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Abstract: This paper deals with the design of an estimator-based supervisory Fault Tolerant Control 
(FTC) scheme for Linear Time Invariant (LTI) systems. A formal stability proof based on dwell-time 
conditions is presented when the state of the detection filter does not correspond to the plant state, as in 
classical (Luenberger) observer-based approaches. In this context, fault isolability could be improved 
leading to an enhanced distinguishability between all possible operating modes. Note that this paper 
should be understood like a preliminary work to provide a unified context for a norm-based performance 
optimization problem. The efficiency of the proposed technique is illustrated on a numerical example. 
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1. INTRODUCTION 

In active Fault Tolerant Control (FTC), the interaction 
between Fault Detection and Isolation (FDI) and FTC 
algorithms is a key issue (Zhang & Jiang, 2008; Zolghadri et 
al., 2013). In fact, faults are detected and identified by a FDI 
system to allow a reconfiguration of control laws 
accordingly. Very often, it is assumed that a perfect FDI 
output is available (i.e. no detection delay, no false alarm, ...). 
It is however well-known that poor FDI performances can 
affect stability and performances of the overall system (Shin 
& Belcastro, 2006). In residual-based fault diagnosis, the two 
main design goals consist in: i) minimizing the influence of 
unknown inputs (noise, uncertainties, disturbances) on 
residuals and ii) maximizing the effect of fault(s) on them. If 
disturbance and fault act on the same orthogonal space, FDI 
performances of classical observer-based methods could be 
problematic for a satisfactory fault accommodation. One 
solution among others could consist in using H∞/H- 
optimization-based methods to manage these contradictory 
goals in order to guarantee a certain level of FDI 
performances (Ding, 2008). However, inherent imperfections 
of FDI part still exist and make the need of reconfigurable 
strategies taking into account the interactions between FDI 
and FTC parts of great importance to safe operation. 

In order to address the above problem, supervisory control 
concept (Liberzon, 2003; Hespanha et al., 2003, Yoon et al., 
2007) has received considerable attention for the 
development of FTC strategies. To cope with the delay due to 
fault isolation, an unfalsified supervisory FTC scheme is 
proposed in (Yang et al., 2009). The idea consists in using 
the switching algorithm to simultaneously perform fault 
isolation and FTC. More precisely, a given switching 
sequence of controllers is performed, until the appropriate 

one is found. (Jain et al., 2012) presents a supervisory 
scheme based on behavioural point of view. The method is 
referred as a model-free approach by the authors and thus 
seems to be very attractive. However, the need to compute 
on-line the inverse of controllers can make it problematic. In 
(Efimov et al., 2013), the global stability of a supervisory 
FTC based on dwell-time conditions is proposed for the case 
of disturbed systems subjected to multiplicative/additive 
faults. The dwell-time is the minimal time interval between 
two switches guaranteeing stability. The system remains 
stable if the time interval between any two consecutive 
switching instants is not smaller than the dwell time. The 
work reported in (Efimov et al., 2013) seems to be 
particularly appealing since i) global stability is proved even 
if the bank of estimators - that plays the role of FDI unit - 
fails to identify the correct faulty operating mode (in this 
case, it is shown that a chattering phenomenon may exist) and 
ii) it is shown how FDI and FTC performances interact and 
can be managed to get a global optimal solution under a 
given criterion. 

In order to overcome the chattering phenomenon underlined 
in (Efimov et al., 2013), one solution consists in improving 
the distinguishability property. The distinguishability 
concerns the capacity of discerning all operating modes 
between them (Takrouni et al., 2011; Lou & Si, 2009). In 
switching control theory, this feature is usually referred to 
mode-observability (Baglietto et al., 2013; Caravani & De 
Sentis, 2012). Mode observability can also be formulated as 
the classical fault isolability derived from FDI community 
where it is possible to take into account the performances of 
FDI algorithm on residuals (Basseville, 2001).  

In this paper, a bank of pre-defined estimators is used for FDI 
purpose. The estimator having the smallest estimation error 
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enables to identify the current operating mode. In (Efimov et 
al. 2013), all proofs have been done for a bank of Luenberger 
estimators. Here, the contribution is the establishment of a 
stability proof in the case of more general detection filters, 
which could lead to an enhancement of the distinguishability. 

The paper is organised as follows. Section 2 introduces the 
notations used in this paper. Section 3 gives the problem 
statement in FTC context. Section 4 is devoted to the formal 
stability proof when the state of the detection filter does not 
correspond to the plant state is given and section 4 presents 
the efficiency of the technique on a numerical example. 

2. NOTATIONS 

The set of real numbers is denoted by ℜ . A square matrix 
nnX ×ℜ∈  is called Hurwitz if all of its eigenvalues possess a 

strictly negative real part. For any ℜ∈x  the symbol x  
denotes its absolute value, if nx ℜ∈  then x  states for the 
Euclidean norm. For a matrix mnX ×ℜ∈  the symbol X  
denotes the corresponding induced norm 

)(max1 XXX T
imi λ≤≤=  where )( XX T

iλ  is the ith 
eigenvalue of the matrix )( XX T . For a measurable function 

dd ℜ→ℜ+:  the corresponding ∞L  norm is defined as 
)(sup 0),0[

tdessd TtT ≤≤= , 
),0[ +∞= dd . The set of all 

such functions with the property +∞<d  is denoted as dL∞ . 
The symbol ∧  corresponds to the logic “and”. 

3. PROBLEM STATEMENT 

Assume that the system under consideration operates in N 
possible modes such that there exist N-1 faulty modes and 1 
fault-free one. It is considered that each system operating 
mode (indexed ith) can be modelled according to 

CxydGuBxAx iii =++= ,& ,   1,,...,1 >= NNi  (1) 

where nx ℜ∈ , mu ℜ∈ , py ℜ∈  and dd ℜ∈  are state, 
control, output and disturbance vectors respectively. The 
index i=1 corresponds to the nominal (fault-free) situation 
and the N-1 others are devoted to fault situations. iA , iB  and 

iG  refer to the ith operating mode. In this work, it is assumed 
that the plant shares the same state and same measurements.  
 

For the sake of simplicity, the measurement noise is not 
considered in (1). However, it can be verified that the main 
theorem developed in the following still yields. Interested 
readers can refer to (Cieslak et al., 2014) for more details. 
 

Let the pre-computed controllers Ki  be given by 

xCuyyBxAx iirefii
~~

),(
~~~~ =−+=& , Ni ,...,1=  (2) 

where inx
~~ ℜ∈ , p

refy ℜ∈  and m
iu ℜ∈  are state of (2), 

reference and control signals respectively. The following 
assumption is made. 
 

Assumption 1: The matrices 













−
=

ii

iii
i

ACB

CBA
H ~~

~
 (3) 

are Hurwitz for all Ni ,...,1= . □ 

The matrices iH  for all Ni ,...,1=  defined in (3) describe 
the dynamics of the closed-loop. In the matched case (the 
indexes of (1) and (2) are the same), all matrices iH  
guarantee pre-defined performance levels (disturbance 
attenuation, tracking, …). In the unmatched case (the index 
of the plant (1) and the control (2) are different, i.e. j i≠ ), 
the closed-loop behaviour may become unstable. In others 
words, each controller (2) is designed to achieve the best 
performance level in the ith operating mode, without 
additional design constraints due to switching control 
concept. It is a point of great importance in practice. 

Both systems (1) and (2) define a family of linear systems 
with the index I∈i . Estimator-based supervisory FTC 
concept can be considered to achieve fault tolerance 
(Liberzon, 2003; Efimov et al., 2013; Cieslak et al., 2014). 
The estimator (referred as detection filter in Fig. 1) having 
the smallest estimation error in the Euclidean norm sense 
enables to identify the current operating mode. In (Efimov et 
al., 2013), a bank of pre-defined Luenberger estimators has 
been considered. Here, let the fault detection filters be 
defined in a more general structure by 

iiiyiuiii FFiFFFFF xCeyBuBxAx =++= ,& ,  Ni ,...,1=  (4) 

where iF

i

n
Fx ℜ∈  is the states of (4). 

iFA  are Hurwitz. 

iyiu FF BB ,  and 
iFC  are matrices of appropriate dimensions. 

en
ie ℜ∈  is the enhanced error signal that is close to zero in 

the matched case (i.e. the indexes of (1) and (4) are the same) 
and different to zero in all other situations. In this work, the 
case of an augmented-order filter (4) is investigated, i.e. 

nn
iF > . This situation is the most interesting configuration 

for the improvement of distinguishability since the addition 
of some objectives (disturbance attenuation, etc.) in the 
detection filter design helps to identify more accurately the 
current operating mode, but leads generally to augmented-
order filters (see for example (Garcia et al., 2002)). For the 
case nn

iF = , the interested reader can refer to (Efimov et al., 
2013). 
 

 
Fig. 1. Estimator-based supervisory FTC architecture 
 

Now, consider the reconfiguration mechanism as depicted in 
Fig. 1. Thanks to the bank of detection filters (4), the 
operating mode can be identified. This available information 
is next used by a supervisor to switch on the appropriate 
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controllers (2). This switching logic is formulated using the 
following decision map 

IH →ℜ×ℜ×ℜ ∑ =

N

i iFnpm 1:   (5) 
 

that generates the switching signal 
 

),...,,,()(
1 NFF xxyut H=σ  (6) 

to control the plant (1) subjected to faults. 

4. MAIN RESULT 

The goal of this section is to establish the stability of the 
whole system (see Fig. 1) for the case dLd ∞∈  and 

refy
ref Ly ∞∈  by means of dwell-time conditions. In the 

interest of brevity, the case of constant index I∈i  is 
considered here. However, note that the main result can be 
extended to determine the minimum admissible time interval 
between two consecutive faults DT  using materials reported 
in (Efimov et al., 2013; Wu et al., 2013; Cieslak et al., 2014). 

For each fixed plant index I∈i  and according to the 
enhanced error signal definition of (4), the smaller enhanced 
error ie  helps us to define the current operating mode. Then, 
consider the following switching logic: 

{ })(,,...,1,)()(infarg,0 )(10 kjt
tt

k tjNjtetett
k

Dk

σσ
τ

≠=>==
+≥

+  (7) 

0,)(minarg)( 1 ≥= ≤≤ ktet kjNjkσ  (8) 

)()( ktt σσ =  for all 0,1 ≥<≤ + kttt kk  (9) 

where 0, ≥ktk  are instants of switches and 0>Dτ  is the 
dwell-time. For 0 0t =  the switching signal is initialized as 

)0(minarg)0( 1 jNj e≤≤=σ . The rule (8) is next used for all 
time instants kt . The time instant of switch 1+kt  is calculated 
in (7) as the first time instant after Dkt τ+  when one 
enhanced error signal of (4) becomes smaller than the current 
one used to control the plant. 

Theorem 1: Let assumption 1 holds and cstti =)(  for all 
0≥t . Let us consider the following state vector 

TT
F

T
F

T
q

T
k

TTT
k Nk

xxxzxx ]~[
1

Lχς =  where L
T

Fx
1

 
T

FN
x  part does not contain T

Fk
x . πχ ,, kk z  and 

kqx  will be 
defined in the proof. There exists 0>Dτ  such that for any 

ℜ∈)0(ς , dLd ∞∈  and refy
ref Ly ∞∈ , the solutions of system 

(1), (2), (4) and (6) give for all 0≥t  







 ++δυ+ς≤ς τµ−

),0[),0[),0[
/ )0()(

treftti
t

i ydevt Di  (10) 

with 0>iv , 0>iµ , 0>iυ  and where 





 <∧+∈−

=
otherwise

tetetttifttC
t kk tiDkkti

0

)()(),[)]()([
)( )()( σσ τππ

δ  

Proof: Based on the observer-based structures (Alazard & 
Apkarian, 1999), the detection filters defined by (4) can be 
rewritten without loss of generality according to 

( )



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
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


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−
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



i
i

iyiuiiiyi

q

i
qii

q

i

q

i

q

i

qq

ii

q

i

x

z
CWe

y
B

L
u

B

J

x

z

ACB

CLA

x

z 0

&

&

  

where ),][,(
iiyiui qqqq CBBA , Ni ,...,1=  are the proper 

state-space representations of a Youla parameter Qi for each 
system operating modes. n

iz ℜ∈  and 
)( nn

q
iF

i
x

−ℜ∈  are the 
states of (4) reformulated by means of observer-based 
structures (Alazard & Apkarian, 1999) for the case of 
augmented-order filters, i.e. nn

iF > . iL  is an estimation 
gain. iJ  and iW  are matrices of appropriate dimensions. In 
the interest of brevity, the mechanization equations leading to 
this reformulation are omitted here. The interested reader can 
refer to (Alazard & Apkarian, 1999), (Cieslak et al., 2010) 
for some guidelines on this reformulation. 

To find the stability proof, let us introduce the following 
fictitious dynamics 

yLuPJCLA iiiiiii ++−= χχ )(&  (12) 

where the only difference from (11a) is due to the 
introduction of a matrix iP . Now, let iπ  be an error signal 
given by ii x χπ −= . From (1) and (12), it follows: 

dGuPJBCLA iiiiiiii +−+−= )()( ππ&  (13) 
 

Since 
iFA  in (4) are Hurwitz, )( CLA ii −  involved in (11a) 

and (13) have the same property. Thus, equation (13) is 
asymptotically stable and has bounded solutions ( dLd ∞∈ ) if 
the quantity )( iii PJB −  is null. Based on that observation, 
let iP  be designed according to the following proposition: 

Proposition 1: Let us consider mn
iB ×ℜ∈  and mn

iJ ×ℜ∈  
for Ni ,...,1= . iP  can be computed by solving 

0=− ii
T

ii
T

i PJMBM  (14) 

where mn
iM ×ℜ∈  is of appropriate dimension. In the 

following, the particular solution ii BM =  will be used to 
guarantee the stability of (13) in the matched cases. □ 
 

Remark 1: Error signals (13) could be more corrupted than 
the enhanced error signal of (11c), e.g. in terms of 
disturbance attenuation. This is why the switching logic (7)-
(9) is only based on e(t) and that the property of error signals 

ii x χπ −=  will be only used in the stability proof. 

The switched system (1), (2), (6), (11) and (12) equipped 
with the switching logic (7)−(9) has continuous solutions 
defined for all 0≥t  and all dLd ∞∈ . Indeed, it is a 
continuous linear system on all intervals ),[ 1+kk tt , 0≥k . 
The switches happen at isolated time instants kt , 0k ≥  due 
to dwell-time presence. For each fixed plant index I∈i  and 
according to the error signal definition of (13)-(14), there 
exist 01 >C , 02 >C   and 0>η  such that 

dCeCt t
ii 21 )0()( +≤ −ηππ  for all 0t ≥ . Hence, we can 

write ( ) CdCeCtC t
ii 21 )0()( +≤ −ηππ . Since )( CLA ii −  

of (13) is Hurwitz in the matched case, we have for all 
),[ 1++∈ kDk ttt τ , 0≥k : 

CCCCdetCtC t
iitk 221121)( ,,)0()()( ==+≤≤ − ρρρπρππ η

σ  
 

Therefore, the sequence )()( tC
ktσπ  is bounded on those 

intervals. However, the behaviour of the error )()( tC
ktσπ  for 

),[ Dkk ttt τ+∈  is hard to evaluate, but since the signal 
)()()()( ttCtC itk

δππ σ +≤  for all 0≥t  due to the 

■ 

(11a) 
 

(11b) 

 
 

(11c) 
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definition of δ , we can obtain the following estimate for 
dLd ∞∈ : 

0,)0()( 21)( ≥++≤ − tdetC t
itk

δρπρπ η
σ  

 

Let us now consider the equations of the system (1), (2), (6), 
(11) and (12) (for simplicity we use shorthand notation 

( )kt kσ = ). The proposed supervisory FTC architecture 
gives the following equations for kjNj ≠= ,,...1 : 

dGCCLxCBxCLA

yLyLdGuBxAx

ikkikiii

iiiii

++++−=

+−++=

)(~~
)( χπ

&
 

refkkkkkkrefkk yBCBCBxAyyBxAx
~~~~~

)(
~~~~ +−−=−+= χπ&  

kkkkkk

kkkkkkkkkk

CLxCBA

CCLxCPJCLA

πχ

χπχχ

++=

+++−=
~~

)(~~
)(&

 

)(~~
)( kkkkkkkkk CCLxCJzCLAz πχ +++−=&  

)(~~
kkqkqkqqqq CCBxCBCzBxAx

kykukykkk
χπ +++−=&  

)(~~

)(~~
11111

kkFkFFFF

kkFkFFFF

CCBxCBxAx

CCBxCBxAx

NyNuNNN

yu

χπ

χπ

+++=

+++=

&

M

&

 

where the substitution kk CCy χπ +=  has been introduced 
in the aforementioned equations. Introducing 

TT
F

T
F

T
q

T
k

TTT
kk Nk

xxxzxx ]~[
1

Lχς =  such that 
L

T
Fx

1
 T

FN
x  part does not contain T

Fk
x . The system (1), 

(2), (6), (11) and (12) can be written according to 

refkkkikkikk yGdGCVW +++=
~

,, πςς&  (15) 

with TT
F

T
F

T
q

T
k

T
i

T
k

T
kik

Nyyky
BBBLLBLV ]

~
[

1
, L−= , 

TT
ik GG ]000000[

~
L= , TT

kk BG ]00000
~

0[ L= .  
 

The matrix ikW ,  is lower triangular matrix where its blocks in 
the main diagonal are 

Nk FFqkkiik AAACLACLAH ,,,,,,
1
L−−  (16) 

according to the proposition 1. All matrix blocks of (16) are 
Hurwitz with the previous definitions. Hence, the matrix ikW ,  
has the same property. 
 

Based on the definition of (4), there exists a single minimum 
among estimation errors, i.e.: 

)()( tete ji <  for all Tt ≥  and ijNj ≠= ,,,1 L  (17) 
 

Then due to (7)-(9), the switching logic stops after a finite 
number of switches 0≥k  and itk =)(σ . To calculate the 
required Dτ  guaranteeing overall stability, let us consider the 
following estimates for ),[ 1+∈ kk ttt  of (15) 

refitit

ttitit
tt

kit

yd

Cett

kk

k
kk

kikt

k

),(),(

),[),(),(
)(

),(
),()()(

σσ

σσ
α

σ

ϖψ

πγςβς σ

++

+≤ −−

 

),[21)(),[)( )0()(sup
tt

t
itttttt

k

k

kk
k

k
deCessC δρπρτππ η

στσ ++≤= −
<≤

 

where ij,α  is the minimal in norm real part of the matrix 

ijW ,  eigenvalues, iijij GW
~1

,,
−=ψ , ijijij VW ,

1
,,

−=γ , 

)exp(sup ,0, tW ijtij ≥=β  and iijij GW 1
,,

−=ϖ  for 
ijNj ≠= ,,,1 L . Using previous definitions, )0()0( ς≤ie  

and ηα ≤ij ,  for all Nj ,,1 L= . From standard results on 
dwell-time conditions on switched system stability (Liberzon, 
2003; Efimov et al., 2013), Dτ  can be computed by 

)ln(max 1
,

1
,1

−−
≤≤ −= ijijNjD λβατ  (19) 

where 10 << λ  is a design constant defined such that 
0, ≥≤− ke kt k λη . Using the same mathematical development 

given in the proof of theorem 1 of (Efimov et al., 2013), the 
use of (19) leads to the following upper bound of the 
switched system (1), (2), (4) and (7)-(9) for all 0≥t : 

( )
( )( )refiiii

t
iii

yd

eeet D

ϖψδγλβ

ςργλργλβς τλ

++−++

+−≤
−

−−− −

1

)ln(25.0
1

1
1

11

)1(1

)0())ln(41()(
1

(20) 

with )(max ,2,1 jijiNji ψργψ += ≤≤ , jiNji ,1max ββ ≤≤= , 

jiNji ,1max γγ ≤≤=  and jiNji ,1max ϖϖ ≤≤= . The 
identification of (10) and (20) leads to the following algebraic 
relations: 

1
11 ))ln(4( ργλβλβ iiii eev −−−+=  (21) 

)ln(25.0 λµ −=i  (22) 

{ } ))1(1(max 1−−+= λβϖψγυ iii ii ,,  (23) 

Equations (21)-(23) complete the proof. ■ 

The proof of theorem 1 gives the dwell-time constant Dτ  
(see (19)) and iv , iµ  and iυ  are derived from (20). Using a 
bank of augmented-order detection filters, the enhanced error 
signals in a matched case should be less corrupted than those 
provided by classic Luenberger structures (Efimov et al., 
2013) in terms of disturbance attenuation and robustness to 
model uncertainty. This leads to an enhanced capability of 
estimator-based supervisory scheme (4), (7)-(9) to identify 
the correct operating mode and de facto reduce the possible 
chattering phenomenon. 

5. ACADEMIC EXAMPLE 

This section provides some numerical simulation to illustrate 
the proposed methodology. The model is taken from (Hou et 
al., 2010) and corresponds to the Highly MAneuverable 
Technology (HiMAT) aircraft-based benchmark. Here, we 
consider the linear model derived from the flying operating 
point that corresponds to an altitude of 2500 [ft] with a Mach 
number of 0.29 (see (Hou et al., 2010) for more details). The 
aircraft has two sensors to measure the pitch rate yq [rad/s] 
and the angle of attack yα [rad]. It also possesses three inputs: 
the elevons δe, elevators δs, and canard flaps δc. Two actuator 
faults are considered. Both are an abnormal gain variation 
(effectiveness loss of 50%) of one control channel leading to 
the following switched system 

)()()( tuBtxAtx ii +=& , 3,2,1=i  (24) 

where the state x is composed by the angle of attack and the 
pitch rate and T

cesu ),,( δδδ= . Each measure is corrupted by 
a noise of 0.1°. The matrices iA  and iB  denote the state-
space representations of the aircraft in fault-free ( 1=i ) and 
fault operating modes ( 3,2=i ). The index 2=i  and 3=i  

(18) 
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correspond to elevator and elevon malfunctions respectively. 
In healthy situations ( 1=i ), matrices are given by: 
 










−−
−−−

=








−
−

=
0369.5955.49948.7

01431.012245.017211.0
,

5077.1068.9

96528.00772.1
11 BA  

 

Three control laws possessing integral action are designed 
using a linear quadratic approach (Cieslak et al. 2014). Let 
the three detection filters (4) be now designed by means of an 
augmented Kalman filter (Garcia et al., 2002) to be robust 
against some flexible mode effects. Due to space limitation, 
we only provide the state-space representations of each filter: 



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















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−
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−−−

−
−

===

688.103116.0934.000

823.2331.4143.800

9905.00252.04017.100
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001010

321 FFF AAA  
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










−−
−−−

−
−

=

6884.00656.0000

823.29249.0037.5955.4995.7

9905.03245.00143.01225.0172.0

10000

01000

1FB  























−−
−−−

−
−

=

6884.00656.0000

823.29249.0037.5955.4997.3

9905.03245.00143.01225.0086.0

10000

01000

2FB  























−−
−−−

−
−

=

6884.00656.0000

823.29249.0037.5477.2995.7

9905.03245.00143.00612.0172.0

10000

01000

3FB  









=

0

0

00210

00021
1FC , 








=

0

0

0060

0006
2FC , 








=

0

0

00100

00010
3FC  

 

Following equations (11a)-(11c), the three above detection 
filters are reformulated. We obtain: 

















−
−

−
=

6739.100

0083.1100

3303.0010

1qA , 








−
−

=
4863.838.85154.13

4372.42644.48993.6
1J , 









=

162.120

2672.4.0
1L , 









−
−

=
4046.19482.3

0802.03972.0
1W , 








=

0

0

210

021
1qC ,  

 

















−
−

−
=

7093.89824.0

0112.10

0342.01

1yqB , 

















−−
−
−

=
952.11908.11186.19

2666.02412.03931.0

0515.00486.00788.0

1uqB , 

 

















−
−

−
=

6739.100

0083.1100

3303.0010

2qA , 








−
−

=
4863.838.87577.6

4372.42644.44497.3
2J , 









=

162.120

2672.4.0
2L , 









−
−

=
4013.01281.1

0229.01135.0
2W , 








=

0

0

60

06
2qC ,  

 

















−
−

−
=

7093.89824.0

0112.10

0342.01

2yqB , 

















−−
−
−

=
952.11908.11593.9

2666.02412.01966.0

0515.00486.00394.0

2uqB ,  

 

















−
−

−
=

6739.100

0083.1100

3303.0010

3qA , 








−
−

=
4863.819.45154.13

4372.41322.28993.6
3J , 









=

162.120

2672.4.0
3L , 









−
−

=
6689.08801.1

0382.01891.0
3W , 








=

0

0

100

010
3qC ,  

 

















−
−

−
=

7093.89824.0

0112.10

0342.01

3yqB , 

















−−
−
−

=
952.119543.5186.19

2666.01206.03931.0

0515.00243.00788.0

3uqB .  

 

Matrices iP  , 3,2,1=i  are next computed by using the 
Proposition 1. We have:  

















−−
−−
−−

=
43.246509.228222.36

2296.18606.17425.2

95.144353.130115.22

1P ,
















−−
−

−−
=

112.2622.24679.19

853.113476.104879.8

236.48981.4383.35

2P  

                     
















−−
−−
−−

=
4996.244108.119114.36

379.15318.00977.4

3283.151832.74976.22

3P  

 

Following the developments given in section 4, it can be 
easily verified that the stability of (13) for the three matched 
cases hold with the previous matrices iP . Hence, the dwell-
time can be evaluated by means of (19). By taking the design 
constant 95.0=λ , we get 16.3=Dτ  [s]. Note that the 
minimization of dwell-time is not considered in this example 
to focus on the main steps of the considered work. The 
interested can refer to (Efimov et al., 2013) for a mutual 
performance optimization problem over λ , controllers and 
detection filters. 
 

The supervisory FTC architecture depicted in Fig. 1 is then 
designed to assess the proposed scheme. The initial operating 
point is fixed to a reference attack angle of 7° and a reference 
pitch rate null. At t=20s, the reference of attack angle goes to 
2°. Elevon fault has been simulated between [15, 40] s and 
elevator malfunction between the time interval [70, 93] s. To 
emphasize the benefit of the proposed scheme, same 
simulations are performed when the system is only controlled 
by the nominal controller K1 (no FTC) and when the system 
is controlled by the proposed supervisory FTC approach. As 
it can be seen in Fig. 2, when the supervisory FTC 
architecture is not in place, the controlled system goes 
unstable for elevator fault. Furthermore, when supervisory 
FTC algorithm performs, the controlled system is stable and 
keeps acceptable performance level (null static error). In 
addition, it can be seen in Fig. 3 that there is no wrong 
decision of the bank of estimators to identify the current 
operating mode. 

6. CONCLUSION 

The problem of designing active FTC systems by means of 
an estimator-based supervisory control approach is studied. 
The main contribution of the proposed approach is the 
establishment of a formal stability proof based on dwell-time 
conditions when the current operating mode is identified by a 
bank of augmented-order detection filters, i.e. when the state 
of the detection filters does not correspond to the plant state 
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as in the classical observer-based approaches. This feature 
could help to avoid chattering phenomenon by an enhanced 
distinguishability between all possible operating modes. 
Further investigations are necessary to minimize the dwell-
time value within the proposed supervisory system and assess 
the proposed scheme on more representative benchmarks. 
 

 
 

 

 

 

 

 

 

 

 
 

Fig. 2 Angle of attack (top) and pitch rate (bottom) signals 
 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Identified mode (top) and enhanced error (bottom)  
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