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Abstract: Traditional visual servoing systems do not deal with the topic of moving objects tracking. 
When these systems are employed to track a moving object, depending on the object velocity, visual 
features can go out of the image, causing the fail of the tracking task. This occurs specially when the 
object and the robot are both stopped and then the object starts the movement. In this work, we have 
employed a retina camera based on Address Event Representation (AER) in order to use events as input 
in the visual servoing system. The events launched by the camera indicate a pixel movement. Event 
visual information is processed only at the moment it occurs, reducing the response time of visual 
servoing systems when they are used to track moving objects. 

Keywords: AER, asynchronous vision sensor, visual servoing, robot vision systems, spike events, image 
motion. 



1. INTRODUCTION 

One of the most valuable advantages of an image-based 
visual servoing scheme is its robustness to calibration errors, 
Espiau (1994). These systems have been proved to be robust 
to great errors in the camera intrinsic parameters estimation, 
but also to calibration errors between camera and robot 3D 
Cartesian space, Malis et al. (2010). Thus, these systems have 
been widely used in the literature for guiding a robot 
manipulator in unstructured workspaces, Chaumette et al. 
(2006). Nevertheless, there is a main parameter of these 
systems, which is often simplified: visual features. This 
simplification detracts image-based visual servoing from 
dealing with unstructured environments. 

In general, in classical visual servoing systems, features can 
be segments, points of edge, etc. based on gradient 
operations, Marchand et al. (2005). These features identify 
keypoints of the object in the scene and allow us to guide 
robots and generate trajectories between an initial pose and a 
desired pose. The object is usually a pattern with fiducial 
marks, Fiala (2010). Some efforts have been made to deal 
with this problem in the literature. By the end of 20th century, 
Janabi-Sharifi et al. (1997), proposed an automatic visual 
features selection method to increase the possibilities of the 
system. More recently, works like, Chaumette (2004) or, 
Kragic et al. (2001) tried to obtain different visual features 
like image moments or cue integration, which could be 
obtained directly from the object to be tracked. Nowadays, 
the topic continues being studied in the literature, Gratal et al. 
(2012). In this last work, Gratal et al. described a visual 
servoing scheme to track unknown objects by using a 3D 
model tracking based on virtual visual servoing.  

In this paper, we implement a classical image-based visual 
servoing system behaviour using Address Event 
Representation (AER) technology, Lichsteiner et al. (2008). 
In this case, we have changed the way in which the visual 
features are obtained. The used camera sensor is a retina 
camera DVS128, and its behaviour is very different to 
classical cameras based on CMOS or CCD sensor. With 
DVS128, features are not obtained from gradients in an 
image. They are computed from pixel-event. Then, a 
clustering process is carried out to obtain active visual 
features from pixel-events. The data stream is reduced by 
using the event-based control theory, Aström (2008). An 
event is something that occurs requiring some response. The 
basic idea is to communicate, compute, or control only when 
something significant occurs in the system. Event-based 
control has been applied to many fields. Sanchez et al. (2009) 
used events to control the level of a water tank. García et al 
(2013) proposed a visual controller based on events to avoid 
loss of features in the image. 

In addition, in indirect visual servoing systems, the joint pose 
of the robot is not controlled. A classical image-based visual 
servoing scheme controls the robot end-effector’s movement 
from the computation of the visual difference between any 
position of the features and the final one. Traditionally, visual 
servoing systems do not deal with moving objects, and only 
the robot is moved in the scene to achieve the desired pose. 

Visual servoing was born as a positioning technique, Espiau 
et al. (1992). An eye-in-hand technique is referred as a 
specific camera configuration where the camera is mounted 
at the robot’s end-effector. The knowledge of the fixed 
camera pose with respect to the robot’s end-effector allows us 
to talk about the end-effector velocity instead of the camera 
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velocity without loss of generality. The classical image-based 
visual servoing control law computes the camera velocity to 
minimize the error between the current position and the 
desired one, Chaumette et al. (2006). When the reference 
object (from which visual features are computed) is moving 
in the scene, the controller must take this movement into 
account. A new term is added to the control law. This new 
term must be estimated. One of the most used techniques to 
estimate this term is a Kalman filter, as it can be seen in a 
recent work of Liu et al. (2012). In early works, such as 
Cretual et al. (2001), authors proposed a method to do visual 
servoing based on movement. Firstly, they used geometric 
features retrieved by integration motion without changing the 
classical control laws. Secondly, they used a motion field to 
model features in image sequence. In those works, the 
amount of information to be processed was high due to the 
very dense map of features generated from motion field, if it 
is compared with classical visual systems that use only four 
features. To attach this problem and solve it, we have used a 
retina camera based on AER sensor. The pixels of an image 
are captured from AER sensor and they are only represented 
when those pixels have been affected by luminosity changes. 
If the pixel suffers changes, the pixel represents a keypoint of 
a moving object. The key is the small data volume generated 
by AER sensors in contrast to classic cameras which 
represents the information of all pixels in the sensor. 

The main goal of this work is to design a visual servoing 
system to guide a robot manipulator by tracking a moving 
object without fiducial markers, reducing the complexity of 
high-level computer vision algorithms in order to work in a 
real-time scope. After an initial step where the object starts its 
movement and the robot is stopped, this proposed system 
switches to a classical image-based visual servoing scheme to 
perform the tracking. 

The paper is structured as follows. Section 2 shows the basics 
of AER technology and an approach to select events in the 
frames. In Section 3, a strategy to determine how they can be 
used to obtain active visual features is presented along with 
the visual control system to track moving objects from these 
computed active visual features; Section 4 presents different 
experiments to validate the proposal; and finally, in Section 5 
the main conclusions are discussed. 

2. EVENT-FEATURES FOR ROBOT CONTROL   

2.1 Event Representation System: AER technology 

AER sensor generates digital images composed of 128 rows 
and 128 columns, so it has 16384 candidates to pixel-events. 
The value of each pixel is computed from the changes in 
luminosity as a brightness derivative in time. The changes in 
luminosity can be obtained when an object is moving in front 
of retina camera whenever the ambient light is not varying. In 
DVS128, two encoders (1 for rows and 1 for columns) are 
used to generate two packets composed of a code of 7 bits 
that will be transmitted. The code of each packet from an 
encoder represents the position of a pixel in a row and a 
column. Each packet from each encoder is sent using a 
parallel bus composed of 7 lines of communication to send 

all code simultaneously, a bit for each line. Nevertheless, 
AER technology in Dynamic Vision Sensors (DVS) only 
sends the code (the position of pixels) when the brightness of 
a pixel has changed in time. But also, the retina camera never 
transmits intensity of the pixels (value of brightness [0-255]), 
only the position of pixel which changes. The values of 
brightness cannot be obtained because they have been 
codified using Pulse Frequency Modulation (PFM).  

AER works in three steps. Firstly, the system counts the 
signal spikes. These spikes are used to determine the 
luminosity changes when the movement occurs. Secondly, 
the spike frequency is saved in a table in memory. The 
position index of the table represents the pixel position, row 
and column. Thus, the number of luminosity changes is 
associated to a pixel. Thereby, the retina camera digitizes the 
number of luminosity changes and then the pixel represents 
the number of times that a brightness changes and not the 
brightness values. Each pixel represents a spatial derivative in 
time of the intensity obtained from the moving objects in 
scene. This fact implies that only the information of moving 
objects can be seen in the resulting image. 

2.2 Classification and selection of events  

AER works in real-time scope. It processes the information 
captured in a continuous way. The information flow cannot 
be stopped. The implementation requires processing or 
discarding the acquired information. Thus, the computed 
events, their classifications and the visual features computed 
from events can be automatically self-corrected over time. 
Fig. 1 shows the approach to estimate visual features from 
motion represented by pixel-events computed from AER. 

Pixel-Events 
stream 

Calculation of 
Transition-

Events

Filtering from 
time

Clustering

Estimation of 
visual features

Event Map

Event-Clusters

ON/OFF 
Transitions

 

Fig. 1. Our method to classify events and estimate visual 
features 
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In Fig. 2, the dots are a series of pixel-events with a polarity 
either positive (labelled as ’ON’) or negative (labelled as 
‘OFF’). The polarity is positive when there is a positive 
change in brightness and, thus, a negative change in the 
contrast is detected. 

 

a) 

 

b) 

Fig. 2. a) Original AER image (without filter). b) Filtered 
image of a moving scene. 

Each pixel-event is represented by a tuple (tk, pk, xk, yk) where 
the scalar tk is the timestamp when the event is generated and 
it is measured in sec. The value pk is the polarity and it is ‘1’ 
when is ON and ‘0’ when is OFF. The coordinate xk, yk 
represents the position of the pixel-event in the frame. The 
index k=1…n where n is the number of pixel-events detected 
in the frame.  

In each frame, pixel-events whose activation is decorrelated 
with the scene can appear. Sometimes, this variability can be 
defined as an unpredictable noise. This random noise occurs 
due to the silicon substrate characteristics of the circuits of 
the hardware device, DVS128. This noise is attenuated using 
a median filter. 

In our approach, an idea similar to Censi, et al. (2013) has 
been used. Thus, we look for both ON-OFF and OFF-ON 
transitions from a frame sequence. Each transition is 
modelled as (t, t, p, xk, yk) where t is the instant of time at 
which a transition is detected, the time interval t=tk-tk-j is the 
transition time and it represents the elapsed time to generate a 
transition from the generation of a pixel-event until the 
instant when this pixel-event changes its polarity and p 
identifies the type of two transitions. The transition history 
represents the state of a particular pixel-event over time (Fig. 
3). 

Pixel-event
(tk,pk,xk,yk)

Transition-event
( t, t p,xk,yk)

OFFONONOFFOFFONONON

pk=1 pk=1pk=0

p=ON-OFF

t=tk+4 - tk

tk-3 tk-2 tk-1 tk tk+1 tk+2 tk+3 tk+4

p=OFF-ON p=ON-OFF

t  

Fig. 3.Calculation of transition-events from each pixel-events 
stream 

In order to classify events, our method uses the event 
transition and its associated time. Thus, a high transition time 
indicates a pixel in the frame with slow movements. Further a 
low transition time indicates that the pixel is moving quickly. 

Then, our method filters each frame to show only the 
transitions selected according to the speed of movement 
represented in a frame sequence. Hence, we can easily find 
active regions, which represent movement in a frame from a 
real dynamic scene. 

 


 


otherwise

yxpte t
kktk 0

,1
),,,,( 21 

  (1) 

In our case, two thresholds are used to detect the type of 
movement. Using (1), these two thresholds allow us to filter 
high speed if the transition time is low, and slow speed if the 
transition time is high or a speed ranging between both 
thresholds. Thereby, for transition (tk, t, p, xk, yk) the event 
is labelled according to (1). 

The experiment in Fig. 4 and 5 consists of an observation of 
two objects moving at a constant lineal velocity. The surface 
of the objects is homogeneous (they have the same texture 
and colour) but they are moved at different lineal velocities 
and different trajectories in a plane. The background is a 
black surface and the objects are two autonomous moving 
robots programmed from open code. In this experiment, the 
detection of the objects is computed from different known 
speeds obtained by driving the DC motor that moves the 
moving robots.  

Firstly, Fig. 4 shows the ability of the proposed filter to 
analyse the quantity of movement in real-time using the 
continuous train of pixel-events from the camera. Fig. 4a 
shows the scene without filtering. Fig. 4b and Fig. 4c show 
the detection of pixel-events, which represent the surfaces of 
each mobile robot at high velocity and at low velocity, 
respectively. The objects are computed by accumulating 
pixel-events for a specific duration. This duration is 
dependent on the movement velocity. The fast movement 
provides the best estimation of the object position due to a 
dense and accurate events map. 

In order to cluster the event-image, a map based on 3-D array 
is computed. The map is used to save references among 
groups having similar timestamp and spatial closeness. 
Thereby, C={C1,…,Cm} are the groups of events where n 
represents the number of them. The number of groups 
detected is dependent on the thresholds used in (1). So, they 
are dependent on the timestamp when they are detected. In 
our case, m=3 because two thresholds were used. These 
clusters represent the background (objects without 
movement), foreground (objects which are moving very 
quickly in front of the camera) and other objects that are 
moving slowly far away from the camera. Each cluster, Ci, is 
defined as: 
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Fig. 4. Events selection from AER images. a) All events.  b) High line velocity. c) Low line velocity 
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In order to obtain each cluster, a comparison between the 
event’s timestamp, t, with the average timestamp of the 
neighbouring (xk+dx,yk+dy) was done. Thus, an event is an 
item of the cluster supposing it satisfies (3) and (4). That is, if 
the average timestamp is less than a tolerance value, , and if 
the position of the event is in a neighbouring with radius, r 
pixels. 

In the experiment shown in Fig. 4 and 5, we measure the 
ability for the filtering of movement from some objects 
moving at a constant but different velocity. The constraints 
on the timestamps of the events applied from thresholds 
allow us to be able to estimate the position of the objects at 
each instant of time.  
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Fig. 5. Events integrated in each object shown in Fig. 4 

Fig. 5 shows the number of events for the scene without filter 
and for each detected event-cluster for a sequence of frames. 
First and last frames have been erased to measure the number 
of events. In this case, the detected event-clusters represent 
the grouped pixel-events for each object with movement. In 
addition, the average and standard deviation have been drawn 
in the sequence of movement in order to estimate the 
observed errors. The position errors are due to variability in 
the number of events computed from two consecutive times, 
tk and tk+1. Although the objects are moved at constant speed, 
the number of events of its clusters is changed. Those take 
place because the sensor emits a noise impulse then 
spontaneous events occur, randomly. In addition, optic 
characteristics, lens mounted on the sensor, the mobile 
surface geometry for each object and how these surfaces 
reflect the light when the position and orientation changes 
determine this error, too.  

3. VISUAL FEATURES AND TRACKING SYSTEM 

3.1 Active visual features from selected events 

The real-time processing to compute the events limits the 
quality and precision to obtain features to be used in visual 
servoing systems. In visual servoing systems, the features 
must be obtained with robustness, accurately and easily. This 
way, good result is guaranteed and a success guide of robots 

can be done using the extracted features. That is achieved 
because the visual features are computed from fiducial 
markers in the image. A disadvantage is the high-level image 
processing slowing down the behaviour of the visual servoing 
system based on image. To solve that, in this paper, the visual 
features are previously computed from selected events (Fig. 
6). These events must satisfy several criteria among all events 
detected by the retina camera. The criteria are discussed 
below. 

Each cluster represents two groups of survivor pixel-event 
transitions such as ON-OFF and OFF-ON. These two groups 
define a solid object. First step is the computation of the 
position of the cluster. The position is met by measuring the 
pixel-event distribution of the two groups. This objective is 
achieved by computing the median parameter in each case. 
The median provides better detection that the mean parameter 
because it measures the central tendency. The median is not 
influenced by noise in the cluster. It is very much robust. The 
noise in the cluster can be identified by few extreme values or 
bad definition in the contours of groups. The Cartesian 
coordinates of these two means define the visual features as 
two points in each frame.  

In addition, the line segment used to connect these points 
determines the major axis of the object, and the angle of this 
axis defines the orientation of the object. In order to obtain 
two additional points as visual features, the middle point of 
the major axis is computed. Then a new line segment which 
is at a right angle with the major axis is computed from the 
intersection in that point. The two additional features are two 
virtual points located at the same distance from the middle 
point. Therefore, the visual points are the endpoints of the 
two axes (Fig. 6). 
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Fig. 6. Computation of Active Visual features. OFF-ON and 
ON-OFF events are represented by blue and black asterisks. 

3.2 Visual servoing 

Image-based visual servoing uses only visual features 
extracted from the acquired images, s, to control the robot. 
Therefore, these controllers do not need neither a complete  
3-D model of the scene nor a perfect camera calibration. The 
desired visual features, sd, are obtained from a desired final 
position of the robot in the scene. Image-based visual 
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servoing controllers minimize the error between any robot 
position and the goal position by minimizing the error of the 
visual features computed from the images acquired at each 
robot position, e = (s – sd). To minimize exponentially this 
error e, a proportional control law is used: 

 
 = -λe e  (5) 

 
where λ is a proportional gain. 

In a basic image-based visual servoing approach, the velocity 
of the camera, vc is the command input for controlling the 
robot movements. To obtain the control law, the interaction 
matrix, Ls, must be firstly presented. Chaumette et al. (2006) 
denoted this concept. Interaction matrix relates the variations 
of the visual features in the image with the variations of the 
poses of the camera in the 3D space, i.e. its velocity. 

 
 s c=s L v  (6) 

 
From Equation (5) and Equation (6), the velocity of the 
camera to exponentially minimize the error in the image is 
obtained: 

 

 +
c s d

ˆ= -λ -v L s s
 (7) 

 

where ˆ+
sL  is the pseudoinverse of an approximation of the 

interaction matrix. This camera velocity is then transformed 
to obtain the velocity to be applied to the end-effector of the 
robot. To do this, the constant relation between the camera 
and the end-effector is used in a camera-in-hand 
configuration (i.e., the camera is mounted at the end-effector 
of the robot). 

In this work, we have developed a tracking system for objects 
moving in the robot’s workspace. The tracking has been 
divided in three different phases (see Fig. 7). 

A first stage permits to obtain an initial time, τt, that can be 
used to filter the object which must been tracked (see Section 
2). 

The second stage guides the robot manipulator in the tracking 
of the initial movement of the object (which may produce a 
fail of a classical visual servoing scheme by losing the visual 
features in the image). Active visual features (AVF) are used 
in the control law depicted in (7) in order to perform a 
quickly native tracking of the initial movement of the object. 
The proposal allows the system to guide the robot when the 
object radically changes its velocity under conditions where 
classical image-based visual servoing can lose its visual 
features. 

Finally, when active visual features are lost, a classical 
image-based visual servoing continues the tracking of the 
moving object.  

The first stage has been detailed in Section 2. For the second 
step, active visual features, s, are obtained as described in 

Section 3.1. The desired visual features, sd, are stored in an 
off-line step positioning the visual features in the middle of  

t is not defined t

t is 
computed to 

filter

i0 ... ... ik ... Ik+x ...

AVF are lost

Motion estimation Robot guided from AVF Classic Visual Servoing

AVF 
computed

Analysis Event-
Histogram 

 

Fig. 7. Scheme of the tracking system proposed  

the image. As visual features are obtained from the 
movement of the object, the set of desired visual features are 
obtained by moving the object but not the manipulator with 
the camera. For our experiments, the camera movements 
have been restricted to a plane parallel to a table where the 
object is moving. Thus, the movement establishes an area for 
the object and with this information the desired visual 
features are stored in the middle of the image plane. When 
the objects move through the scene, the camera launches the 
events and a new set of visual features, s, is computed. This 
feedback permits to obtain a new robot’s end-effector 
velocity. The new velocity is restricted to the translational 
velocities in a parallel plane to the table (X, Y) and a 
rotational velocity for the Z axis. 

In order to switch from first stage to the second one, a 
histogram as shown in Fig 8 is used. Histogram represents 
the number of events for each transition time in the image. 

  

 

a) b) c) 

Fig. 8. Histograms show the quality of events. Each 
histogram represents elements number in y-axis and delta-
time in x-axis. 

When the mobile robot is moving and robot is stopped, the 
robot motion generates events whose associated transition is 
dominant in the event image (Fig. 8a). This time permits to 
choose, t,, to better filter the event image and to obtain the 
pixel-event belonging to the robot motion. Then AVF can be 
computed with more accuracy. Thereby, the mobile robot can 
be tracked by the robot manipulator. However, through the 
guided process, the manipulator changes the velocity to track 
the AVF because the features obtained are closer to the 
desired one at each iteration. Relative speed between 
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manipulator and mobile robot is smaller so the histogram 
changes as shown in Fig. 8b. When the relative speed 
approaches to zero, the histogram begins to be homogenous 
(Fig. 8c) and consequently the AVF are lost. Once the AVF 
are lost, the system switches to an image-based visual 
servoing like in equation (7). Visual features are obtained 
from a conventional camera located at the robot’s end-
effector. The centre of gravity of the mobile robot is used to 
obtain the four points in the image, similarly to the technique 
employed in Section 3.1. 

4. RESULTS AND DISCUSSION 

The system architecture to test the proposal is based on a 
robot manipulator of 7 degrees of freedom (a Mitsubishi 
PA10). Two cameras have been attached at its end-effector: 
an AER camera (DVS128) and a conventional Gigabit 
Ethernet camera (Mikrotron MC1324). The first camera is 
employed to guide the manipulator in the second stage, where 
we have proposed an algorithm to track a moving object 
using the events provided by this kind of cameras. The 
second camera is used to guide the robot in the third phase, 
where the robot is guided with a classical image-based visual  
servoing scheme. A mobile robot developed by Goshield has 
been used to represent the moving object in the scene with 
different velocities. The test system architecture is depicted in 
Fig. 9. 

 

Fig. 9. Test system architecture 

Fig. 10 represents an experiment where the mobile robot 
controlled crosses the manipulator’s workspace. In order to 
have a better comprehension of the active visual features 
extraction, this figure shows a sequence obtained from the 
camera located at the manipulator in a parallel plane to the 
table. The manipulator has been stopped in order to better see 
the mobile robot movement through the image plane. This 
experiment shows the evolution of the active visual features 
through the image. This evolution can be then tracked with 
the proposed scheme described in Section 3.2. 

5. CONCLUSIONS 

This paper describes an event-based visual servoing system. 
Visual features for the robot guidance are obtained without 

fiducial marks in the scene. Traditional visual servoing use a 
pattern-object with marks to easily extract visual features 
using high-level computer vision techniques and to determine 
its position in the image. On the contrary, the approach 
shown in this paper uses the measurement of motion to detect 
the position of the object. Thus, a pattern-object is not 
required in the scene. In this work we have used a retina 
camera based on AER in order to compute the movements 
through events as input in the visual servoing system. This 
approach only uses event visual information and at the 
moment they occur for reducing the response time. The 
number of events depends on the latency, transition time and 
type of pixel-events (ON, OFF). In addition, the number of 
events depends on the speed of motion in the scene. In this 
paper, we have evaluated the use of this technology for 
tracking the initial motion of mobile robots from a camera 
mounted at the end of a robot manipulator. 

The developments shown in this paper can be used directly to 
perform a pick-and-place task. Now, we are working on 
extending the second stage to completely control the robot 
manipulator through only the events camera. Information of 
the movement can be directly retrieved from the AER 
camera. This information can be employed directly in the 
control law where other works employ an estimate of it. 
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Fig. 10. a) Detection of Active Visual features from Event-Clusters (outside). b) Evolution of features for each frame (inside). 
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