Ljung (2002); Bauer (2005); Scherrer (2002); Chiuso and
Picci (2004b); Jansson (2000)).

In the analysis of the variance, Chiuso and Picci (2004a)
shows an equivalency between Robust N4SID and PO-
MOESP methods but to the best of the author’s knowl-
edge, there are no comparison study by using explicit for-
mulae of the estimation errors. The difficulty comes from
the complexity of the perturbation formula to the basis of
the singular subspaces. For this problem, it reveals that
a more simple formula can be given for the perturbations
to the singular subspace itself instead of its basis(Ikeda
(2013)). In this paper, an explicit formula of the estimation
error of A matrix in each of PI-MOESP, PO-MOESP, and
one of N4SID methods is to be derived by using a lemma
on the perturbations to the singular subspaces.

It is often the case that the purpose of the identification
is to obtain a plant model. For such cases, the estimation
error on the A matrix of the plant model is also to be
analyzed under the assumption that the plant model and
the noise model does not have a common pole.

This paper is organized as follows. Section 2 formulates
the problem and the assumptions. Section 3 describes some
preliminaries on the subspace identification methods while
Section 4 analyzes the estimation errors of A matrix in PI-
MOESP, PO-MOESP, and one of N4SID methods. Finally
Section 5 concludes the paper.

Notations: Let X† denote a pseudo inverse (Moore-
Penrose generalized inverse) of X (Golub and van Loan
(1989)).

Big O notation is adopted to describe the error term
in an approximation, i.e. the least-significant terms are
summarized in a single big O term.

Let Of (A,C) denote an extended observability matrix
composed of the system matrices (A,C) for a given index
f > n where n is a degree of the system. Namely,

Of (A,C) := [C� (CA)� · · · (CAf−1)� ]
�
. (1)

Let Cf (A,B) denote an extended controllability matrix as

Cf (A,B) := [Af−1B · · · AB B ] . (2)

Let T f (A,B,C,D) be a block Toeplitz matrix composed
of the Markov parameters of the system (A,B,C,D) as

T f (A,B,C,D) :=

⎡⎢⎢⎣
D 0
CB D
...

. . .

CAf−2B CAf−3B · · · D

⎤⎥⎥⎦ . (3)

Block Hankel matrix composed of a time-series data {uk}
is denoted by

U i|j :=

⎡⎢⎢⎣
ui ui+1 · · · ui+N−1

ui+1 ui+2 · · · ui+N

...
...

...
uj uj+1 · · · uj+N−1

⎤⎥⎥⎦ . (4)

2. ARMAX AND OE MODELS

Consider the following innovations (ARMAX) model:

xk+1 =Axk +Buk +Kek, (5)

yk =Cxk +Duk + ek, (6)

where uk ∈ Rm, yk ∈ Rl, ek ∈ Rl, and xk ∈ Rn are the
input, the output, the noise, and the state, respectively
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and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m, and
K ∈ Rn×l are the system matrices to be estimated. The
following assumptions are made for this system:

(A1) |λi(A)| < 1, |λi(A−KC)| < 1, i = 1, . . . , n.
(A2) The innovations process {ek} is a white Gaus-
sian process with mean E{ek} = 0 and covariance
E{eke�l } = Ωeeδkl.

(A3) The processes {uk} and {ek} are mutually indepen-
dent.

(A4) The processes {xk}, {uk}, and {ek} are ergodic and
stationary (Anderson and Moore (2005)).

For the sake of simplicity, the input process {uk} is
assumed to be a white Gaussian process as:

(A5) {uk} is a white Gaussian process with mean E[uk] =
0 and covariance matrix E[uku

�
l ] = Ωuuδkl where Ωuu =

σ2
uIm.

From the assumption (A5), the required PE (persistence
of excitation) conditions required (Verhaegen and Verdult
(2007)) are automatically satisfied.

In this paper, the estimates of A matrices of the plant
model are analyzed under the assumption that the plant
and noise models do not have a common pole.

(A6) A =

(
A1 0
0 A2

)
, B =

(
B1

0

)
, K =

(
0
K2

)
, and

C = (C1 C2 ).

According to the decomposition of the matrices above, the
state is decomposed as xk = (x�u,k, x

�
e,k)
�.

On the other hand, the OE model under the assumptions
above is given by

xu,k+1 =A1xu,k +B1uk, (7)

yk =C1xu,k + vk, (8)

where

vk =
[
C2(zI −A2)

−1K2 + I
]
ek. (9)

3. PRELIMINARIES

3.1 I/O Data Equation

I/O data equation derived from the innovations model (5)
and (6) plays important roles in analyzing and implement-
ing subspace identification methods:

Yf = OfX0 + TfUf +HfEf , (10)

where

Of :=Of (A,B), (11)

Tf := T f (A,B,C,D), (12)

Hf := T f (A,K,C, I), (13)

Xi := [xi xi+1 · · · xi+N−1 ] , (14)

Uf :=U0|f−1. (15)

Yf and Ef are defined similarly to Uf .

From the assumption (A6), Of is divided as

Of = [Of1,Of2] := [Of (A1, C1),Of (A2, C2)], (16)

while Tf and Hf are given by using smaller matrices:

Tf1 := T f (A1, B1, C1, D) = Tf , (17)

Hf2 := T f (A2,K2, C2, I) = Hf . (18)

3.2 Instrumental Variable Matrix

From the innovations model (5) and (6), the state matrix
is given by:

X0 =X (p)
0 + ĀpX−p, (19)

X (p)
0 =KpZ−p (20)

whereKp := [Cp(Ā, B̄),Cp(Ā,K)], Ā := A−KC, B̄ := B−
KD, Z−p := [(U−p )�, (Y−p )�]�, U−p := U−p|−1 ∈ Rmp×N ,

and Y−p := Y−p|−1 ∈ Rlp×N . Thus, the I/O data equation
becomes

Yf = OfKpZ−p + TfUf +HfEf +Of Ā
pX−p. (21)

From the assumption (A6),

Āp =

[
Ap

1 0
−Cp2Op1 Āp

2

]
, (22)

Kp =

[
Cp1

−Cp2Tp1 Cp2

]
, (23)

where Ā2 := A2 − K2C2, and Cp1 := Cp(A1, B1), Cp2 :=
Cp(A2,K2).

3.3 LQ Decomposition

Subspace identification methods are based on the following
LQ decomposition:⎡⎣ Uf

Z−p
Yf

⎤⎦ =:

⎡⎣L11

L21 L22

L31 L32 L33

⎤⎦⎡⎣Q�1
Q�2
Q�3

⎤⎦ , (24)

where Qi, i = 1, 2, 3 is an orthonormal matrix which
satisfies Q�i Qi = I and Q�i Qj = 0 for i �= j. Lij is a
matrix with appropriate dimensions.

Let [β̂u, β̂z] be a projection of Yf onto [U�f , (Z−p )� ]
�
,

namely,

[ β̂u β̂z ] = Yf

[
Uf

Z−p

]†
. (25)

Then,

β̂u =L31L
−1
11 − L32L

−1
22 · L21L

−1
11 , (26)

β̂z =L32L
−1
22 . (27)

From Eq. (21), β̂z and β̂u become estimates of βz = OfKp

and βu = Tf , respectively and their estimation errors are
given by
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β̃z =HfEf (Z−p Π⊥Uf )
†︸ ︷︷ ︸

β̃z1

+Of Ā
pX−p(Z−p Π⊥Uf )

†︸ ︷︷ ︸
β̃z2

, (28)

β̃u =HfEf (UfΠ
⊥
Z−

p
)† +O(Āp/

√
N), (29)

where

Π⊥Uf = I − U�f (UfU�f )−1Uf = I −Q1Q
�
1 , (30)

Π⊥Z−
p
= I − (Z−p )�(Z−p (Z−p )�)−1Z−p . (31)

The error term β̃z1 = O(1/
√
N), while β̃z2 = O(Āp).

Furthermore,

lim
N→∞

β̃z2 =Of Ā
pΩxxO�p

[
OpΩxxO�p +Hp(I ⊗ Ωee)H�p

]−1
× [ Tp I ] . (32)

This means, β̂z has an asymptotic bias.

3.4 SVD

In order to estimate Of or Kp, pre- and post-multiplying

appropriate positive definite matrices Ŵ+
f and Ŵ−p to β̂z

and decompose Ŵ+
f β̂zŴ

−
p into singular spaces as:

Ŵ+
f β̂zŴ

−
p = ÛnΣ̂nV̂

�
n + R̂. (33)

Weighting matrices:

Ŵ+
f =

(
Γ̂+Π
f

)− 1
2

=

(
1

N
YfΠ

⊥
UfY

�
f

)− 1
2

, (34)

Ŵ−p =
(
Γ̂−Πp

) 1
2

=

(
1

N
Z−p Π⊥Uf (Z

−
p )�

) 1
2

, (35)

or identity matrices are often used.

The following lemma on the perturbations to the singular
subspaces is useful.

Lemma 1. Ikeda (2013) Let the singular value decomposi-
tion of X and X̂ = X + X̃ be:

X = [Un U⊥n ]

[
Σn

0

]
[Vn V ⊥n ]

�
, (36)

X̂ = [ Ûn Û⊥n ]

[
Σ̂n

Σ̂⊥n

]
[ V̂n V̂ ⊥n ]� . (37)

When ‖X̃‖ is smaller enough than the smallest singular
value of Σn, then

(U⊥n )�Ũn = (U⊥n )�X̃V̂nΣ̂
−1
n (38)

= (U⊥n )�X̃VnΣ
−1
n + O(‖X̃‖2) (39)

Ṽ �n V ⊥n = Σ̂−1n Û�n X̃V ⊥n (40)

= Σ−1n U�n X̃V ⊥n +O(‖X̃‖2) (41)

where Ũn = Ûn − Un, Ṽn = V̂n − Vn.

Proof: These equations are obtained straightforwardly
from the calculations of (U⊥n )�Ũn and Ṽ �n V ⊥n .

Remark 2. It is often the case that the gap between the
two subspaces spanned by the left (or right) singular
subspaces is more important than the perturbation of the

subspace Ũn (or Ṽn) itself. In such cases, Lemma 1 is useful
because taking into account, for example,

Ũn = UnU
�
n Ũn + U⊥n (U⊥n )�Ũn,

U�n Ũn just affects the coordinate transformation as is seen
in Remark 3 below.

In some of the state approaches, K̂p is defined from the
right singular subspace by using an appropriate nonsingu-
lar matrix TN as

ÔfKp = (Ŵ+
f )−1ÛnΣ̂nV̂

�
n (Ŵ−p )−1 (42)

= (Ŵ+
f )−1ÛnΣ̂nTN · T−1N V̂ �n (Ŵ−p )−1︸ ︷︷ ︸

K̂p

. (43)

Some typical choises of TN are TN = Σ̂
− 1

2
n , or TN = I.

The choise of TN determines the coordinate system of the
state space representation. Thus, the choise of TN affects
the magnitude of the estimation error, but it does not
affect the representation of the error term as is seen in the
rest of this paper. The estimate K̂p can be decomposed
into the signal/noise components as

K̂p = T−1N (I + Ṽ �n Vn)V
�
n (Ŵ−p )−1︸ ︷︷ ︸

K′
p

+T−1N Ṽ �n V ⊥n (V ⊥n )�(Ŵ−p )−1︸ ︷︷ ︸
K̃p

, (44)

where Un, Σn, and Vn are a SVD of Ŵ+
f βzŴ

−
p = UnΣnV

�
n .

Remark 3. The difference between K′p and Kp comes from
the difference of the coordinate systems: (A′, B′, C′, D′) =
(T−1AT = A′, T−1B,CT,D), for T = T−1N (I+Ṽ �n Vn)

−1TN .
However, the effect of this difference is small enough be-
cause

K̃′p = T K̃p = K̃p +O(β̃2
z ). (45)

The following lemma gives a formula for K̃p when Ŵ−p is
defined as in Eq. (35).

Lemma 4. Under the assumptions (A1) ∼ (A5), together
with the weighting function Ŵ−p in Eq. (35), the estimation

error K̃p defined in Eq. (44) is given by

K̃p = (Ŵ+
f Of )

†Ŵ+
f HfEfΠ⊥Uf (Z

−
p )�Γp

+ĀpX−pΠ⊥Uf (Z
−
p )�Γp +O(β̃2

z ) (46)

Γp = (Z−p Π⊥Uf (Z
−
p )�)−1

−K�p (X
(p)
0 Π⊥Uf (X

(p)
0 )�)−1Kp. (47)

Proof: Applying Lemma 1 to K̃p in Eq. (44),

K̃p = T−1N Σ−1n U�n Ŵ+
f β̃zŴ

−
p V ⊥n (V ⊥n )�(Ŵ−p )−1 +O(β̃2

z ).

(48)

Because Ŵ+
f Of = UnΣnTN ,

T−1N Σ−1n U�n = (Ŵ+
f Of )

†. (49)

Substituting Ŵ−p by Eq. (35),
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Ŵ−p V ⊥n (V ⊥n )�(Ŵ−p )−1

= Ŵ−p (I − VnV
�
n )(Ŵ−p )−1

= I − (Ŵ−p )2K�p (Kp(Ŵ
−
p )2K�p )−1Kp

= (Z−p Π⊥Uf (Z
−
p )�)Γp. (50)

Substituting (49), (28) and (50) into (48), the lemma is
obtained.

Similar to the estimation of K̂p, Ôf is estimated from the
left singular subspace by using an appropriate nonsingular
matrix TM :

ÔfKp = (Ŵ+
f )−1ÛnTM︸ ︷︷ ︸
Ôf

·T−1M Σ̂nV̂
�
n (Ŵ−p )−1. (51)

Ôf is decomposed into the signal/noise components as

Ôf = (Ŵ+
f )−1Un(I + U�n Ũn)TM︸ ︷︷ ︸

O′
f

+(Ŵ+
f )−1U⊥n (U⊥n )�ŨnTM︸ ︷︷ ︸

Õf

. (52)

The estimation error of Ôf is given by the following
lemma.

Lemma 5. Under the same assumptions in Lemma 4, the
estimation error Õf defined in Eq. (52) is given by

Õf = (Ŵ+
f )−1Π⊥O�

f
Ŵ+

f

Ŵ+
f HfEf (KpZ−p Π⊥Uf )

†

+O(β̃2
z1), (53)

Π⊥O�
f
Ŵ+

f

= I − Ŵ+
f Of (O�f (Ŵ+

f )2Of )
−1O�f Ŵ+

f . (54)

Proof: Using VnΣ
−1
n TM = (KpŴ

−
p )† and Lemma 1, Õf is

given by

Õf = (Ŵ+
f )−1Π⊥O�

f
Ŵ+

f

Ŵ+
f HfEf (Z−p Π⊥Uf )

†

×(Ŵ−p )2K�p (Kp(Ŵ
−
p )2K�p )−1 +O(β̃2

z1). (55)

Note that the term β̃z2 disappears because Π
⊥
O�

f
Ŵ+

f

Ŵ+
f Of =

0. Adopting (35) for Ŵ−p , the lemma is obtained.

When Ŵ+
f = I,

Õf =Π⊥O�
f
HfEf (KpZ−p Π⊥Uf )

† +O(β̃2
z1), (56)

Π⊥O�
f
= I −Of (O�f Of )

−1O�f . (57)

In the following, Ŵ+
f = I will be adopted.

4. ESTIMATION OF A MATRIX

4.1 State Approach

In this paper, the following regression is adopted:[
Â ̂[B, 0, . . . , 0]

Ĉ ̂[D, 0, . . . , 0]

]
=

[
X̂1

Y0|0

] [
X̂0

Uf

]†
, (58)

where X̂0 = K̂pZ−p , X̂1 = K̂pZ←p , Z←p = Z−p JN , JN =[
0 01×1

IN−1 0

]
. A regression onto

[
X̂0

U0|0

]
is adopted in the

ordinary N4SID. However, the difference is O(1/N) under
the assumption (A5) and does not affect the analysis of
the dominant parts of the estimation errors.

The following theorem gives the estimation error Ã = Â−
A′ = Â − T−1AT in the state approach where T is a
transformation matrix in Remark 3.

Theorem 6. Under the assumptions (A1) ∼ (A5), together
with K̂p in (43), the weighting functions Ŵ−p in Eq. (35)

and Ŵ+
f = I, the estimation error of Â in the state

approach (58) is given by

Ã=O†fHfEfΠ⊥Uf (Z
−
p )�

[
−K�p (X

(p)
0 Π⊥Uf (X

(p)
0 )�)−1A

+

[
J�p ⊗ Im

J�p ⊗ Il

]
K�p (X

(p)
0 Π⊥Uf (X

(p)
0 )�)−1

]
+KE1(X (p)

0 Π⊥Uf )
† +O(λ2p) +O(

λp

√
N

) +O(
1

N
). (59)

where λ = max
{
ρ(A), ρ(Ā)

}
and ρ(A) is a spectral radius

of A.

Proof: See Appendix A.

Remark 7. In order for O(λ2p) to be O(1/N), the past
horizon p must be taken as p = − 1

2 log λ logN . When the
sampling becomes faster and λ approaches to 1, very large
p will be required. If N = 10000 and λ = 0.98, the required
p is p = 228. If p is less than the half of its required value,
O(λ2p) terms might be greater than O(1/

√
N) terms.

Next, the estimation error of the plant model part will
be analyzed. If the nonsingular matrix TN is known,
Ã1 = [I, O]Ã[I, O]� can be calculated directly. Thus, the
following theorem is obtained.

Theorem 8. In addition to the assumptions in Theorem
6, assume (A6). Then, the estimation error of the plant
model Ã1 = [I, 0]Ã[I, 0]� in the state approach is given by

Ã1 =
[
O†f

]
1
HfEfΠ⊥Uf (U

−
p )�

×
[
−C�p1(X

(p)
u0 Π⊥Uf (X

(p)
u0 )�)−1A1

+(J� ⊗ I)C�p1(X
(p)
u0 Π⊥Uf (X

(p)
u0 )�)−1

]
,

+O(λ2p) +O(
λp

√
N

) +O(
1

N
), (60)

where[
O†f

]
1
=O†f1 −O†f1Of2(O�f2Π⊥O�

f1
Of2)

−1O�f2Π⊥O�
f1
,

(61)

Π⊥O�
f1

= I −Of1(O�f1Of1)
−1O�f1, (62)

Π⊥O�
f2

= I −Of2(O�f2Of2)
−1O�f2, (63)

X (p)
u0 = Cp1U−p . (64)
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Proof: This theorem is a straight consequence of Theorem
6 and the following equation:

(O�f Of )
−1

=

[
(O�f1Π⊥O�

f2

Of1)
−1 −O†f1Of2(O�f2Π⊥O�

f1

Of2)
−1

∗ (O�f2Π⊥O�
f1

Of2)
−1

]
.

(65)

4.2 Shift Invariance Approach

In the shift invariance approach, Â is defined by

Â= Ôf
†Ôf (66)

=Of
†Of︸ ︷︷ ︸
A

+Of
†(Õf − ÕfA) +O(1/N)︸ ︷︷ ︸

Ã

, (67)

where Ôf = [I, 0]Ôf and Ôf = [0, I]Ôf . It is also used that

Õf = O(1/
√
N). The following theorem gives a formula of

Ã under the same assumptions in Theorem 6.

Theorem 9. Under the assumptions (A1) ∼ (A5), together
with Ôf in (51), the weighting functions Ŵ−p in Eq. (35)

and Ŵ+
f = I, the estimation error of Â in the shift

invariance approach (66) is given by

Ã=
{
[0,O†f−1]−AO†f

}
HfEf (X (p)

0 Π⊥Uf )
†

+O(λf/
√
N) +O(1/N). (68)

Proof: From Lemma (5) and Of
†Π⊥O�

f

= O(Af ),

Ã = Of
†Õf +O(λf/

√
N) +O(1/N).

The 1st term in the R.H.S. of the equation above is
calculated as

Of
†Õf =O†f−1([0(f−1)l×l, I]−Of−1A(O�f Of )

−1O�f )

×HfEf (X (p)
0 Π⊥Uf )

† +O(
1

N
). (69)

This proves the lemma.

As in the state approach, the estimation error of the
plant model Ã1 = [I, O]Ã[I, O]� is given by the following
theorem.

Theorem 10. In addition to the assumptions in Theorem
9, assume (A6). Then, the estimation error of the plant
model Ã1 = [I, 0]Ã[I, 0]� in the shift invariance approach
is given by

Ã1 =
(
[0, [O†f−1]1]−A1[O†f ]1

)
HfEf (X (p)

u0 Π⊥Uf )
†

+O(
λf

√
N

) +O(
1

N
). (70)

4.3 PI-MOESP Method

In the PI-MOESP method, Ôf1 is defined by using an
appropriate nonsingular matrix TI as

̂Of1Cp1 = YfΠ
⊥
Uf (U

−
p )�(U−p Π⊥Uf (U

−
p )�)−1 (71)

= (Ŵ+
f )−1ÛnTI︸ ︷︷ ︸
Ôf1

·T−1I Σ̂nV̂
�
n (Ŵ−p )−1 + R̂ (72)

The estimated extended observability matrix is decom-
posed into the following signal/noise components

Ôf1 = (Ŵ+
f )−1Un(I + U�n Ũn)TI︸ ︷︷ ︸

O′
f1

+(Ŵ+
f )−1U⊥n (U⊥n )�ŨnTI︸ ︷︷ ︸

Õf1

. (73)

On the other hand, ̂Of1Cp1 is given bŷOf1Cp1 = Of1Cp1 + β̃, (74)

where

β̃ =HfEfΠ⊥Uf (U
−
p )�(U−p Π⊥Uf (U

−
p )�)−1

+Of2Cp2HpE−p Π⊥Uf (U
−
p )�(U−p Π⊥Uf (U

−
p )�)−1. (75)

Thus, the following lemma is obtained.

Lemma 11. Under the assumptions (A1) ∼ (A6) together
with the weighting matrices Ŵ+

f = I and Ŵ−p =(
1

N
U−p Π⊥Uf (U

−
p )�

) 1
2

, the estimation error of the extended

observability matrix in PI-MOESP method in (73) is given
by

Õf1 =Π⊥O�
f1
HfEf (X (p)

u0 Π⊥Uf )
†

+Π⊥O�
f1
Of2Cp2HpE−p (X (p)

u0 Π⊥Uf )
† +O(

1

N
) (76)

Proof: Because T−1I ΣnV
�
n = Cp1Ŵ−p , (Cp1Ŵ−p )† =

VnΣ
−1
n TI . From this, U⊥n (U⊥n )� = Π⊥O�

f
Ŵ+

f

, and Lemma

1,

Õf1 = (Ŵ+
f )−1Π⊥O�

f
Ŵ+

f

Ŵ+
f β̃Ŵ−p (Cp1Ŵ−p )† +O(β̃2). (77)

Substituting Ŵ+
f and Ŵ−p proves the lemma.

The estimation error of Â1 in PI-MOESP method is given
by the following theorem.

Theorem 12. Under the same assumptions in Lemma 11,
the estimation error of Â1 in PI-MOESP method is given
by

Ã1 =
(
[0,O†f−1,1]−A1O†f1

)[
HfEf (X (p)

u0 Π⊥Uf )
†

+Of2Cp2HpE−p (X (p)
u0 Π⊥Uf )

†
]

+O(
λf

√
N

) +O(
1

N
) (78)

Proof: Similar to the proof of Theorem 9, so omitted here.
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5. CONCLUSION

An explicit formula of the dominant part of the estimation
error on A matrix in each of PI-MOESP, PO-MOESP, and
one of N4SID methods is derived. As reported in Ikeda
(2013), the difference between the estimation errors in Â1’s
in PO-MOESP and PI-MOESP methods are that not only
EfΠ⊥Uf (U

−
p )� but also EpΠ⊥Uf (U

−
p )� are counted as noise

terms in PI-MOESP method and that O†f1 and O†f−1,1
in PI-MOESP method are replaced by the 1-1 blocks
of O†f and O†f−1 in PO-MOESP method. The difference
between the dominant noise terms in N4SID and PO-
MOESP methods lies in the difference of the terms pre-
and post-multiplied to HfEfΠ⊥Uf (U

−
p )�, whose orders are

the same when f = p. However, in N4SID, there is an
asymptotic bias in K̂p of order O(λ2p).
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Appendix A. PROOF OF THEOREM 6

From Eqs. (5) and (19),

X̂0 = X0 − ĀpX−p + K̃pZ−p , (A.1)

X̂1 = X1 − [0, . . . , 0, xN ]− ĀpX−p+1 + K̃pZ←p
+Āp[0, . . . , 0, xN−p+1]. (A.2)

From the equation above, the following equation is obtained:

X̂1 = AX̂0 + BU0|0 +W1, (A.3)

where

W1 = K̃pZ←p +KE0|0 − AK̃pZ−p + AĀpX−p − ĀpX−p+1

−[0, . . . , 0, xN ] + Āp[0, . . . , 0, xN−p+1]. (A.4)

The estimation error of Â in the state approach is given by

Ã = W1(X̂0Π
⊥
Uf )
†. (A.5)

It will be claimed that the major part of Ã is composed of (K̃pZ←p +

KE0|0)(X̂0Π⊥Uf )
† while the other terms in (A.5) will be involved in

O(β̃2
z) = O(λ2p) +O(λp/

√
N) +O(1/N) terms.

Because ΓpZ−p Π⊥Uf (Z
−
p )�Kp = 0, the 3rd term of W1(X̂0Π⊥Uf )

† is

given by

AK̃pZ−p (X̂0Π
⊥
Uf )
† = O(β̃2

z ). (A.6)

As for the 4th term of W1(X̂0Π⊥Uf )
†,

AĀpX−pΠ
⊥
Uf X̂0(X̂0Π

⊥
Uf X̂

�
0 )−1

= AĀpX−pΠ
⊥
Uf (KpZ−p + K̃pZ−p )�(X̂0Π

⊥
Uf X̂

�
0 )−1

= O(λp/
√
N) +O(λ2p) + O(λpβ̃z) (A.7)

The 5th term of W1(X̂0Π⊥Uf )
† can be analyzed in a similar way to

the 4th term. It is easy to see the 6th and 7th terms of W1(X̂0Π⊥Uf )
†

is O(1/N).

Finally, by using the following equations:

lim
N→∞

(Z−p Π⊥Uf (Z
−
p )�)−1Z←p Π⊥Uf (Z

−
p )�

=

[
J�p ⊗ Im

J�p ⊗ Il

]
+

[−T �p (Γ̂+Π
p )−1Op

(Γ̂+Π
p )−1Op

]
×[BΩuu, 0n×pm, AΩxxC

� +KΩee, 0n×pl],

and [
BΩuu, 0n×pm, AΩxxC

� +KΩee, 0n×pl

]
Kp = O(λp),

the lemma is obtained.
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