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Abstract: This paper deals with the design of an estimator-based supervisory Fault Tolerant Control
(FTC) scheme for Linear Time Invariant (LTI) systems. A formal stability proof based on dwell-time
conditions is presented when the state of the detection filter does not correspond to the plant state, as in
classical (Luenberger) observer-based approaches. In this context, fault isolability could be improved
leading to an enhanced distinguishability between all possible operating modes. Note that this paper
should be understood like a preliminary work to provide a unified context for a norm-based performance
optimization problem. The efficiency of the proposed technique is illustrated on a numerical example.
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1. INTRODUCTION

In active Fault Tolerant Control (FTC), the interaction
between Fault Detection and Isolation (FDI) and FTC
algorithms is a key issue (Zhang & Jiang, 2008; Zolghadri et
al., 2013). In fact, faults are detected and identified by a FDI
system to allow a reconfiguration of control laws
accordingly. Very often, it is assumed that a perfect FDI
output is available (i.e. no detection delay, no false alarm, ...).
It is however well-known that poor FDI performances can
affect stability and performances of the overall system (Shin
& Belcastro, 2006). In residual-based fault diagnosis, the two
main design goals consist in: i) minimizing the influence of
unknown inputs (noise, uncertainties, disturbances) on
residuals and ii) maximizing the effect of fault(s) on them. If
disturbance and fault act on the same orthogonal space, FDI
performances of classical observer-based methods could be
problematic for a satisfactory fault accommodation. One
solution among others could consist in using H,/H.
optimization-based methods to manage these contradictory
goals in order to guarantee a certain level of FDI
performances (Ding, 2008). However, inherent imperfections
of FDI part still exist and make the need of reconfigurable
strategies taking into account the interactions between FDI
and FTC parts of great importance to safe operation.

In order to address the above problem, supervisory control
concept (Liberzon, 2003; Hespanha et al., 2003, Yoon et al.,
2007) has received considerable attention for the
development of FTC strategies. To cope with the delay due to
fault isolation, an unfalsified supervisory FTC scheme is
proposed in (Yang et al., 2009). The idea consists in using
the switching algorithm to simultaneously perform fault
isolation and FTC. More precisely, a given switching
sequence of controllers is performed, until the appropriate
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one is found. (Jain et al., 2012) presents a supervisory
scheme based on behavioural point of view. The method is
referred as a model-free approach by the authors and thus
seems to be very attractive. However, the need to compute
on-line the inverse of controllers can make it problematic. In
(Efimov et al., 2013), the global stability of a supervisory
FTC based on dwell-time conditions is proposed for the case
of disturbed systems subjected to multiplicative/additive
faults. The dwell-time is the minimal time interval between
two switches guaranteeing stability. The system remains
stable if the time interval between any two consecutive
switching instants is not smaller than the dwell time. The
work reported in (Efimov et al., 2013) seems to be
particularly appealing since i) global stability is proved even
if the bank of estimators - that plays the role of FDI unit -
fails to identify the correct faulty operating mode (in this
case, it is shown that a chattering phenomenon may exist) and
ii) it is shown how FDI and FTC performances interact and
can be managed to get a global optimal solution under a
given criterion.

In order to overcome the chattering phenomenon underlined
in (Efimov et al., 2013), one solution consists in improving
the distinguishability property. The distinguishability
concerns the capacity of discerning all operating modes
between them (Takrouni et al., 2011; Lou & Si, 2009). In
switching control theory, this feature is usually referred to
mode-observability (Baglietto et al., 2013; Caravani & De
Sentis, 2012). Mode observability can also be formulated as
the classical fault isolability derived from FDI community
where it is possible to take into account the performances of
FDI algorithm on residuals (Basseville, 2001).

In this paper, a bank of pre-defined estimators is used for FDI
purpose. The estimator having the smallest estimation error
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enables to identify the current operating mode. In (Efimov et
al. 2013), all proofs have been done for a bank of Luenberger
estimators. Here, the contribution is the establishment of a
stability proof in the case of more general detection filters,
which could lead to an enhancement of the distinguishability.

The paper is organised as follows. Section 2 introduces the
notations used in this paper. Section 3 gives the problem
statement in FTC context. Section 4 is devoted to the formal
stability proof when the state of the detection filter does not
correspond to the plant state is given and section 4 presents
the efficiency of the technique on a numerical example.

2. NOTATIONS

The set of real numbers is denoted by R . A square matrix
X € R™" is called Hurwitz if all of its eigenvalues possess a
strictly negative real part. For any xe R the symbol |x|
denotes its absolute value, if xe R" then |x| states for the
Euclidean norm. For a matrix X € R the symbol |X |

denotes the sponding induced norm
|X|=max g, {4 (X" X) where 4(X"X) is the i"

eigenvalue of the matrix (X Tx ). For a measurable function
d:R, >R the corresponding L. norm is defined as
||d|| o) = €58 supOS,ST|d(t)| , ||d|| =|d||[oy+w). The set of all
such functions with the property ||d

< +oo is denoted as L‘i.
The symbol A corresponds to the logic “and”.

3. PROBLEM STATEMENT

Assume that the system under consideration operates in N
possible modes such that there exist N-1 faulty modes and 1
fault-free one. It is considered that each system operating
mode (indexed i”') can be modelled according to

i=1..,N, N>1 (1)

where xe R", ueR”, yeR? and de R are state,
control, output and disturbance vectors respectively. The
index i=1 corresponds to the nominal (fault-free) situation
and the N-1 others are devoted to fault situations. A;, B; and
G; refer to the i" operating mode. In this work, it is assumed
that the plant shares the same state and same measurements.

x=Ax+Bu+Gd, y=Cx,

For the sake of simplicity, the measurement noise is not
considered in (1). However, it can be verified that the main
theorem developed in the following still yields. Interested
readers can refer to (Cieslak et al., 2014) for more details.

Let the pre-computed controllers K; be given by

X=AT+B 0y ). 4;=CX,i=1..N )

i i

assumption is made.

Assumption 1: The matrices

= 4 BG 3)
are Hurwitz forall i =1,...,N . O

The matrices H; for all i=1,...,N defined in (3) describe
the dynamics of the closed-loop. In the matched case (the
indexes of (1) and (2) are the same), all matrices H,
guarantee pre-defined performance levels (disturbance
attenuation, tracking, ...). In the unmatched case (the index
of the plant (1) and the control (2) are different, i.e. j#i),
the closed-loop behaviour may become unstable. In others
words, each controller (2) is designed to achieve the best
performance level in the " operating mode, without
additional design constraints due to switching control

concept. It is a point of great importance in practice.

Both systems (1) and (2) define a family of linear systems
with the index ie /. Estimator-based supervisory FTC
concept can be considered to achieve fault tolerance
(Liberzon, 2003; Efimov et al., 2013; Cieslak et al., 2014).
The estimator (referred as detection filter in Fig. 1) having
the smallest estimation error in the Euclidean norm sense
enables to identify the current operating mode. In (Efimov et
al., 2013), a bank of pre-defined Luenberger estimators has
been considered. Here, let the fault detection filters be
defined in a more general structure by

)'cE = Apxp, +BFM1“+BF}./_ y, €=Cgxg, i=1.,N 4)

where Xp € R is the states of (4). Ap are Hurwitz.
Bp ,Bp and Cp are matrices of appropriate dimensions.
e; € R""is the enhanced error signal that is close to zero in
the matched case (i.e. the indexes of (1) and (4) are the same)
and different to zero in all other situations. In this work, the
case of an augmented-order filter (4) is investigated, i.e.
np >n. This situation is the most interesting configuration
for the improvement of distinguishability since the addition
of some objectives (disturbance attenuation, etc.) in the
detection filter design helps to identify more accurately the
current operating mode, but leads generally to augmented-
order filters (see for example (Garcia et al., 2002)). For the
case np =n, the interested reader can refer to (Efimov et al.,
2013).

Estimator-based Supervisory
Fault Tolerant Control

€] ; Detection filter 1

Supervisor

e
/ Detection filter N

Estimator units

Reconfiguration
mechanism

Fig. 1. Estimator-based supervisory FTC architecture

Now, consider the reconfiguration mechanism as depicted in
Fig. 1. Thanks to the bank of detection filters (4), the
operating mode can be identified. This available information
is next used by a supervisor to switch on the appropriate
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controllers (2). This switching logic is formulated using the
following decision map

P

H R XRP xRe="1 5T 5)
that generates the switching signal

Xpy) (6)
to control the plant (1) subjected to faults.

o(t)=H(u, Vs XE e

4. MAIN RESULT

The goal of this section is to establish the stability of the
whole system (see Fig. 1) for the case de Lfi and
Vyer € LY by means of dwell-time conditions. In the
interest of brevity, the case of constant index ie [l is
considered here. However, note that the main result can be
extended to determine the minimum admissible time interval
between two consecutive faults 7), using materials reported
in (Efimov et al., 2013; Wu et al., 2013; Cieslak et al., 2014).

For each fixed plant index ie I and according to the
enhanced error signal definition of (4), the smaller enhanced
error ¢; helps us to define the current operating mode. Then,
consider the following switching logic:

tg =014 = arginfieo.(,k)(t)| > |ej(t)|,j =1.,N,j# O'(tk)} @)
124, +7)

o) = argminic ey e; (1) k = 0 ®)

o(t)=o0(t;) forall t; <t<t;,,k=20 )

where f,,k =0 are instants of switches and 7, >0 is the
dwell-time. For 7y =0 the switching signal is initialized as
0(0) = arg min 1<1<N|e (0)| The rule (8) is next used for all
time instants ¢, . The time instant of switch ¢, is calculated
in (7) as the first time instant after #, +7, when one
enhanced error signal of (4) becomes smaller than the current
one used to control the plant.

Theorem 1: Let assumption 1 holds and i(t) =cst for all
t>0. Let us consider the following state vector

=1zt AT T quT xFIT ---xFNT]T where xFlT

= T part does not contain xp - Xk 2k and x, will be
defined in the proof. There exists Tp >0 such that for any
c(0eR, de % and Vref € LY | the solutions of system
(1), (2), (4) and (6) give for all t =20

IOJ)}

. {C[/r,- (0) = Ty OV 1€ 1111y +Tp) Ale; (0] <[ey ) O

0 otherwise | ]

o < lcf v o, +lel 10y

[0.1) + yl‘é’f

with v; >0, u; >0, v; >0 and where

Proof: Based on the observer-based structures (Alazard &
Apkarian, 1999), the detection filters defined by (4) can be
rewritten without loss of generality according to

z; A-LC 0 gz Ji L; (11a)

(qu_ ) = [ -B, C A, J{xqi ]“{qu ]” {BQM Jy (11b)
g

=W c, {X%J (11c)

where (A [ 1, C ) i=1,.,N are the proper
state-space repreéentatlons of a Youla parameter Q; for each
system operating modes. z; € R" and x, € R are the
states of (4) reformulated by means of observer-based
structures (Alazard & Apkarian, 1999) for the case of
augmented-order filters, i.e. np >n. L; is an estimation
gain. J; and W, are matrices of appropriate dimensions. In
the interest of brevity, the mechanization equations leading to
this reformulation are omitted here. The interested reader can
refer to (Alazard & Apkarian, 1999), (Cieslak et al., 2010)

for some guidelines on this reformulation.

To find the stability proof, let us introduce the following
fictitious dynamics

Xi=(A—-LCy;+J,Pu+L;y 12)

where the only difference from (1la) is due to the
introduction of a matrix P;. Now, let 7; be an error signal
given by 7; = x— y; . From (1) and (12), it follows:

7, =(A, -L,Cyr;, +(B; =J; P u+G;d (13)
Since AF in (4) are Hurwitz, (A; —L,;C) involved in (11a)
and (13) have the same property. Thus equation (13) is
asymptotically stable and has bounded solutions (d € L) if
the quantity (B; —J,;P;) is null. Based on that observation,
let P; be designed according to the following proposition:

Proposition 1: Let us consider B; € R and J; e R™"
for i=1,.,N. P; can be computed by solving

MiTBi_MiT‘IiPi =0 (14)

where M ;e R is of appropriate dimension. In the
following, the particular solution M; = B; will be used to
guarantee the stability of (13) in the matched cases. ]

Remark 1: Error signals (13) could be more corrupted than
the enhanced error signal of (llc), e.g. in terms of
disturbance attenuation. This is why the switching logic (7)-
(9) is only based on e(¢) and that the property of error signals
7; = x—y,; will be only used in the stability proof.

The switched system (1), (2), (6), (11) and (12) equipped
with the switching logic (7)—(9) has continuous solutions
defined for all r>0 and all de Lfi. Indeed, it is a
continuous linear system on all intervals [t;,7,,,), k=0.
The switches happen at isolated time instants #;, k=0 due
to dwell-time presence. For each fixed plant index ie I and
according to the error signal definition of (13)-(14), there
existm. C; >0, C,>0 and 77>0 such that
|7Z (t)| < C1|7Z © |e_'7’ +C, dJ for all ¢>0. Hence, we can
write |Cz; (1) < (Cl|7z (0)| +C,|d])c]. Since (4, -L,C)
of (13) is Hurwitz in the matched case, we have for all
telty +7p,tp4), k20:

< pilm; (0] =C =G,|C]

€ (1) <

Therefore, the sequence ‘Cﬂg(,k)(t)‘ is bounded on those
intervals. However, the behaviour of the error ‘Cﬂ'a(,k)(t)‘ for
telt,,t, +7p) is hard to evaluate, but since the signal
‘Cﬂ'a(tk)(t)‘ﬂCﬂ'i 0| +]6@)| for all 20 due to the
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definition of O, we can obtain the following estimate for
de Lfi :

Ct g (0] < il @™ + o ] + 0] 20

Let us now consider the equations of the system (1), (2), (6),
(11) and (12) (for simplicity we use shorthand notation
o(f;)=k). The proposed supervisory FTC architecture
gives the following equations for j=1,..N, j#k:

x=Ax+Bu+G;,d-L;y+L;y
= (A, —L,C)x+B,C,X+L;(Cr; +Cy;)+G,d
¥ = A+ B (3 —¥) = AX-BCm - B Cy, + By Vyep
i =(A =L Oy +1, P.C,X+L, (Crt, +Cyx})
= Ay +B.C X+ L,.Cr,
2= (A —LC)z, +J,C, X+ L (Cy, +Cm,)

Xy = Aqk Xg, quk Cz, +B%k Cix +quk

(Cry +Cxy)

Xp, =Ap Xp, +Bp, Ck35+BFW (Cr, +Cxy)

where the substitution y=Cx, +Cy, has been introduced

in the aforementioned equations Introducing
S =[ZT 55T o T xpToxe 71T such  that
k7 k A A Ey

xg o T part does not contain xF . The system (1),

2), (6), (1 1) and (12) can be written accordlng to

Sk =Whisk +Vk,iC”k+5kd+(_;kyref (15)
with Vv, =1, -B" Ll- L’ BMT BF BF,NT]T’
Ge=100GT 000-0",G=[0B5"0000-0].

The matrix W, ; is lower triangular matrix where its blocks in
the main diagonal are

Hy A = LC. A~ LC.A, Ap - Ap,

(16)
according to the proposition 1. All matrix blocks of (16) are
Hurwitz with the previous definitions. Hence, the matrix W, ;

has the same property.

Based on the definition of (4), there exists a single minimum
among estimation errors, i.e.:

le; )] <|ej(t)| forall t>7 and j=1,---,N,j#i (17)
Then due to (7)-(9), the switching logic stops after a finite
number of switches k=20 and o(t,)=i. To calculate the
required 7, guaranteeing overall stability, let us consider the
following estimates for t& [t ,;,,) of (15)

6] < Boalstle™ ™

(t=t;)

Vo). “C”o(rk),z’ )

(18)

+ Wﬂ(tk )i "d” + ma(tk Yi ||V ref

HC o1, ) =eSSSUp;, <r<t C”a(xk)(f)‘ Spl‘”i(o)‘eﬁm +p2HdH +H§H[,k )
where ¢;; is the minimal in norm real part of the matnx
W;; eigenvalues, V¥ ;; —‘W 'G, ‘ Vi = ‘W ‘,

,Bji = sup,>0 exp(W;, lt)| and @, 71(_}‘ for

=1,---,N,j#i.Using preV1ous def1n1t10ns [e (O)|<|g(0)|
and a;;<n foral j=1,--,N . From standard results on
dwell-time conditions on sw1tched system stability (Liberzon,
2003; Efimov et al., 2013), 7, can be computed by
(A8,

Tp =MaXicjcy— ) ; (19)

where 0<A<1 is a design constant defined such that
e < Ak >0. Using the same mathematical development
given in the proof of theorem 1 of (Efimov et al., 2013), the
use of (19) leads to the following upper bound of the
switched system (1), (2), (4) and (7)-(9) for all t=20:

|g(t)| < e(ﬁi(l—4ln(/1)’le’l}7,-p1/1’l)+ 7.0 %()Azsln(i)tfn—llg(o)l
i+ Ba-Yzlol+ wld] + @y, )

Vzlth ¥ =max <y (7 ;P2 +'/_’;,j) » Bi=maxicey B
7/1‘ =maXlS]‘SN 7/1!] and @'l =maX1SjSN @'iyj. The

identification of (10) and (20) leads to the following algebraic
relations:

(20)

Y ref

v, = Bie+(e—4In() 7~ BAY7p, (1)
4; =—0.251n(2) (22)
v, =max{y,, ¥, @, 1+ p,1-1)7") (23)
Equations (21)-(23) complete the proof. ]

The proof of theorem 1 gives the dwell-time constant 7,
(see (19)) and v;, #; and v; are derived from (20). Using a
bank of augmented-order detection filters, the enhanced error
signals in a matched case should be less corrupted than those
provided by classic Luenberger structures (Efimov et al.,
2013) in terms of disturbance attenuation and robustness to
model uncertainty. This leads to an enhanced capability of
estimator-based supervisory scheme (4), (7)-(9) to identify
the correct operating mode and de facto reduce the possible
chattering phenomenon.

5. ACADEMIC EXAMPLE

This section provides some numerical simulation to illustrate
the proposed methodology. The model is taken from (Hou et
al., 2010) and corresponds to the Highly MAneuverable
Technology (HiMAT) aircraft-based benchmark. Here, we
consider the linear model derived from the flying operating
point that corresponds to an altitude of 2500 [ft] with a Mach
number of 0.29 (see (Hou et al., 2010) for more details). The
aircraft has two sensors to measure the pitch rate y, [rad/s]
and the angle of attack y, [rad]. It also possesses three inputs:
the elevons d,, elevators d;, and canard flaps ¢.. Two actuator
faults are considered. Both are an abnormal gain variation
(effectiveness loss of 50%) of one control channel leading to
the following switched system

x(t)=Ax(t) + Bu(t), i=123 (24)
where the state x is composed by the angle of attack and the
pitch rate and u =(J,,d,,6,)" . Each measure is corrupted by
a noise of 0.1°. The matrices A; and B; denote the state-

space representations of the aircraft in fault-free (i =1) and
fault operating modes (i =2,3). The index i=2 and i=3
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correspond to elevator and elevon malfunctions respectively.
In healthy situations (i =1), matrices are given by:

[-10772 0965287 ~ [-0.17211
"7 9.068 —1.5077[ " | —=7.9948

—0.12245

—-0.01431
—-4.955

5.0369

Three control laws possessing integral action are designed
using a linear quadratic approach (Cieslak et al. 2014). Let
the three detection filters (4) be now designed by means of an
augmented Kalman filter (Garcia et al., 2002) to be robust
against some flexible mode effects. Due to space limitation,
we only provide the state-space representations of each filter:

-10 O 1 0 0
0 -10 0 1 1
Ap =Ap, =Ap =| 0 0 -1.4017 -0.0252 -0.9905
0 0 8.143  —-4331 -2823
0 0 0934 03116 —10.688
[0 0 0 -1 0 ]
0 0 0 0 -1
By =|-0.172 —0.1225 -0.0143 0.3245 0.9905
-7.995 —-4955 5.037 09249 2.823
| 0 0 0 0.0656 0.6884 |
0 0 0 -1 0 ]
0 0 0 0 -1
By, =(-0.086 —0.1225 -0.0143 0.3245 0.9905
-3.997 —-4955 5.037 09249 2.823
| 0 0 0 0.0656 0.6884 |
0 0 -1 0
0 0 0 0 -1
By, =|-0.172 -0.0612 -0.0143 0.3245 0.9905
-7.995 -2477 5.037 0.9249 2823
0 0 0 0.0656 0.6884 |
CFz[zl 0 00 O}CF {6 000 0},& ={10 0 00 0}
110 21 0 00 2106 000 510 10 0 00

Following equations (11a)-(11c), the three above detection
filters are reformulated. We obtain:

4= _éo (Io ?‘3322 S _{6.8993 4.2644 —4.4372]
a = - ' T T 135154 838 —8.4863]
0 0 -16739 -

[0, 42672 _[-03972 0.0802 [21 0 0]
1{0 12.162} '{—3.9482 1.4046}’ ‘“{o 21 0]
-1 00342 0.0788  0.0486 —0.0515]

B, =| 0 -10112|> B, =| 03931 02412 -0.2666|>
0.9824 —8.7093 ~19.186 ~11.908 11.952 |
-100 03303 3.4497 42644 —4.4372]
Ap=| 0 7100 10083 I Jz{6.7577 838 84863
0 0 -1.6739 -

{o. 4.2672} {-0.1135 0.0229} {6 0 0]

= N A . C, = ,
0 12.162 ~1.1281 0.4013 06 0

-1 00342 0.0394 0.0486 —0.0515]

B, =| 0 -10112|> B, =|0.1966 02412 —02666
0.9824 —8.7093 -9.593 —11.908 11.952 |

-10 0

A 0 10 (1)3322 I = 6.8993 2.1322 —4.4372
a5 = - : T 371135154 419 —-8.4863 |
0 0 -1.6739
0. 4.2672 —0.1891 0.0382 10 0 O
113 = > W3 = ’ qu = £
0 12.162 —1.8801 0.6689 0 10 O
-1 0.0342 0.0788 0.0243 -0.0515
B, =| 0 -10112]> B, =| 03931 0.1206 —0.2666 |-
0.9824 -8.7093 —-19.186 -5.9543 11.952
Matrices P, ,i=12,3 are next computed by using the

Proposition 1. We have:

-22.0115 -13.4353 14.95 -35.83 43981 48.236
B =|-27425 -1.8606 1.2296|-P, =| 84879 10.3476 —11.853
-36.8222 —22.6509 24.43 -19.679 -24.22 26.112
-22.4976 —-7.1832 15.3283
P =| -4.0977 -0.5318 1.379

-36.9114 -11.4108 24.4996

Following the developments given in section 4, it can be
easily verified that the stability of (13) for the three matched
cases hold with the previous matrices P;. Hence, the dwell-
time can be evaluated by means of (19). By taking the design
constant A=0.95, we get 7, =3.16 [s]. Note that the
minimization of dwell-time is not considered in this example
to focus on the main steps of the considered work. The
interested can refer to (Efimov er al., 2013) for a mutual
performance optimization problem over A, controllers and
detection filters.

The supervisory FTC architecture depicted in Fig. 1 is then
designed to assess the proposed scheme. The initial operating
point is fixed to a reference attack angle of 7° and a reference
pitch rate null. At r=20s, the reference of attack angle goes to
2°. Elevon fault has been simulated between [15, 40] s and
elevator malfunction between the time interval [70, 93] 5. To
emphasize the benefit of the proposed scheme, same
simulations are performed when the system is only controlled
by the nominal controller K; (no FTC) and when the system
is controlled by the proposed supervisory FTC approach. As
it can be seen in Fig. 2, when the supervisory FTC
architecture is not in place, the controlled system goes
unstable for elevator fault. Furthermore, when supervisory
FTC algorithm performs, the controlled system is stable and
keeps acceptable performance level (null static error). In
addition, it can be seen in Fig. 3 that there is no wrong
decision of the bank of estimators to identify the current
operating mode.

6. CONCLUSION

The problem of designing active FTC systems by means of
an estimator-based supervisory control approach is studied.
The main contribution of the proposed approach is the
establishment of a formal stability proof based on dwell-time
conditions when the current operating mode is identified by a
bank of augmented-order detection filters, i.e. when the state
of the detection filters does not correspond to the plant state
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as in the classical observer-based approaches. This feature
could help to avoid chattering phenomenon by an enhanced
distinguishability between all possible operating modes.
Further investigations are necessary to minimize the dwell-
time value within the proposed supervisory system and assess
the proposed scheme on more representative benchmarks.
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12

T T,
_ | I | | | | G !
8!10**k***+***‘1****\****\****f***‘#ﬁﬁ‘u‘hf\*u*‘u‘“‘***
5 | | | | | | NIRRT wu“‘\‘
% | \7777#777+ﬁﬂm4h\7u7¢\‘7777
s | | | [T \u“‘\‘
® | e — — — b — — —d H g e L —
ksl | | | Wiy \u‘“\‘
2 | 1y L L
g | | | NIRRT wu“‘\‘
" A L e s od g bl
| | | NN
50 60 70 80 90 100
T T T T T T LSRR e e e 7
| ol | | | | (IR it |
5 o | fm‘uﬁ‘ﬂ“nm“ | | | Wt |
g T T LA T Y Y AL I
g | A | | | | TR it |
o | | | | | | \“H (IR L] |
s _5,,L,,,L,,,J,,,,\,,,,\,,,,L,,,gp\,\Hu#mDJ\,,,A
= reference | | | Vo eyt |
El N | | | F ot |
o ~ — — without FTC | | | [0 0 g g A |
-10+- with supenisory FTC 7\7777\7777T777Tr‘7\r‘ﬂ‘7ﬁﬁ“: [y
1 1 1 1 1 1 | R TN 1l i
10 20 30 40 50 60 70 80 90 100

Time (s)

Fig. 2 Angle of attack (top) and pitch rate (bottom) signals
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Fig. 3 Identified mode (top) and enhanced error (bottom)
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