
Multi-agent Control Approach for Autonomous Mobile Manipulators:

Simulation Results on RobuTER/ULM

Abdelfetah HENTOUT, Mohamed Ayoub MESSOUS, Brahim BOUZOUIA

Centre for Development of Advanced Technologies (CDTA)

Division of Computer-Integrated Manufacturing and Robotics (DPR)

BP 17, Baba Hassen, Algiers 16303, Algeria

ahentout@cdta.dz, mmessous@cdta.dz, bbouzouia@cdta.dz

Abstract: This article presents a multi-agent approach for controlling autonomous mobile manipulators.

The proposed approach assigns a hybrid agent (Mobile base agent) for the control of the mobile base, a

reactive agent (Joint agent) to each degree-of-freedom (dof) of the manipulator, and a Supervisory agent

to assure coordination and to synchronize the work of the whole agents of the system.

The initial simulation results, obtained via different positioning tasks on RobuTER/ULM with and

without considering breakdowns, show that the main advantage of such an approach is that it pledges a

fault-tolerant response to various types of breakdowns without adding any specific dysfunction treatment.

Keywords: Multi-agent control approach, Autonomous mobile manipulators, Simulation, RobuTER/ULM.

1. INTRODUCTION

A mobile manipulator consists of a mobile base on which is

mounted upon one or more manipulators. The robot can

accomplish most common tasks of robotics that require

locomotion and manipulation capabilities (Nebot et al.,

2004). Such autonomous robots must perform scheduled

tasks in complex, unknown and changing environments with

sensing, perceptive, knowledge-acquisition, learning,

inference, decision-making and acting ability (Wen et al.,

2004) by using only their limited physical and computational

resources with a reduced human intervention (Medeiros,

1998). To this aim, different control approaches for such

robots have been proposed in the literature. They can be,

mainly, divided into two different classes (i)

Traditional/Classical approaches and (ii) Multi-agent

approaches (Hentout et al., 2013).

The first class of approaches is based on the study of

mathematical models of both manipulator and mobile base

(Bayle et al., 2003) (Nikoobin et al., 2009). Controlling such

a robot consists of computing the motion of these two sub-

systems. For this aim, the study of Direct (DKM) and Inverse

(IKM) Kinematic Models is required (Joukhadar, 1997).

Classical approaches produce accurate results and offer a

fairly exact control for repetitive tasks in controlled

environments (industrial robotics, etc.). In such a case, when

the robot is required to repeat a trajectory thousands of times,

complicated computation of these models is done, generally,

off-line with the ability to optimize time and/or energy. The

methods used for computing DKM represent generic rules,

whereas IKM are constructed according to the structure of the

robot. Moreover, these models don’t tolerate any changes in

the mechanical structure without adding a specific mode for

failures treatment (joint malfunction, etc.). Finally, classical

approaches have the weakness of the important computing

time depending on the high number of dof, especially in

frequently-changed, unknown and evolutionary environments

where operate most of robots.

Multi-agent approaches (MAS) propose a decomposition of

the robot control into a set of distinct agents (Duhaut, 1999)

(Erden et al., 2004). Every agent tries to align the position of

the end-effector with that of the target, without prior

knowledge of the actions and positions of the other agents.

By acting independently, they try to do the same job and a

global behavior can emerge, consequently, from all these

local agents for satisfying the desired objective. MAS

approaches offer simple solutions and benefit of all the

advantages of distributed problem solving. Here, the system

is considered as a compound of simpler modules, which gave

an easier way to design the whole system. In addition, the

need for massy mathematical models, IKM and differential-

equation solvers is overcome (Duhaut, 1999). Therefore,

there is a considerable decrease in design effort and

computation time compared to classical approaches. Finally,

with such a usage of MAS, the control system is more flexible

to be applied to any robot (mobile, manipulator and mobile

manipulator robots).

The paper is organized as follows. Section two describes the

proposed multi-agent control approach. The experimental

robot, the validation scenarios and the obtained simulation

results are presented and discussed in section three. Section

four concludes the paper and draws-up future works.

2. MULTI-AGENT CONTROL APPROACH

Fig. 1 presents a global scheme of the control approach for

RobuTER/ULM. The robot consists of a six-dof manipulator

installed on a mobile base. In this case, the multi-agent

system involves a set of eight agents:

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 8503

 Six reactive Joint agents are assigned to control the six-

dof manipulator.

 One hybrid Mobile base agent to control the mobile base

of the robot.

 One hybrid Supervisory agent that coordinates between

the whole of the precedent agents.

Fig. 1. Global control system of six-dof mobile manipulator

The objective of each agent of the system is to optimize an

objective function fObj which depends on Configuration, Base

and EffectorFin. fObj is given by (1):

 (1)

In this present work, the objective is to reduce the distance

between Effector and EffectorFin. This distance is computed

as follows:

 √

 (2)

The computation of the DKM of the robot function of

Base(xB, yB, B) and Configuration(q1, …, qdof) is done by

using equation (3):

Effector=DKM(Base, Configuration) (3)

Each agent of the system (Joints agents, Mobile base agent)

receives, from the Supervisory agent, the initial situations of

the robot (ConfigurationInit and BaseInit), the imposed final

situation of the end-effector (EffectorFin) and the initial

objective function (Init).

2.1 Manipulator agents

Fig. 2 illustrates the two possible elementary movements of

each joint controlled by a Joint agent:

 The agent makes a virtual rotation in the positive

direction (MoveUp) with a Joint footstep and computes

the objective function value (_I_Up) between Effector

and EffectorFin. _I_Up depends on the new configuration

of the manipulator (Configuration_I_Up) and Base.

 The agent will repeat the previous actions while changing

its rotation into the negative direction (MoveDown,

Configuration_I_Down, Joint footstep, _I_Down).

The Joint agent will choose the new configuration of the

manipulator (Configuration_I_New) corresponding to the

configuration minimizing the distance between Effector and

EffectorFin (_I_New). The best choice could be to remain in

its current configuration without moving in case where

(<_I_New). At the end, the Joint agent sends its best

choice satisfying its local objective (Configuration_I_New

and _I_New) to the Supervisory agent.

Fig. 2. Elementary movements of a Joint agent

The diagram of Fig. 3 explains the behavior of a Joint agent.

Wait(Call For Proposals (CFP)/Contract/End)

Config_I_Up=MoveUp(Config, Joint_footstep)

Error_I_Up=F_Objective(Config_I_Up, Base, Target)

Config_I_Down=MoveDown(Config, Joint_footstep)

Error_I_Down=F_Objective(Config_I_Down, Base, Target)

(Error_I_New, Config_I_New)=Best(Error_I_Up, Config_I_Up, Error_I_Down, Config_I_Down)

SendProposal(Supervisory agent, Error_I_New, Config_I_New)

CFP(Target, Config, Base, Error)

End Contract

ApplyConfiguration(Config_I_New)

SendNotification(Supervisory agent)

Error_I_New<Error

Error_I_New>=Error

Fig. 3. Behavior diagram of a joint I agent of the manipulator

2.2 Mobile base agent

In this paper, the environment where evolves the mobile base

is considered free of obstacles. Fig. 4 illustrates the four

considered elementary movements for the Mobile base agent:

 The agent makes a virtual forward movement

(MoveForward) with a Base Translation footstep and

computes the new value of the objective function (_F)

between Effector and EffectorFin. This distance depends

on the new situation of the mobile base (Base_F) and the

current configuration of the manipulator (Configuration).

_I_Up

_I_Down

MoveUp

MoveDown

Manipulator

Effector

EffectorFin
Effector

EffectorFin(xEFin,
yEFin, zEFin)

Effector(xE,
yE, zE)

Joint agent 6

Joint agent 5

Joint agent 4

Joint agent 3
Joint agent 2

Joint agent 1

Mobile base
Agent

Base(xB, yB, B)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8504

 The agent will repeat the previous actions while changing

every time the direction of its movement

(MoveBackward: Base_B, Base Translation footstep,

_B), (TurnRight: Base_R, Base Rotation footstep, _R)

and (TurnLeft: Base_L, Base Rotation footstep, _L).

The Mobile base agent will choose the new situation of the

mobile base (Base_New) that corresponds to the situation

minimizing the distance (_Base_New) between Effector and

EffectorFin. This choice could be the remaining in its current

situation without moving if (<_Base_New). At the end, the

agent sends its best choice (_Base_New and Base_New) to

the Supervisory agent.

Fig. 4. Elementary movements of the Mobile base agent

The diagram of Fig. 5 explains the behavior of the Mobile

base agent.

Wait(Call For Proposals (CFP)/Contract/End)

Base_F=MoveForward(Base, Base_Translation_footstep)

Error_F=F_Objective(Config, Base_F, Target)

Base_B=MoveBackward(Base, Base_Translation_footstep)

Error_B=F_Objective(Config, Base_B, Target)

(Error_Base_New, Base_New)=Best(Error_F, Base_F, Error_B, Base_B, Error_R, Base_R, Error_L, Base_L)

SendProposal(Supervisory agent, Error_Base_New, Base_New)

CFP(Target, Config, Base, Error)

End

Base_R=TurnRight(Base, Base_Rotation_footstep)

Error_R=F_Objective(Config, Base_R, Target)

Base_L=TurnLeft(Base, Base_Rotation_footstep)

Error_L=F_Objective(Config, Base_L, Target)

Contract

ApplySituation(Base_New)

SendNotification(Supervisory agent)

Error_Base_New<Error

Error_Base_New>=Error

Fig. 5. Behavior diagram of the Mobile base agent

2.3 Supervisory agent

After the introduction of the coordinates of EffectorFin by the

operator, the Supervisory agent verifies if it is reachable. If it

is not, the agent terminates the process. Otherwise, the agent

computes the initial objective function (Init) corresponding to

EffectorFin. Next, the agent sends Init, ConfigurationInit and

BaseInit to all the other agents. After that, the Supervisory

agent will wait for their responses (proposals). After

receiving all these information, the agents controlling the

robot (Joints and Mobile base agents) will perform, in

parallel and independently, their actions to choose the best

new configurations with the different errors. Thereafter, the

Supervisory agent will receive replies sent by the agents of

the system, i.e., the best new joint configuration chosen by

each Joint agent, the new situation of the mobile base chosen

by the Mobile base agent and their best corresponding errors

(Configuration_I_New, _I_New (i=1… dof), _Base_New,

Base_New). After that, the Supervisory agent selects the best

response that minimizes the objective function (_New). If it

is optimal, the agent will terminate the process by sending a

task-end message to the other agents. Otherwise, the

Supervisory agent sends the chosen values to be applied on

the robot. This process continues until reaching the goal (Fin

optimal). Fig. 6 illustrates the behavior of the Supervisory

agent to reach EffectorFin by the end-effector of the robot.

SendCFP(Joint i agent (i=1..dof), Mobile base agent)

Wait(Proposals)

(Situation_New, Error_New)=Best(Base_New, Error_Base_New, Config_I_New, Error_I_New) (i=1..dof)

SendContract(Joint agent_I/Mobile base agent)

WaitFor(Notify)

SendEnd(Joint agent_I, Mobile base agent) (i=1..dof)

Error_New>=Error

Error_New<Error

Fixed Target

Get(Target)

ShowMessage("Error: Target out of reach")

ShowMessage("Target reached successfully")

Target not reachable

Target reachable

All agents have sent proposals

Error=F_Objective(Base, Config, Target)

Situation=Situation_New; Error=Error_New

Notification received

Get_Situation(Config i (i=1..dof), Base)

Moving Target

Fig. 6. Behavior diagram of the Supervisory agent

_L

_F

_R

TurnLeft

TurnRight

MoveForward

MoveBackward
_B

EffectorFin

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8505

3. SIMULATION SCENARIOS

JADE (Java Agent DEvelopment Framework) (Bellifemine et

al., 2008) has been used as an implementation tool for the

proposed control system. This open source platform provides

basic middleware-layer functionalities and simplifies the

realization of distributed applications using the software

agent abstraction.

It should be noted that all the studies found in the literature

tested the performances of the multi-agent control approaches

on a simple case of a mobile manipulator in two dimensions.

Unfortunately, no works were done in three dimensions.

In this section, we will present some validation scenarios of

the proposed control system by using the RobuTER/ULM.

The different parameters of this mobile manipulator can be

found in (Hentout et al., 2010). The distances are given in

millimeters (mm) and the angles in degrees (°).

3.1 Validation scenarios

The validation tasks consist of reaching a final situation given

by EffectorFin. Tab. 1 illustrates the initial values for all the

tasks considered in this work.

Table 1. Initial conditions of the considered tasks

Task EffectorFin BaseInit ConfigurationInit Init (mm)

01 (-330, -630, 1080) (0, 0, 0) (0, 0, 0, 0, 0, 0) 1126.9129

02 (-4260, 0, 665) (0, 0, 0) (0, 0, 0, 0, 0, 0) 4698.9355

03 (-2408, -108, 1472) (0, 0, 0) (0, 60, 0, 0, 32, 0) 3114.8048

04 (-2400, -63, 1325) (0, 0, 0) (0, 87, 0, 0, 5, 0) 2946.8779

05 (-2400, -67, 1320) (0, 0, 0) (0, 87, 0, 0, 5, 0) 2946.8226

3.2 Pseudo-classical approach

In order to provide a comparison support, the previous tasks

have been carried out previously in (Hentout et al., 2010) by

using a classical approach (based on IKM). The main results

are presented in Tab. 2:

Table 2. Results of the pseudo-classical approach

Task BaseFin ConfigurationFin Fin (mm)

01 (0, 0, 0°) (60, 61, 30, 95, -15, 0) 4.8689

02 (-3440, 13, 12°) (20, 32, 28, 0, 0, 0) 5.4928

03 (-1920, 2, 15°) (37, 52, 61, 73, -52, 28) 6.67

04 (-1670, 0, 0°) (5, 49, 63, -13, -22, -78) 12.3714

05 (-1560, 0, 0°) (5, 44, 69, -12, -23, -79) 33.762

3.3 Multi-agent approach

The selected simulation footsteps (Joint footstep, Base

Translation footstep and Base Rotation footstep) for the

execution of the different tasks by the robot are given in Tab.

3. The determination of such footsteps will be the object of

another work.

Table 3. Simulation parameters for the tasks execution

Agent Action Footstep

Joint agent
MoveUp

Joint footstep = 1°
MoveDown

Mobile base

agent

MoveForward
Base Translation footstep = 5mm

MoveBackward

TurnRight
Base Rotation footstep = 1°

TurnLeft

3.3.1 Scenarios without breakdown

For these first scenarios, we consider that the mobile base and

all the articulations of the manipulator are functional. The

obtained results are shown in Tab. 4:

Table 4. Obtained results without breakdown

Task BaseFin ConfigurationFin IFin (mm) Iterations

01 (0, 0, -2°) (6, 58, 8, 0, -1, 0) 0.7374 75

02 (-3455.07, -492.50, -3) (-34, -5, 62, 0, -3, 0) 1.3767 810

03 (-1707.73, -243.43, -3) (-10, 60, 32, 4, 32, 0) 1.4549 395

04 (-1427.56, -203.24, -3) (-10, 9, 100, 12, 6, 0) 1.4203 1647

05 (-1811.68, -258.24, -3) (-17, 78, 8, -6, 4, 0) 1.1338 411

3.3.2 Scenarios with breakdowns of some joints

Now, we show how the system reacts in fault cases. The

proposed multi-agent control approach is designed to be

fault-tolerant. We suppose that the breakdown of the joint 3

and 4 appears at time t=0. The breakdowns are at q3=q3Init=0

and q4=q4Init=0. The obtained results are given in Tab. 5:

Table 5. Obtained results with breakdowns of some joints

Task BaseFin ConfigurationFin Fin (mm) Iterations

01 (-18.45, -11.96, 10°) (41, 59, 0, 0, 17, 0) 0.9664 148

02 (-3880.77, -553.19, -3°) (-56, 22, 0, 0, 25, 0) 15.7449 905

03 (-1925.53, -274.47, -3) (-16, 87, 0, 0, 40, 0) 22.6522 444

04 (-1836.43, -261.77, -3°) (-18, 79, 0, 0, 25, 0) 0.3878 422

05 (-1810.69, -258.10, -3°) (-17, 73, 0, 0, 40, 0) 2.1747 1933

3.3.3 Scenarios with breakdown of the mobile base

Other scenarios are shown to test the reaction of the system in

fault cases. We assume that the breakdown of the mobile base

occurs at time t=0. The breakdown is at Base(xB, yB,

B)=BaseInit(xB, yB, B)Init=(0, 0, 0). Tab. 6 gives the obtained

results:

Table 6. Results with breakdown of the mobile base

Task BaseFin ConfigurationFin Fin (mm) Iterations

01 (0, 0, 0) (-95, 53, 11, 88, 40, 0) 54.0627 312

02 (0, 0, 0) (-95, 14, 4, -50, -73, 0) 4004.0195 289

03 (0, 0, 0) (-95, 87, 21, 90,40, 0) 2172.9592 242

04 (0, 0, 0) (-95, 87, 1, 90, 40, 0) 2173.7636 222

05 (0, 0, 0) (-95, 87, 0, 90, 40, 0) 2173.0541 221

The following figures give the variations of the joints, the

trajectories of the mobile base and the variations of the

positioning errors of the end-effector for the first and the

second tasks in all the cases (no breakdown, breakdown of

some joints of the manipulator and breakdown of the mobile

base):

 The red lines are the obtained results in normal case (first

scenarios).

 The blue lines represent the results in case of a break-

down of some joints (second scenarios).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8506

 The green curves represent the obtained results in case of

the breakdown of the mobile base (last scenarios).

Fig. 8 shows the main results obtained for the first scenario.

(a) Variations of some joints of the manipulator

(b) Trajectories followed by the mobile base

(c) Evolution of the positionning errors of the end-effector

Fig. 8. Main results obtained for the first scenario

Fig. 9 shows the main results obtained for the second

scenario.

(a) Variations of some joints of the manipulator

(b) Trajectories followed by the mobile base

(c) Evolution of the positioning errors

Fig. 9. Results obtained for the second scenario

3.4 Discussion of obtained results

The obtained results using the multi-agent approach were

much better comparing those using a pseudo-classical

approach. It is important to note that this latter approach

wouldn’t operate properly if any fault occurs.

For the first scenarios, the robot was able to carry out

correctly, and with a good precision, the positioning of its

-30

-20

-10

0

10

20

30

0 100 200 300 400 500 600 700 800 900

No breakdown Joints breakdown Mobile breakdown

Q2 (°)

Iteration

-10

0
10
20
30

40
50
60

70

0 100 200 300 400 500 600 700 800 900

No breakdown Joint breakdown Mobile breakdown

Q3(°)

Iteration

-60

-50

-40

-30

-20

-10

0

10

20

0 100 200 300 400 500 600 700 800 900

No breakdown Joint breakdown Mobile breakdown

Q4 (°)

Iteration

-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30

0 100 200 300 400 500 600 700 800 900

No breakdown Joint breakdown Mobile breakdown

Iteration

Q5(°)

-40

-30

-20

-10

0

-20 -15 -10 -5 0

Y
 (

m
m

)

X (mm)

0

200

400

600

800

1000

1200

1 51 101 151 201 251 301

-30

-20

-10

0

10

20

30

40

1 101 201 301 401 501 601 701 801 901

-10

0

10

20

30

40

50

60

70

1 101 201 301 401 501 601 701 801 901

-60

-50

-40

-30

-20

-10

0

1 101 201 301 401 501 601 701 801 901

-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30

1 101 201 301 401 501 601 701 801 901

-600

-500

-400

-300

-200

-100

0

-4500 -4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 0

Y
(m

m
)

X (mm)

0

1000

2000

3000

4000

5000

1 101 201 301 401 501 601 701 801 901

Q2 (°)

Iteration

Iteration

Q4 (°)

Iteration

Iteration

 No breakdown Joints breakdown Mobile breakdown

 No breakdown Joints breakdown

Distance (mm)

Iteration

 No breakdown Joints breakdown Mobile breakdown

 No breakdown Joints breakdown

Distance (mm) Iteration
 No breakdown Joints breakdown Mobile breakdown

Q5(°)

Iteration

Q3 (°)

Iteration

 No breakdown Joints breakdown Mobile breakdown

 No breakdown Joints breakdown Mobile breakdown

 No breakdown Joints breakdown Mobile breakdown

Iteration

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8507

end-effector at EffectorFin. Concerning the second (resp. the

last) scenario, despite the dysfunction of the third and fourth

joints of the manipulator (resp. the mobile base), the other

agents, still operational controlling the other joints, worked

all together to conceal the fault and place the end-effector as

close as possible to EffectorFin offering, consequently, a

minimum service.

4. CONCLUSIONS AND FUTURE WORKS

The presented approach assigns a reactive agent (Joint agent)

to each dof of the manipulator, a hybrid agent (Mobile base

agent) for the mobile base, and a hybrid Supervisory agent

for the coordination of the precedent agents. Each agent has

its own local goal, to be reached independently from the other

agents, which consists of bringing the end-effector as close as

possible to the final situation EffectorFin. The implementation

of the approach used JADE which is one of the most

interesting multi-agent development frameworks.

The proposed approach was validated via simulation tasks in

different cases with RobuTER/ULM. The obtained results

show that the proposed approach is generic. If the mechanical

structure of the robot changes, all we have to do is to change

the DKM of the robot and associate the required number of

agents. In addition, complex mathematical models (IKM)

don’t have to be computed; while offering accuracy similar to

classical approaches. Moreover, the proposed approach needs

only some geometric formulas and, consequently, requires

very little computing power. Finally, the approach is fault-

tolerant to failures without adding a specific treatment and, if

an agent breaks down, the system provides good result.

The future planned works concern the improvement of the

JADE-based simulation environment by its integration into

the simulator of RobuTER/ULM (Akli et al., 2010). This

latter will be, next, connected to the real robot accomplishing

real tasks. Then, a module of sensors management and

obstacles avoidance will be developed and integrated into the

Mobile base agent. Finally, we will validate the whole of the

proposed multi-agent system via more complex scenarios

(displacement, object grasping, etc.) to judge its relevance.

REFERENCES

Akli, I., Hentout, A., Bouzouia, B. and Daoud, S. (2010),

“Design and Development of Mobile Manipulator

Simulator: Application on the RobuTER/ULM Mobile

Manipulator”. International Conference on Modeling,

Simulation and Control (ICMSC2010), pp. 370-374, Egypt.

Bayle, B. and Fourquet, J.-Y., Renaud, M., (2003) “From

Manipulation to Wheeled Mobile Manipulation: Analogies

and Differences”, The International IFAC Symposium on

Robot Control (Syroco2003), pp. 97-104, Wroclaw, Poland.

Bellifemine, F. L., Caire, G., Poggi, A. and Rimassa, G., (2008),

“JADE: A software framework for developing multi-agent

applications. Lessons learned”, Information and Software

Technology, 50, pp. 10–21.

Duhaut, D., (1999) “Distributed Algorithm for High Control

Robotics Structures”. International Conference on Artificial

Intelligence, Vol. 1, pp. 45-50.

Erden, M. S., Leblebicioglu, K. and Halici, U., (2004) “Multi-

agent System-Based Fuzzy Controller Design with Genetic

Tuning for a Mobile Manipulator Robot in the Hand Over

Task”. Journal of Intelligent and Robotic Systems, 39(3),

pp. 287-306.

Hentout, A., Bouzouia, B., Akli, I. and Toumi, R., (2010),

“Mobile Manipulation: A Case Study”. Robot

Manipulators, New Achievements, Aleksandar Lazinica and

Hiroyuki Kawai (Ed.), pp. 145-167.

Hentout, A., Messous, M. A., Oukid, S. and Bouzouia, B.,

(2013), “Multi-agent Fuzzy-based Control Architecture for

Autonomous Mobile Manipulators: Traditional Approaches

and Multi-agent Fuzzy-based Approaches”. The

International Conference on Intelligent Robotics and

Applications (ICIRA2013), pp. 679-692, Busan, Korea.

Joukhadar, A., (1997) “Simulation dynamique et applications

robotiques”, Ph.D. Thesis in Computer science, Polytechnic

National Institute of Grenoble.

Medeiros A. A. D., (1998) “A Survey of Control Architectures

for Autonomous Mobile Robots”. Journal of the Brazilian

Computer Society, 4(3), Campinas.

Nebot, P., Saintluc, G., Berton, B. and Cervera, E., (2004)

“Agent-based Software Integration for a Mobile

Manipulator”, The 2004 IEEE International Conference on

Systems, Man and Cybernetics (SMC’04), pp. 6167-6172,

The Hague, The Netherlands.

Nikoobin, A. and Rahimi, H. N., (2009) “Analyzing the

Wheeled Mobile Manipulators with Considering the

Kinematics and Dynamics of the Wheels”, International

Journal of Recent Trends in Engineering, 1(5), pp. 90-92.

Wen, J. and Xing, H., (2004) “Multi-agent Based Distributed

Control System for an Intelligent Robot”, The International

Conference on Services Computing (SCC’04), pp. 633-637,

China.

Appendix

The parameters used in the paper are given as follows:

 Effector(xE, yE, zE, E, E, E): it is the current situation of

the end-effector in the absolute frame. The first three

values are the position of the end-effector; the last three

represent its orientation angles.

 Base(xB, yB, B): it is the current situation (position and

orientation) of the mobile base in the absolute frame.

 Configuration(q1, …, qdof): it is the current configuration

of the end-effector in the manipulator frame.

 EffectorInit(xE, yE, zE, E, E, E)Init: it is the initial

situation of the end-effector.

 BaseInit(xB, yB, B)Init: it represents the initial situation of

the mobile base.

 ConfigurationInit(q1, …, qdof)Init: it corresponds to the

initial configuration of the end-effector.

 EffectorFin(xE, yE, zE, E, E, E)Fin: it represents the final

situation of the end-effector (imposed target).

 BaseFin(xB, yB, B)Fin: it is the final situation of the mobile

base.

 ConfigurationFin(q1, …, qdof)Fin: it corresponds to the final

configuration of the end-effector.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8508

