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Abstract: Battery Energy Storage Systems (BESS) are very effective means of supporting
system frequency by providing fast response to power imbalances in the grid. However, BESS are
costly, and careful system design and operation strategies are needed in order to generate revenue
for the system owner. We propose control strategies which will help to maintain BESS’s State
of Charge (SoC) in the optimal range and slow down battery aging significantly. A validation of
these strategies using data from ENTSO-E (for the German regulation market) in Continental
Europe and the PJM interconnection in the USA is presented in the results section.

1. INTRODUCTION

In recent years many countries have opened ancillary ser-
vice markets, and system services such as frequency regu-
lation have become commercial. After passing a technical
pre-qualification process, suppliers may participate in the
regulation market. BESS can be a very effective means
of supporting system frequency. By charge or discharge,
BESS can provide regulation power to the grid via power
electronic inverters with very fast response time (<20 ms),
making BESS a much better choice in terms of perfor-
mance compared to traditional Pumped Hydro Storage
(PHS) units. In Oudalov et al. [2006] and Mercier et al.
[2009], BESS is shown to have a high value in supply
frequency control power in utility scale applications.

One characteristic in providing frequency regulation is the
inflexibility of operation. During the regulation period,
units have to follow either self-measured system frequency
deviations or control signals provided by the transmission
system operator (TSO). Failure in signal following can
result in payment reduction or disqualification of service.
These signals are not guaranteed to be zero-mean and
losses are inherent in BESS, in which case state of charge
(SoC) restoration must be performed due to BESS’s capac-
ity limitation. Though increment in installation capacity
provides BESS’s with higher capability to sustain short-
time deviations, over dimensioned BESS energy capacity
may be too costly due to degradation. In battery degra-
dation, part of the capacity fading occurs spontaneously
(See Vetter et al. [2005]), therefore with the same control
signal, a larger BESS will result in lower utilization of its
battery cells. Thus BESS has to be reasonably sized, while
certain control methods have to be used to restore and
maintain BESS’s SoC without creating large disturbance
on the unit’s operation point.

In Oudalov et al. [2007], a simple method is proposed to
control SoC in primary frequency control, however this
method does not grant BESS the ability to sustain large

frequency deviations. Thus we propose control strategies
which are more flexible and robust against worst-cases.
Validations of these strategies using data from ENTSO-
E (German market) in Continental Europe and PJM in-
terconnection in the USA is presented in this paper. It
starts by giving an overview of relevant regulation mar-
ket backgrounds in Section II, followed by the proposed
control strategies in Section III. The analysis methods are
introduced in Section IV, and strategies validation results
are presented in Section V. In the end, conclusions are
given in Section VI.

2. REGULATORY BACKGROUND

2.1 Primary Control in ENTSO-E

In ENTSO-E, primary frequency control (PFC) describes
the first tier of frequency control. Participating units
provide a regulation power proportional to the deviation
from nominal frequency. Full activation is at 200 mHz
with a maximum delay of 30 seconds. A no-activation
deadband of 20 mHz (±10 mHz) is allowed (see Rebours
et al. [2007]). The tendering period in Germany is one
week, and payment is only made with respect to the reserve
power capacity.

2.2 Fast Regulation in PJM

In the PJM regulation market, the secondary control
signal is split into a dynamic control signal (RegD) and
a traditional control signal (RegA). RegD is the high-pass
filtered part of the area control error (ACE), and RegA
is the low-pass filtered part of ACE. RegD has a larger
signal ramp rate and a smaller energy deviation compared
to RegA, and is designed for fast-responding storage units
(PJM [2012]).

PJM recently introduced the two-part offer policy in its
regulation market. In this scheme, regulation units are
paid by their regulation capability (reserve) as well as their
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Fig. 1. Comparison of PFC in EU and RegD in PJM.

performance in following regulation signals. The tender
offer is divided into a capability offer and a performance
offer, and the regulation credit is awarded based on the
capability clearing price (RMCCP) and the performance
clearing price (RMPCP). A regulation unit’s output is
evaluated with respect to the control signal it received
in terms of correlation, delay, and precision. The result
is recorded as performance score scaled between 0 to 1,
and is used in market clearing as

Regulation Credit = Capability · (RMCCP + RMPCP·
Actual Mileage ·Actual Performance Score) , (1)

where Actual Mileage is the absolute sum of movement of
the regulation signal during the payment period (details
are explained in PJM [2012]). For the RegA signal the
Mileage is normally about 5 to 6 ∆Pn per month, and for
the RegD signal it is around 16 ∆Pn.

2.3 Regulation Signal Comparison

In Fig. 1, the PFC signal in ENTSO-E and RegD signal
in PJM are compared in terms of power, and energy. Note
that these two signals are not identical since they belong
to different tiers in the ancillary service framework, while
comparisons are made only to analyze their stresses on
BESS operations. In Fig. 1a, the statistic of requested
power is shown, and Fig. 1b shows the statistic of regu-
lation energy throughput over one deviation event (starts
when the regulation signal goes across zero point till it
returns). The unit in both plots is in nominal power (Pn).

RegD signal shows a severer situation in either cases, with
an average absolute regulation power of 0.27Pn, while in
PFC the average power is only 0.08Pn. However due to the
filtering mechanism, the highest deviation energy in RegD
signal is limited to 0.23Pnh, while in PFC there are several
cases for which the energy deviation goes above 0.5Pnh.

Last market 
clearance

Market 
clearance

Minimum
power

t_md t_bm

P_bm

t_ms
time

Power
P_bs Increment

step

Delivery
start

Delivery
end

Mittwoch, 23. Oktober 13

Fig. 2. Generalized intraday market regulations.

3. SOC CONTROL STRATEGIES

3.1 Intraday Bidding Control

To maintain BESS’s SoC and ensure the regulation per-
formance, a solution is presented by participating in the
intraday energy market. In this method, market bids are
determined according to the BESS’s condition. Energy
is purchased from the intraday market to charge up the
battery if SoC is low, or sold if SoC is high. Upon power
delivery, the operation point of BESS is set as

Pext = PAS + Pbid, (2)

where Pext is the extracted power from BESS, PAS is the
power required by the regulation, and Pbid is the power
delivered from/to the market. This allows the corrective
control of SoC level while the following of the regulation
signal can be undisturbed.

Intraday energy market allows a continuous trading of
power contracts. Though market regulations vary with
different operators, it can be generalized as following (a
graph illustration is shown in Fig. 2):

• Market power is physically delivered with a certain
delay (tmd) after the market clearance,

• A certain step time (tms) exists between one market
clearance and the next one,

• Contract power values are required with a minimum
absolute value (Pbm), and an increment step (Pbs),

• Contracts usually have a minimum duration (tbm).

Based on the generalized market regulations, a propor-
tional controller is designed to determine the value of
power bids at each market clearance. With this method in-
stant contract clearing is assumed. The duration of power
contracts are always set to the minimum duration tbm.
At each trading action, an SoC prediction (σp) is made
over the horizon (tmd + tbm/2) to predict the SoC level
at the middle of the expected delivery. Then the controller
determines the value of the bid from the difference between
the prediction and the reference SoC (σref ) as

Pbid =
EBESS
tp

(σref − σp) , (3)

where σref is the reference SoC level, EBESS is the energy
size of the BESS, and tp is the controller’s time coefficient.
tp represents the time that the SoC can be restored to the
reference level by the contracted power after the delivery
starts, ignoring deviations taken place after the market
clearance. Thus tp should be chosen at least no smaller
than the duration of the bid to avoid SoC exceeding the
reference level. The result from the controller needs to be
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floored (or capped if the result is negative) to the nearest
allowed bidding power by the regulation market.

3.2 GM(1,1) SoC Predictor

In this work a SoC predictor based on grey system theory
(See Wen [2004]) is developed to fulfill the prediction task
in the intraday bidding control strategy. GM(1,1), or called
”Grey Model First Order One Variable”, is a time series
forecasting model only applicable to non-negative data
sets. For a given data set X(0) with a length of k samples

X(0) = (x(0)(1), x(0)(2), . . . , x(0)(k)) , (4)

the prediction x
(0)
p over the horizon H at time step k is

shown as

x(0)p (k +H) = [x(0)(1)− b

a
]e−a(k+H−1)(1− ea) , (5)

where a and b are model coefficients calculated from the
input series X(0), methods are shown in Kayacan et al.
[2010]. In Khalid and Savkin [2010], the GM(1,1) model
is used to forecast short term (6 seconds) frequency varia-
tions. However to use the predictor in intraday bidding
control, the prediction horizon is much larger (around
one hour). Thus to achieve higher accuracy, SoC predic-
tions are made directly using recorded SoC series. To use
the GM(1,1) model for SoC prediction, the accumulated
amount of energy delivered from or to the intraday market
is recorded, and removed from the SoC profile (σ) to obtain
an uncontrolled “raw” SoC profile (σ′), namely

σ′(k) = σ(k)−
k∑
i=1

Pbidts , (6)

where ts is the sampling time of operation. σ′ shows the
natural variation of regulation energy throughput, and
should be used for prediction in order to eliminate control
effects. An offset δσ is added to σ′ before prediction and
removed from the result to avoid negative values. The
prediction at time step k can be expressed as

σp(k +H) =[σ′(k −H) + δσ −
b

a
]e−a(2H)(1− ea)

− δσ +

k+H∑
i=1

P ′mts , (7)

in which a and b are calculated from the series (σ′(k −
H), . . . , σ(k)) 1 .

3.3 Averaging SoC Control

In some regulation markets, for example PJM, regulation
units are not required to strictly follow control signals.
In these cases more flexible control methods can be used
to control BESS’s SoC. In this work, a moving average
control method (See Borsche et al. [2013]) is used. The

1 Various profile lengths are tested for prediction, the best result is
achieved with profile length equal to prediction horizon

method averages battery’s net energy consumption over
an averaging period (a) and set the working point (PWP )
of the battery accordingly after a certain delay (d). For
time step k, this mechanism can be explained as

PWP (k + d) =

∑j=k−a
k (−PAS(j) + Ploss(j))

a
, (8)

where PAS is the demand from ancillary services and Ploss
is the power loss of the battery. Thus at time step k + d,
the extracted (output) power (Pext) from the battery will
be

Pext(k + d) = PAS(k + d) + PWP (k + d) . (9)

However, to be compatible with BESS’s power and SoC
limitation, this method is modified as

PWP (k + d) =

∑j=k−a
k (−P limAS (j) + Ploss(j))

a
, (10)

where P limAS is the adjusted ancillary service demand power
due to BESS’s power and energy limitation, and can be
calculated as

P limAS (k) = P limext (k)− PWP (k) , (11)

where P limext is the adjusted output power from the battery.
P limext can be calculated first by capping Pext with BESS’s
power limitation

Pext′(Pext) =


Pn if Pext > Pn
−Pn if Pext < −Pn
Pext else

, (12)

and then the result is capped with BESS’s SoC limitation
(σup ≤ σ ≤ σdown) to obtain P limext

P limext (σ, Pext′) =


0 if σ > σup and Pext′ < 0

0 if σ < σdown and Pext′ > 0

Pext′ else

.

(13)

4. ANALYSIS METHOD

4.1 Degradation Model

To evaluate BESS’s degradation cost, a linearized semi-
empirical capacity degradation model developed based on
Millner [2010] and experimental data is used. In the model,
battery ageing life (L) is decoupled into cycling ageing
(Lcyc) and calendar ageing (Lcal), plus the degradation
damage already occurred in previous operations (Lprev).
The model takes the SoC (σ) and cell temperature (T )
series as well as the time duration (tfaded) of a BESS
operation. The two series are processed using the rainflow
cycle-counting algorithm (Downing and Socie [1982]) to
count the number of cycles (N) as well as the SoC (σ),
Depth of Discharge (DoD, δ), and temperature (T ) of
each counted cycle. The cycle counting results are used
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Fig. 3. Battery degradation impacts caused by DoD, SoC,
temperature and ageing.

to evaluate the cycling damage, while tfaded as well as the

profile average SoC (σ) and temperature (T ) are used to
calculate the calendar ageing, shown as

L = Lcyc(σ, δ, T , N) + Lcal(σ, T , tfaded) + Lprev , (14)

in which

Lcyc =

N∑
i=1

fδ(δi) · fσ(σi) · fT (Ti) , (15)

and

Lcal = kcalfσ(σ)fT (T )t , (16)

where kcal is the calendar ageing coefficient, and fδ, fσ, fT
are stress factor models of DoD, SoC, and temperature,
respectively (shown in Fig. 3).

4.2 Simulation Model

The simulation model is used to calculate the SoC vari-
ation during BESS operation simulation. The SoC is up-
dated at each simulation time step as

σ(k + 1) = σ(k)− Its
QBESS

, (17)

where I is the current extracted from the BESS, and
QBESS is BESS’s charge capacity (usually in Ah). Current
offers a more accurate indication of SoC variation in
batteries than output power, and can be calculated from
a battery’s efficiency model

Voc(σ)Icell = I2cellRo(σ, T, Icell) + Pext , (18)

where Icell is the cell current, Voc is the open circuit
cell voltage, and Ro is cell inner resistance. All transient
behaviors are ignored in this model. Icell can be calculated
from the number of parallel connected cells in BESS. Voc
andRo are dynamic variables depending on cell’s condition
(SoC, temperature, charge/discharge), and models from
Lam et al. [2011] are used in this work. When ignoring cell

efficiency (Voc = Vnom, Ro = 0), the simulation model can
be simplified as

σ(k + 1) = σ(k)− Pextts
EBESS

, (19)

where EBESS is BESS’s energy capacity.

4.3 Pricing Setup

To analyze BESS’s revenue in providing regulation ser-
vices, first the BESS’s cost is modeled as

• Lithium-ion battery cell price in 2012 was 800 $/kWh,
and is estimated to linearly decreases to 200 $/kWh
by 2032 2 ,

• Lithium-ion battery cell end of life (EoL) = 80 %
rated capacity,

• BESS equipment cost except cells (including con-
struction, converters, cooling system, etc): 1.2 M$ per
MW, 20 years lifespan,

• Electricity cost: 50 $/MWh.

In which after the installation of the BESS, only the bat-
tery cells are replaced once they reached the 80% EoL, un-
til the entire system reaches the 20 years lifetime. Lithium-
ion battery systems require no maintenance, and only cool-
ing is considered. The cooling cost is modeled assuming
all generated heating energies (Eheat) are neutralized by
the cooling system with a cooling power efficiency of 50%,
shown as

Cooling Cost =
1

0.5
· Eheat · 50$/MWh . (20)

On the market side, the intraday contract price is fixed
at 50 $/MWh (same for selling and buying). The PFC
payment price in EU is set to 20 $/MW·h, averaged from
regelleistung.net 3 . In the PJM regulation market, the
real time recorded RMCCP and RMPCP price series are
used. The average value of RMCCP is 20 $/MW·h, and for
RMPCP the value is 6 $/∆MW.

5. SIMULATION RESULTS

5.1 ENTSO-E Case

BESS PFC simulations are performed with the intraday
bidding controller and the GM(1,1) SoC predictor. The
time coefficient tp is set to max((tmd + tbm)/2, tbm) to
increase controller’s tolerance on large prediction errors
due to the high prediction horizon. Simplified German
intraday market policy (tmd = 45 m, tms = 15 m, tbm =
15 m) with 100% bid success rate is used, and the minimum
bidding value is set to 100 kWh, scaled 10 times down
from the 1 MW requirement in the German market. The
frequency profile from Feb 01, 2011 to Dec 30, 2011 is used,
and BESS temperature is assumed to be a constant 25◦C.

First, regulation energy throughput simulation is per-
formed. An example of the simulation result is shown in
2 Source: Bloomberg New Energy Finance (bnef.com/
InsightDownload/7028/pdf/)
3 The transparency platform of the German transmission system
operators (www.regelleistung.net)
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Fig. 4. Example of regulation energy throughput simula-
tion with market SoC control and GM(1,1) predictor.
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Fig. 5. SoC in PFC simulation with battery efficiency
(0.6Pnh size, profile: 2011/11/01 - 2011/11/30).

Fig. 4, in which variation of regulation energy, energy
prediction and the intraday market power are included.
The minimal energy size of the battery obtained from the
yearly simulation is 0.45 Pnh, corresponding to 0.45 MWh
with 1 MW PFC reserve.

The energy throughput simulation is also performed with
different market regulations. It is assumed in the sim-
ulations that the duration of power contracts is always
equal to the period of market clearance (tms ≡ tbm). The
round-trip battery efficiency is η2 = 0.9, and SoC level
is controlled between 10% to 90%. The resulting BESS
sizes with respect to different market delays and contract
durations is shown in Fig. 6. The fact that the BESS size
increases linearly with larger contract duration is due to
that BESS is not able to quickly adjust its operation point
and thus has to sustain longer deviations. The BESS size
also increases with market power delay, which is mainly
due to the larger errors in the SoC prediction, while in
the simulation with ideal forecast the BESS size results
showed no dependences on the market delay.

Simulation with battery efficiency model is performed for
providing 1MW reserve with the minimal battery size of
0.6 MWh. During the simulation, 261.6 MWh energy is
discharged from the BESS, while 264.9 MWh is charged,
and 3.3 MWh of heat is generated by the BESS. 144.3
MWh energy is purchased from the intraday market,
and 136.0 MWh is sold, giving a net energy flow of 8.6
MWh. All power outputs are below the 1 MW system
rating throughout all simulations. The resulting linearized
capacity degradation is 3.43%, corresponding to a loss of
21 kWh in battery cells. The SoC simulation result of
November, in which the largest SoC deviation happened,
is shown in Fig. 5.
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Fig. 7. SoC in PJM simulation with battery efficiency
(0.6Pnh size, profile: 2012/12/18 - 2013/01/18).

5.2 PJM Interconnection Case

In the PJM RegD case, simulations are performed with the
battery efficiency model and constant BESS temperature
(25◦C). The moving average delay d is fixed at 15 minutes,
meaning compensating operations are made at secondary
control timescale. The averaging period a includes 5, 15,
60, or 120 minutes, and for each value of a a simulation is
performed with an appropriate BESS size. The regulation
capability is set to 1 MW. The RegD profile from Dec
18, 2012 to Jan 18, 2013 is used, with a total duration of
32 days, and the average signal mileage is 16.9. The SoC
result of the simulation with 0.6 MWh/MW BESS size (a
= 60 minutes) is shown in Fig. 7.

At each simulation, the linearized capacity degradation is
estimated. The performance score and the payment credit
are calculated hourly and their average is shown in the
following table as well as other parameters.

Table 1. PJM RegD Simulation Results (20121218-20130118)

Case 1 Case 2 Case 3 Case 4

BESS Size
(MWh/MW) 0.20 0.33 0.60 1.00

Avg. period
(minutes) 5 15 60 120

Performance
Score 0.9 0.96 0.99 0.99

Capacity
Degradation(%) 2.77 1.66 1.14 0.84

Heating
Energy(MWh) 16.81 8.07 3.37 2.50

Average
Credit($/h) 113 120 123 123
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The results show a generally good regulation performance
with a score between 0.9 to 0.99, while the average per-
formance score in the PJM regulation market was around
0.7 to 0.8 4 . With a shorter averaging period, the BESS
adjusts its operating point more aggressively and thus
results in a lower performance score. And the degradation
is more severe due to smaller battery size and more intense
operation.

5.3 Revenue Analysis

Net present value (NPV) revenue analysis is performed for
both simulation cases with the established pricing and a
discount rate of 6%. The BESS size is 0.6 MWh and the
regulation capability is 1 MW in both cases. Regulation
payments are assumed to be proportional to BESS’s state
of health (SoH), while the cost includes installation, cell
replacement, cooling and intraday market transactions.
Based on the simulation results, battery cells are replaced
every 7 years in the ENTSO-E PFC case, and every 2 years
in the PJM RegD case.

The result shows a much more profitable situation in
providing RegD regulation in PJM, with a system payback
time in 3 years, while the ENTSO-E PFC case is shown
to not be profitable. This is mainly due to the different
levels of reserve capacity payments. Regulation payments
from PJM are roughly 6 times higher compared to PFC in
ENTSO-E.

6. CONCLUSION

In this paper, control strategies aiming at maintaining
BESS’s SoC level in frequency regulation applications
are presented. An intraday market based SoC control
method is proposed, with which BESS’s operation can be
undisturbed when its SoC being restored, and a GM(1,1)
based SoC predictor is developed to offer forecasts for the
controller. An averaging SoC control method is shown as
an alternative choice when certain flexibilities are allowed
in providing regulation.

Regulation simulations are performed for providing regu-
lation in Germany and in PJM, USA. With the proposed
control strategies, a BESS size of 0.6Pnh can be enough for
both cases. By modeling the degradation as well as other
cost factors, NPV revenue analysis shows a much more
profitable case in PJM compared to Germany. This result
4 Source: http://www.pjm.com/markets-and-operations/

ancillary-services/mkt-based-regulation.aspx (last accessed:
2013-08-21)

implies that to introduce BESS into existing ancillary
service frameworks, regulation market polices must be ad-
justed to make use of the fast responding characteristic of
BESS, and to sufficiently compensate the cell degradation
cost which are still quite high at present.
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