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Abstract: Mathematical models of human gas exchange may support clinicians in interpreting a patient’s 

respiratory state during mechanical ventilation. Patient-specific parameters based on measured data under 

different clinical settings, e.g. various combinations of inspired oxygen fraction (FiO2) and minute 

ventilation (MV), enable these models to predict clinically relevant parameters such as arterial partial 

pressures of oxygen (PaO2) and carbon dioxide (PaCO2). Accuracy of predictions depends on parameter 

identification which in turn is influenced by measuring precision and data quality. In consequence, 

erroneous or noisy measurements may lead to wrong clinical decisions. Therefore it is investigated how 

measurement effort for identification of a two-parameter model of pulmonary gas exchange can be 

minimized to allow an efficient use in clinical practice. Simulated patient data was corrupted with 

artificial noise to investigate its influence on parameter identification and model prediction of PaO2 and 

PaCO2. Analysis was conducted with data representing lung conditions of different severity of lung 

failure. Results show that model prediction of PaO2 and PaCO2 is possible with a deviation below clinical 

relevance using only two blood gas data sets at different FiO2-levels. The effort necessary for robust 

parameter identification varies with the patient’s health state i.e. the degree of lung failure. 

Keywords: Mathematical models, parameter identification, model-based control, initial states, gas 

exchange, noise analysis. 

 

1. INTRODUCTION 

As a routinely applied therapy in the intensive care unit, 

mechanical ventilation ensures patient’s oxygen (O2) supply 

and removal of carbon dioxide (CO2) in acute lung failure. 

Clinicians are confronted with the task of finding appropriate 

ventilator settings based on a variety of patient monitoring 

data. Inadequate ventilator settings involve the risk of 

ventilator induced lung injuries (VILI) as well as O2 and CO2 

toxicity. Currently, research is driven by the need for a 

decision support system being able to assist the clinicians 

with this dilemma. 

Besides knowledge-based approaches to achieve suggestions 

for appropriate ventilator settings, also mathematical models 

simulating human gas exchange may support the clinician in 

achieving a desired ventilation goal (Allerod et al. 2008). 

Model-based decision support allows a patient-specific 

interpretation of measurements and the calculation of 

individual parameters, providing further diagnostic insight in 

the patient’s respiratory state. To identify those patient-

specific parameters (parameter identification process — PIP), 
both patient monitoring data and blood gas measurements are 

required. Model parameters are tuned such that simulation 

results fit the observed patient reactions. Consequently 

individualized models may be used as basis to calculate 

optimized settings for inspired oxygen fraction (FiO2) and 

minute ventilation (MV) to achieve targeted arterial partial 

pressures of O2 (PaO2) and CO2 (PaCO2). 

The accuracy of model simulation and reproduction of data 

usually rises with model complexity. Simple one-parameter 

models can be identified using minimal measuring effort but 

are not able to reproduce both patient’s O2 and CO2 data 

simultaneously (Karbing et al. 2011). Therefore, the usage of 

trivial models is only sufficient in patients without 

obstructions in gas exchange. To describe gas exchange of 

patients with lung disease, more complex models involving 

multiple parameters considering both O2 and CO2 blood 

gases are necessary. Our work deals with a two-parameter 

model of pulmonary gas exchange assuming constant flow 

and steady state conditions. The model comprises a shunt as 

well as two alveolar compartments with different ventilation 

and perfusion ratios. The latter allows simulation of V̇/Q-

mismatch in the patient. Former work shows promising 

results for a robust identification of this model in patients 

with acute respiratory distress syndrome (ARDS) using blood 

gas data at four different FiO2 steps and appropriate 

parameter initialization (Riedlinger et al. 2013). Model based 

decision support requires an accurate prediction of PaO2 and 

PaCO2, which depends on both the model that is used for 

prediction and a robust identification of its parameters. 

Robust identification requires patient data acquired during 

certain ventilation maneuvers. This again contradicts clinical 

practice, where models should be identifiable with minimal 

data and without additional effort by the clinician. The work 

at hand thus investigates how PIP of a two-parameter gas 

exchange model with V̇/Q-mismatch and shunt could be 

established with a minimum of measuring effort. 
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Fig. 1. Model structure: Model parameters to identify are 

shunt fraction fS and ventilation distribution fA. Perfusion 

distribution fQ is fixed. Symbols are F – gas fraction, C – 

gas concentration, V̇ – ventilation, Q – perfusion, i – 

inspired, A – alveolar, a – arterial, v – venous. 

2. MATERIALS AND METHODS 

2.1  Model 

The analyzed gas exchange model is based on a model 

concept assuming continuous flow and steady state 

conditions (Vidal Melo et al. 1993, Karbing et al. 2011). It 

acts on the assumption of two alveolar compartments with a 

different distribution of ventilation (V̇) and perfusion (Q) as 

well as a shunt compartment. The shunt fraction fS defines 

the amount of blood that is not participating in gas exchange. 

Parameters fA and fQ describe the fractions of alveolar 

ventilation and perfusion respectively in one of the two lung 

compartments. Parameter fQ is set to a fixed value (fQ = 0.9) 

(Kjaergaard et al. 2001) to reduce the number of free 

parameters. V̇/Q-mismatch then is defined through parameter 

fA representing the fraction of ventilation in the compartment 

that receives 90% of the non-shunted blood flow. Model 

structure and model parameters are depicted in Fig. 1. Model 

inputs are inspired and end-tidal gas fractions (FiO2, FiCO2, 

FetO2, and FetCO2) as well as V̇ and Q. 

Model equations (1) to (11) are taken from Karbing et al. 

(2011) and describe arterial concentrations of both blood 

gases O2 and CO2 for certain inspired and end-tidal fractions 

(Fix, Fetx), where x is either O2 or CO2, respectively. Alveolar 

ventilation V̇A depends on respiratory frequency fR, the tidal 

volume Vtid and the anatomic dead space volume Vds: 

��� = �� 	��	
� − ��
� (1) 

End tidal gas fractions Fetx are composed of alveolar gas 

fractions (FAx) in the two lung compartments: 

��	,� = �1 − ���	��,�,� + ��	��,�,� . (2) 

Oxygen uptake (V̇O2) for both compartments results from 

compartmental alveolar flow and the difference between 

inspired and alveolar oxygen fraction: 

����,� = �1 − ���	���	��
,�� − ��,��,��  (3) 

����,� = ��	���	��
,�� − ��,��,��  (4) 

As inspired fraction of CO2 is supposed to be zero, carbon 

dioxide removal (V̇CO2) can be calculated using (5) and (6). 

�����,� = �1 − ���	���	��,���,�  (5) 

�����,� = ��	���	��,���,�  (6) 

Venous blood gas concentrations separated in both 

compartments then are given by (7) to (10). 

��,��,� = ��,��,� − ����,� ��	�1 − �
� 	 ∙ 0.1�⁄   (7) 

��,��,� = ��,��,� − ����,� ��	�1 − �
� 	 ∙ 0.9�⁄   (8) 

��,���,� = ��,���,� + �����,� ��	�1 − �
� 	 ∙ 0.1�⁄   (9) 

��,���,� = ��,���,� + �����,� ��	�1 − �
� ∙ 	0.9�⁄   (10) 

Equilibrium between gases in capillary blood and alveoli is 

assumed. Capillary partial gas pressures Pcx then is calculated 

multiplying alveolar gas fractions FAx by the difference 

between barometric pressure and saturated water vapor 

pressure at body temperature. Capillary blood gas 

concentrations Ccx is derived from Pcx with the help of O2 

and CO2 dissociation curves (Kelman 1966; Meade 1972).  

Equations (1) to (10) are used to estimate FAx,1 and FAx,2 

numerically by satisfying the condition Cvx,1=Cvx,2. Finally, 

adding Ccx (non-shunted blood) and concentration in shunted 

blood (Cvx) leads to arterial blood gas concentrations 

�",� = ��,�,�	�1 − �
�	0.1 + ��,�,�	�1 − �
�	0.9 + ��,� 	�
	. (11) 

2.2  Analysis with simulated data 

Patient data for model analysis was acquired in silico, i.e. 

simulated using the presented gas exchange model and 

standard values for an adult man. Different values were 

chosen for parameters fS and fA according to the desired lung 

status as specified in Table 1. PaO2 and PaCO2 were 

calculated at various levels of FiO2 (FiO2 = 21%, 40%, 60%, 

80%, 100%) applying the inversed dissociation curves on the 

simulated CaO2 and CaCO2. The use of synthetic data 

allowed direct comparison of adjusted and identified 

parameter values. These data (Pax) served as input data for 

PIP. Identification was conducted by minimizing the sum of 

squared error (SSE) function between Pax and modelled 

partial pressures of oxygen and carbon dioxide (Pmx) by 

changing values of model parameters fs and fA: 

##$ = ∑ &'(,�� − '",��)
�


 +	∑ &'(,��� − '",���)
�


 . (12) 

Carbon dioxide data in blood depend on the ventilation rate 

which was held constant for the simulation at 12 breaths per 

minute. Focus of this analysis lies on prediction of oxygen 

blood data. Initially, only one FiO2 value and therefore one 

single data set from the artificial patient data was used for 

parameter identification. To analyse sensitivity and 

robustness of the PIP using one single FiO2 data value only, a 

fixed offset (plus 5% of the original value) was added to 

artificial PaO2 and PaCO2. PmO2 was then predicted with the 

model that was fitted to the modified data. 

Table 1.  Model parameters for simulation 

Lung condition fS fA 

Healthy  0.02 0.9 

Mild ARDS 0.1 0.7 

Severe ARDS 0.3 0.5 
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Fig. 2. Deviations of simulated to exact PaO2 at different 

levels of FiO2 with one data set used for identification 

assuming healthy patient parameter conditions (fS = 0.02 

and fA = 0.9) and fixed offset of +5% for PaO2 and 

PaCO2 data points . Dashed line shows maximum 

acceptable deviation (10%). 

Subsequently, the number of FiO2 steps was increased 

stepwise from 1 to 5 to give information about the number of 

data sets required for robust PIP and adequate PaO2 

prediction at different pulmonary patient states. Here, Pax 

data were uniformly distributed randomly with a range of 

10%. Prediction curves for both PaO2 plus PaCO2 were 

compared to exact curves resulting from the calculation with 

the adjusted model parameters. 

3. RESULTS 

When simulating patient data under healthy lung conditions 

(fS = 0.02, fA = 0.9), parameter identification led to prediction 

curves for PaO2 with deviation to the exact curve slightly 

above the acceptable range of ±10% when only data at one 

single FiO2 value were fitted and a fixed measuring offset of 

+5% was applied. Fig. 2 shows that identification with FiO2 = 

100% and with FiO2 = 21% then leads to higher deviation in 

the lower areas of FiO2 where linearity is absent due to shunt. 

The added offset in PaO2 led to false shunt estimations (fs ≈ 

0). Analysing prediction of PaO2 for mild ARDS data using 

one single FiO2 value and fixed offset of 5% is shown in Fig. 

3. When identifying at low FiO2 = 21%, there was a deviation 

from the predicted to the exact curve clearly above the 

clinically acceptable deviation of 10%. Maximum deviation 

of the prediction curve for identification at FiO2 = 100% was 

9.2%, i.e. slightly below the acceptable range. Smallest 

deviation was found for identification at FiO2 = 60%. 

Fig. 4 shows PaO2 prediction curves depending on different 

numbers of data sets used for parameter identification for 

severe ARDS patient data. Again, using only one data point 

with low FiO2 led to high deviation compared to the exact 

curve of PaO2 for high FiO2. When using two data points 

with one of them being in the upper FiO2 range, the 

prediction shows clear convergence to the simulated exact 

course of PaO2. 

Table 2 summarizes fitted parameters and deviation in 

predicted Pax for the three different lung states when one 

single FiO2 value was used for identification and a fixed 

offset of +5% was applied to the data. In all lung conditions 

both parameters fs and fA were underestimated. 

 

Fig. 3. Deviations of simulated to exact PaO2 at different 

levels of FiO2 with one data set used for identification 

assuming mild ARDS parameter conditions (fS = 0.1 and 

fA = 0.7) and fixed offset of +5% for all PaO2 and PaCO2 

data points. Dashed line shows maximum acceptable 

deviation (10%). 

Results show that small shunt fractions of 2% in healthy lung 

conditions were compensated by V̇/Q-mismatch (fA ≠ 0.9). 

Maximum deviation for PaO2 of 10% was exceeded when 

fitting at FiO2 of 21% and 100%. Under mild ARDS lung 

conditions, the offset led to high maximum deviation of 

40.9% between predicted and exact PaO2 data when fitting at 

FiO2 = 21%. Best prediction results were reached for 

identification at FiO2 = 60%. In severe ARDS lung condition, 

PaO2 prediction was inside the acceptable range for PIP at 

FiO2 of 80% and 100%. Identification at FiO2 of 21% led to a 

maximum deviation of 256.3%. 

PaCO2 data could be fitted to the offset data with high 

accuracy for all parameter combinations tested in this work 

leading to a maximum deviation to exact PaCO2 of 5% 

depending on the applied level of offset and random noise. 

PaCO2 is only changing negligibly with increasing FiO2. 

 

Fig. 4. Simulated PaO2 at different levels of FiO2 with 

different numbers of data sets used for identification 

assuming severe ARDS parameter conditions (fS = 0.3, 

fA = 0.5) and random noise of ±5% for all PaO2 and 

PaCO2 data points. Identification using one data set was 

conducted at FiO2 = 21%. For each further step, next 

higher FiO2 level was used additionally (40%, 60%, 

80%, 100%). 
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Table 2.  Parameters and resulting maximal prediction deviations using one identification time of measurement and 

data offset of +5%. 

FiO2  Healthy lung condition Mild ARDS lung condition Severe ARDS lung condition 

fS fA Max. 

dev. 

PaO2 

(%) 

Max. 

dev. 

PaCO2 

(%) 

fS fA Max. 

dev. 

PaO2 

(%) 

Max. 

dev. 

PaCO2 

(%) 

fS fA Max. 

dev. 

PaO2 

(%) 

Max. 

dev. 

PaCO2 

(%) 

21% 0.00 0.80 11.5 1.0 0.05 0.60 40.9 5.0 0.15 0.42 256.3 2.1 

40% 0.01 0.71 5.0 5.0 0.09 0.61 6.4 5.0 0.27 0.45 21.7 5.0 

60% 0.00 0.70 6.3 5.0 0.09 0.62 5.1 5.0 0.28 0.45 14.0 5.0 

80% 0.00 0.71 8.6 4.7 0.09 0.61 6.8 5.0 0.29 0.45 8.7 5.0 

100% 0.00 0.83 12.1 0.4 0.08 0.61 9.2 5.0 0.29 0.45 5.0 5.0 

 

4. DISCUSSION 

The effort that is necessary for robust parameter 

identification and an adequate model prediction of PaO2 and 

PaCO2 at different levels of FiO2 was analysed using 

simulated data. Accurateness of model prediction depends on 

the quality of the measurement data available for parameter 

identification. For the presented two-parameter model, blood 

gas measurements drawn at one single FiO2 level are 

sufficient for identification. However, with one dataset only 

measurement errors or noise in the data cannot be 

compensated. Using data at low FiO2 may lead to erroneous 

model prediction of PaO2 even if only small measuring errors 

of <5% occur. PaCO2 data could be predicted accurately. 

Fig. 5 shows resulting PaO2 curves for different shunt 

fractions fS. Parameter fA was set to 0.9 indicating that there 

is no V̇/Q-mismatch. Without shunt, PaO2 rises linearly with 

increasing FiO2. For higher shunt fractions, the curve 

becomes nonlinear in areas of low FiO2. For this reason, 

PaO2 curves for different shunt fractions are difficult to 

distinguish at low FiO2. Small measuring errors therefore 

potentially lead to erroneous shunt fraction identification 

when using PaO2 measurements at small FiO2. Best 

prediction results with one single FiO2 value are reached 

using data for PIP in the nonlinear area of the PaO2 course. 

With rising fS, this area shifts to higher FiO2 regions. 

 

Fig. 5. Model simulated PaO2 at different levels of FiO2 with 

different shunt fraction fS. V̇/Q-mismatch was not 

considered (fA = fQ = 0.9). For shunt fraction larger than 

35% there is only marginal change in PaO2 with 

increasing FiO2. 

Using data at multiple FiO2 steps improves the model 

prediction accuracy of PaO2 as shown in Fig. 4. Noise in 

identification data can be partially compensated. Parameter 

identification with two FiO2 steps may lead to accurate 

prediction of PaO2 in healthy lung condition. Obviously, 

robustness of PIP strongly depends on the level of FiO2 set at 

data acquisition. A detailed analysis using statistical 

evaluation based on Monte Carlo methods and real patient 

data is necessary to gain further insight to PIP of this model. 

However, our analysis raises confidence that the pulmonary 

gas exchange model may proof applicable in clinical practice 

with reasonable required identification effort. 
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