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Abstract: In this paper a fault diagnosis framework based on detection with feature extraction methods 
and identification based on data-driven process topology methods was investigated. A simulation of a 
simple system consisting of two tanks with heat exchangers was used to generate data for normal 
operating conditions and a number of faults. Fault detection methods included principal component 
analysis and kernel principal component analysis feature extraction with Shewhart, cumulative sum and 
exponentially weighted moving average monitoring charts. Process topology information was extracted 
with linear cross-correlation, partial cross-correlation and transfer entropy. Connectivity maps were 
constructed to identify possible fault propagation paths to aid root cause analysis and changes in 
connectivity structure due to faults were exploited for fault identification. Kernel principal component 
analysis with a CUSUM chart gave the best detection performance, while connectivity graphs based on 
partial correlation gave an accurate representation of the system and assisted fault identification. 
Keywords: Fault Diagnosis, Process Monitoring, Feature Extraction, Connectivity, Root cause analysis 

1. INTRODUCTION 

Timely detection of abnormal behaviour caused by fault 
conditions in industrial process plants is essential to ensure 
optimal performance in a plant since it allows operators to 
take actions to correct the fault. These plants frequently 
record data from large amounts of variables that show a 
large degree of correlation. In this environment, data-based 
process monitoring methods can be used for fault detection 
and diagnosis. Feature extraction methods, such as principal 
component analysis (PCA), have been widely applied for 
fault detection (e.g. Kano et al., 2002). One of the possible 
limitations of PCA is that it is a linear method, so it may 
give inadequate results when applied to data from processes 
that show significant non-linear behaviour. Kernel principal 
component analysis (KPCA) is a non-linear feature 
extraction method that has also been widely applied for fault 
detection (e.g. Lee et al., 2004). KPCA works by first 
mapping the input space nonlinearly into a higher 
dimensional feature  space, where the data is more likely to 
show linear behaviour, and then performing linear PCA in 
that feature space (Lee et al., 2004). Although these methods 
perform well for the detection of faults, their utility in 
specific fault diagnosis is limited. The high degree of 
interconnectivity in the data means that simple faults often 
propagate throughout the system. Information about process 
connectivity (also referred to as process topology) can be 
used to aid fault detection and isolation, since topology is 
altered by the presence of faults (Chiang and Braatz, 2003), 
and propagation paths for the fault can be identified and 
traced back to their origin (e.g. Bauer et al., 2007). Methods 
for capturing topology from process data include linear 
cross-correlation (LC) (Bauer and Thornhill, 2008), partial 
cross-correlation (PC) (Yang et al., 2011) and transfer 
entropy (TE) (Bauer et al., 2004).  
 

This paper presents a framework for fault diagnosis using 
feature extraction based methods for detection combined 
with process topology methods for fault identification. 

2. FAULT DETECTION 

2.1 Feature extraction 

Data from processes typically consist of a large amount of 
variables that are highly correlated. This correlation means 
that most of the variation in the data can be characterized by 
a small number of underlying features. Feature extraction 
methods identify and isolate these features, allowing the 
dimensionality of the data to be reduced. Figure 1 
demonstrates the principle. A feature extraction method 
(FEM) is applied to a data set X consisting of N samples and 
m variables.  

 
Fig.  1.  Feature extraction (dashed lines do not apply to 
KPCA, since it does not allow reconstruction) 

Two multivariate statistical feature extraction techniques are 
considered in this paper: PCA and KPCA, summarized in 
Table 1. The model is trained on normal operating 
conditions (NOC) data.  
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New data points being tested are then projected onto the 
feature space giving the scores, T (N samples by A features, 
where A is the dimensionality of the reduced feature space). 
The data can then be reconstructed from the features allowing 
the residuals, E, to be calculated. The modified Hotelling’s 
TA

2 diagnostic statistic allows detection of behaviour that 
results in deviation from the centre of the normal operating 
conditions in the feature space. The SPE diagnostic statistic 
allows detection of behaviour that results in deviation from 
the NOC manifold, which arises when the relationships 
between the process variables changes compared to the NOC 
case.  

2.2 Monitoring charts 

The above mentioned TA
2 and SPE statistics can be 

monitored by plotting the value obtained at each sample point 
over time. This is known as a Shewhart chart. This method 
only uses information from the current observation and is 
therefore insensitive to slight shifts in the process. In order to 
account for previous observations in the historical data and 
thereby improve the ability to detect small shifts the 
cumulative sum (CUSUM) (Bin Shams et al., 2011) and 
exponentially weighted moving average (EWMA) (Prabhu 
and Runger, 1997)  based charts have been applied for 
process monitoring. As the name implies, CUSUM calculates 
a cumulative sum of past values, usually summing the 
difference of the observations from the in-control mean, μ: 
Ciz = Max(0, Ci−1z + zi − µz)  where z may represent either 
the TA

2 or the SPE.  EWMA sums past values, but gives 
progressively less weight to older data: EWMAi = rzi + (1−
r)EWMAi−1 where r indicates the weighting. A value of 0.1 
is typically used 

3. FAULT IDENTIFICATION 

3.1. Use of connectivity for fault identification 

Variables in a process are connected to each other through 
material or information flow. Information about how all the 
variables in a process are connected is known as the topology 
or connectivity of the process. This information can be useful 

for the isolation of faults since the presence of faults alters 
the connectivity structure and faults will propagate along 
paths that follow the material and/or information flow.  
3.2. Topology extraction methods 
Data-based techniques exist to extract topology information 
from process data. The connections between two variables 
can be inferred from historical process data by estimating the 
lags between their time series (Bauer and Thornhill, 2008) 
which results in maximum connectivity, where connectivity 
is some measure of linear or nonlinear correlation. Three 
methods were considered in this paper: linear correlation 
(LC), partial correlation (PC) and transfer entropy (TE). 
Table 2 gives a summary of the calculations used for these 
three methods. These are used to find significant connections 
between all pairs of variables in the data, giving connectivity 
matrices. These matrices can then be used to construct a 
connectivity map, where nodes represent variables and edges 
between them represent connections. 

4. FAULT DIAGNOSIS FRAMEWORK 

The proposed fault diagnosis framework is demonstrated in 
Figure 2.  

 
Fig. 2. Proposed fault diagnosis framework 

A feature extraction method (FEM) is first applied to the 
data, giving the TA

2 and SPE statistics. The monitoring charts 
are used to determine whether the fault was detected using 
the metrics described above. The SPE statistic can then be 
used to analyse the type of fault, i.e. whether the SPE follows 

Table 1.   Feature extraction methods (FEM’s) 

 PCA KPCA 
Reference (Kourti and MacGregor, 1995) (Lee et al., 2004). 
Mapping Projection onto components yielding maximum 

variation obtained from eigenvectors of 
covariance matrix. 
𝐭i,new = 𝐩i𝐗new  

Intrinsic mapping to higher dimensional nonlinear 
feature space through use of kernel function k (e.g. 
Gaussian kernel); linear PCA performed in that space. 
ti,k,new = 1

�λ�k
∑ αjkk�𝐱j, 𝐱i�N
j=1   

Feature space 
diagnostic metric �TA2�j = ∑ ti,j

2

λi
2

A
i=1   �TA2�j = ∑ ti,j

2

λi
2

A
i=1   

Residual space 
diagnostic metric 

(SPE)j = ∑ �Xtest,i,j − X�test,i,j�
2m

i=1   (SPE)j = ∑ ti,j2n
i=1 − ∑ ti,j2A

i=1   

Table 2.  Topology extraction methods (TEM’s) 

 Linear Correlation Partial Correlation Transfer entropy 
Reference (Bauer and Thornhill, 2008) (Yang et al., 2011) (Bauer et al., 2007) 
Calculation ϕ�(x, y)

=
1

N − k �
(xi − µx)�yi+k − µy�

σxσy

N−k

i=1

 

Linear correlation between two 
variables while conditioning on 
any number of the remaining 
variables 

t(x|y)

= � p(xi+h, xi, yi)log �
p(xi+h|xi, yi)

p(xi+h|xi)
� 

tx→y = t(y|x)− t(x|y) 
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a ramp or a step trend, and determine a relative magnitude for 
the ramp or step. The topology extraction method (TEM) can 
then be applied, giving a connectivity map for normal 
operating conditions and the change in connectivity due to 
the presence of the fault. The variables most affected by the 
fault can be determined from the connectivity change and can 
be flagged as symptom nodes. The connectivity map can then 
be used to trace a path backwards from the symptom nodes to 
the root nodes. 

In order to gauge the performance of the fault detection 
methods several metrics, shown in Table 3, are employed. 
The performance of the fault identification methodology 
depends on the ability to locate the area in the plant where the 
fault has occurred. 

5. CASE STUDY DESCRIPTION 

The chosen example consisting of two tanks was simulated in 
Simulink. A diagram of the system is shown in Figure 3.  

 
Fig. 3. Simulated two-tank system 

The outlet flow from both tanks is proportional to the square 
root of the level in each tank. The outlet from the first tank 
flows into the second tank. Each tank has its own supply of 
cold water with a control valve to control the level of each 
tank. The temperature in the tanks is controlled using the 
control valves on the steam lines. The main variables of 
interest are the flow rate of the inlet streams to the tanks, F1 
and F2, the flow rates of the steam in the heating coils in both 
tanks, F3 and F4, the levels of both tanks, L1 and L2, and the 
temperatures of both tanks, T1 and T2. The controllers used 
are simple proportional integral derivative (PID) controllers 
that change the values of the MVs according to the deviation 
of the controlled variables (CVs) from their set-points (SPs). 
The methodology was implemented on data from this 
simulation generated in closed loop. 

The simulation was used to generate closed loop normal 
operating conditions (NOC) data as well as closed loop fault 
data. Four faults were simulated in this system. Fault 1: Step 
disturbance in temperature T1in. Fault 2: Ramp disturbance 
in temperature T1in. Fault 3: Step disturbance in temperature 
T2in. Fault 4: Fouling in both heat exchange coils. Fouling 
was simulated by changing the heat exchange constant. This 
disturbance was simulated as a ramp disturbance since 
fouling would accumulate over time in a real system. 

6. METHODOLOGY 

1) Data was divided into four subsets: NOC training data, 
NOC validation data, NOC testing data and fault data 

2) FEM’s (PCA and KPCA) were trained on NOC training 
data. Retention of components was based on an 
explained variance of 90%: three features for both PCA 
and KPCA. Cross validation was performed to determine 
that a Gaussian kernel width c = 0.5 gave the lowest 
SPE. 

3) The NOC training SPE and TA
2 were calculated. EWMA 

and CUSUM calculations were performed.  

4) The trained FEM was applied to NOC validation data. 
Significance thresholds for SPE and TA

2 were based on 
the 99th percentile of the diagnostic values NOC 
validation data. 

5) The trained FEM was applied to NOC testing data and 
fault data, giving the TA

2 and SPE.  

6) FAR, MAR, DD and AUC were calculated for Shewhart, 
CUSUM, and EWMA for both diagnostics. The 
McNemar test (McNemar, 1947) for correlated 
proportions was used to compare the FARs and MARs 
for KPCA and PCA. 

7) The SPE was analysed to determine the type and size of 
the fault. 

8) TEM’s were applied on the NOC and fault data, resulting 
in connectivity matrices. 

9) The connectivity matrices resulting from the TEM’s for 
NOC and fault data were compared to identify changed 
connections. For each node the number of changed 
connections was counted and the three nodes that 
showed the largest number of changes were selected as 
the symptom nodes for the input into the antecedent root 
cause method.  

10) The NOC connectivity map was used to find the root 
nodes associated with the symptom nodes identified 
from the connectivity change. The ancestor nodes for 
each symptom node were determined, and the overall 
root node was identified as the common antecedent of all 
ancestor notes. The overall root node was identified as 
the most likely location for the origin of the fault. 

11) All of the above steps were repeated for each fault and 
all fault sizes. 
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7. RESULTS AND DISCUSSION 

7.1 Detection 

It was found that KPCA generally performed better than PCA 
for all the faults observed; showing much lower detection 
delays and higher AUCs. The McNemar test was used to 
compare the FAR and MARs for both methods and it was 
found that this difference in performance was statistically 
significant. Therefore only the results for KPCA are shown in 
Figure 4. For both the TA

2 and SPE statistic the CUSUM 
chart performs the best for fault detection, with a higher 
AUC. The EWMA chart performs better than the Shewhart 
chart, but slightly worse than the CUSUM chart. However, 
the detection delays are generally larger for these charts in 
comparison with the Shewart chart, so the improved detection 
ability comes at the expense of detection speed. 

7.2 Connectivity 

Consider the NOC connectivity diagram derived by means of 
the partial correlation method, as shown in Figure 5. A sanity 
check verifies the calculated connections between the 
different variables: A change in F1 would cause a change in 
T1 due to energy conservation principals. A change in T1 
would activate the first tank temperature controller, causing a 
change in steam flow F3. A change in steam flow F3 would  

affect T1, and through energy conservation in the first tank, 
affect T2. However, seemingly spurious connections are also 
identified: A connection between F4 and T1 is indicated, with 
implied causality from F4 to T1. This causality direction is 
impossible through either mass or energy conservation, or 
control action. Some expected connections are also omitted, 
for example the causality due to controller action between L2 
and F2. 

7.3 Fault identification 

For the different faults and fault sizes, the fault identification 
method was applied, with the results shown in Table 4. The 
second column shows whether or not the fault identification 
method was able to correctly identify the type of the fault 
(step or ramp). The third column shows whether or not the 
size of the SPE change increased with increasing fault size. 
The method failed to detect that the fouling fault was a ramp 
type, but accurately identified the types of faults for the rest 
of the faults.  

To illustrate the use of connectivity to find the root cause of a 
fault, consider the NOC and fault connectivity maps for the 
step change in T1in given in Figure 5. The top three symptom 
nodes for this fault were identified from the fault connectivity 
map as F4, T2 and T1, since these nodes were associated with 
the largest connectivity changes between the fault and NOC 
maps. These symptom nodes may imply a fault related to the 

Fig. 4. AUCs (left) and detection delays (right) for different faults, fault sizes and different monitoring methods. Only 
KPCA results shown since it significantly outperformed PCA  
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energy balances of the tanks, since these symptom nodes are 
the tank temperatures and steam flow to the second tank. By 
tracing the antecedent nodes, the variables associated with the 
root cause of the fault are identified as F1 and L1. These root 
causes do not correlate well with the true fault, that of a step 
change in T1in. In fact, the symptom nodes correlated better 
with the true cause. 

In many of the cases the LC method did not show any change 
in connectivity in the presence of the faults, suggesting that 
this system contains nonlinear relations between variables (as 
is the case). For this reason the LC method was unable to 
identify the location of the fault. For the TE method in most 
cases it identified multiple possible root causes, but none of 
these identified were connected to all of the symptom nodes, 
so it was unable to narrow down the true cause. However, for 
both the LC and TE methods, variables associated with 
stream 1 were identified (specifically F1 and L1), suggesting 
that the fault cause is located in stream 1. The PC method 
performed well, being able to narrow the fault down to two 
possible root causes. Although none of the connectivity 
methods identified the exact causal variable, the vicinity of 
the fault (e.g. stream 1) could be gauged.  

8. CONCLUSIONS 

For the two-tank case study considered, both PCA and KPCA 
worked well for fault detection, with KPCA displaying the 
best detection performance. The CUSUM chart showed the 
best robustness in terms of false alarm / missing alarm trade-
off, at the expense of a larger detection delay.  

The NOC connectivity maps derived using partial correlation 
showed generally good correspondence to causal flow due to 
mass and energy conservation as well as control loops. 
However, some spurious connections were present, and some 
expected connections were absent. 

In terms of fault identification, the change-in-connectivity 
approach could identify sensible symptom nodes (especially 
for the partial correlation connectivities), but the antecedent-
root-cause approach could not identify sensible root cause 
nodes. The benefit of connectivity maps over contribution 
plots lies in the extracted causality flow: from symptom 
nodes to a causal root node. 

In general, connectivity maps can be considered a useful tool 
to visualize process causality; however, any interpretations 
should be supported by the consideration of process 
knowledge beyond data-derived correlations. 

Recommendations for future work include refining of the 
antecedent-root-cause approach by including contribution 
plot information, as well as estimating fault sizes based on 
calculations on the time-series of variables identified by the 

connectivity and contribution approaches.  
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Table 4. Fault Identification results for four different disturbances 

 PCA KPCA Location node identified 
Fault Type Size Increase Type Size Increase LC PC TE 

Fault 1: Step T1in 5/5 yes 5/5 yes none 5/5 F1,L1 none 
Fault 2: Ramp T1in 4/5 yes 4/5 yes 3/5 F1 5/5 F1,L1 3/5 F1 
Fault 3: Step T2in 4/5 yes 5/5 yes none 5/5 F1,L1 none 
Fault 4: Fouling 2/5 no 5/5 yes none 5/5 F1,L1 1/5 F1 
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Fig. 5. Connectivity maps obtained using the PC method for NOC (left) and fault (right) conditions for each fault. Blue 
nodes indicate symptom nodes, red nodes indicate root nodes. Red lines indicate paths from root to symptom nodes 
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