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Abstract: A combined nonlinear model predictive control and nonlinear dynamic inversion
design approach is proposed as a new effective control design philosophy for complex milling
circuits. Nonlinear interaction between various states in the mill and the sump as well as
significant time delays make the milling circuit difficult to control. The proposed innovative
approach, which uses a suboptimal nonlinear model predictive control for the overall circuit with
a fast acting dynamic inversion control for controlling the sump level, addresses the ambitious
objectives of high product quality, high throughput, manageable loads in the mill as well as

minimum power consumption.
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1. INTRODUCTION

A run-of-mine (ROM) ore milling circuit is primarily used
to grind incoming precious metal bearing ore to a particle
size smaller than about 75 um (Coetzee et al., 2010). After
grinding, the ore is liberated, separated and concentrated
in downstream processes. The focus of this paper is to
propose a new nonlinear and suboptimal control design
approach to produce a high quality milling circuit product,
whilst at the same time achieve an adequate throughput
with minimum power consumption. Note that the ROM
ore milling circuit is a complex process that is difficult
to control because of significant nonlinearities, large time
delays, large unmeasured disturbances, process variables
that are difficult to measure, and modelling uncertainties
(Coetzee et al. (2010)).

Traditionally ROM ore milling circuits are controlled
by classical single-loop PID controllers (Wei and Craig
(2009)), despite the multivariable nature of such circuits.
Numerous attempts are noted in the literature, e.g. mu
controller designs are described in Craig and MacLeod
(1996) and linear model predictive control in Chen et al.
(2007).

Recently, an innovative way of controlling the ROM ore
milling circuits was proposed using a robust nonlinear
model predictive controller (MPC) (Coetzee et al. (2010)).
A host of peripheral issues, which are also important for
the successful automation of a milling circuit, are described
in Olivier et al. (2012) and Olivier and Craig (2013).
The main aim of the design methods mentioned above
was to maintain a high product quality, i.e. maintain the
product particle size at a sufficiently small value. However,
throughput and quality are usually inversely proportional
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(Bauer and Craig (2008)), such that a high quality product
leads to a low throughput.

Getting inspired by the work reported in (Coetzee et al.
(2010)) and appropriately modifying it, an innovative
combined nonlinear model predictive control and nonlinear
dynamic inversion design philosophy is presented in this
paper. The proposed approach uses a nonlinear MPC
control for the overall circuit along with a fast acting
dynamic inversion control for controlling the sump level. It
addresses the ambitious objectives of high product quality,
high throughput, manageable loads in the mill as well as
minimum power consumption.

The cost of energy has increased significantly in recent
years. This increase in price greatly affects the mineral
processing industry due to the large energy demands. A
run-of-mine (ROM) ore milling circuit provides a suitable
case study where the power consumed by a mill is in the
order of 2 MW. Grinding mill circuits have been identified
as the most energy and cost intensive unit processes in the
minerals processing industry (Wei and Craig (2009)) and
hence energy savings can have a substantial impact. In a
recent study (Matthews and Craig (2013)), an ROM ore
milling circuit was power optimized using a time-of-use
(TOU) tariff structure following the concept of demand
side management. This study showed that power can be
saved by implementing a real time optimizer (RTO) on
a supervisory outer-loop level. For regulatory control, a
linear model predictive controller (MPC) was used. This
paper, on the other hand, tries to save energy in the
inner loop by additionally penalizing an energy factor
as part of the cost function of the MPC design, and
hence is fundamentally different from the RTO philosophy
described in Matthews and Craig (2013).
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2. RUN-OF-MINE ORE MILLING CIRCUIT MODEL
2.1 Description of the run-of-mine ore milling circuit

The goal of minerals processing is to convert raw ore to a
final product. The final product has a higher concentration
of the most valuable minerals. The ROM circuit is the
focus of this study and is shown in Fig. 1. This circuit
forms part of the minerals liberation process.

Cyclone

= Final product

=

Slurry feed to cyclone

Rotating mill
VARES

Ore from mine B
and steel balls
~7 Sump

Pump

Fig. 1. Run-of-mine circuit. From Le Roux et al. (2013)

Ore containing some valuable mineral (such as those
containing copper, iron, platinum or gold) is fed into the
mill where it is ground fine using rocks and steel balls
as the grinding medium. The mill discharges into a sump
where the slurry is diluted with water to achieve the
correct density before it is pumped to a hydrocyclone.
The cyclone separates the coarse and fine particles, with
the fine particles leaving the circuit as product whilst the
coarse particles are recycled back into the mill for further
grinding.

2.2 Controlled and manipulated variables

All operating points and parameters implemented in this
paper can be found in Coetzee et al. (2010). Table 1 shows
the constraints and operating values for the manipulated
variables (MVs) and controlled variables (CVs). Note that
the MVs are the inputs to the system and the CVs are the
outputs.

CVs (Outputs) for the ROM are typically the particle
size estimate (PSE), percentage of the mill volume filled
(LOAD), sump volume (SVOL) and cyclone feed density
(CFD) (Matthews and Craig (2013)). In this study, an-
other control variable was introduced, namely throughput
(THP).

2.3 State space description

An individual model for each module, shown in Fig. 1,
has been created in the past (Coetzee et al. (2010)) and
validated using real plant data by Le Roux et al. (2013).
The mill has five states, namely water, rocks, solids,
fines and steel balls. The sump has an additional three
states, namely water, fines and solids. The variables and
nomenclature used in this section are shown in Table 1
and Table 2 respectively. The full state space description
is shown in (1)-(14) to illustrate the complexity and
nonlinearity of the circuit. A time delay of thirty seconds

Table 1. Constraints and operating point

Variable Min Max OoP Description

States

KXmw 0 50 8.28 The volume of water in the mill [m?3]
Xms 0 50 9.51 The volume of ore in the mill [m?]

Xon s 0 50 3.34 The volume of fine ore in the mill [m3]
Xmr 0 50 20.90  The volume of rock in the mill [m3]
Xomb 0 20 6.32 The volume of balls in the mill [m?]
Xsw 0 10 2.53 The volume of water in the sump [m3]
Xss 0 10 0.64 The volume of ore in the sump [m3]
Xop 0 10 0.23 The volume of fine ore in the sump [m?]
MVs

MIW 0 100 27.17  Flow rate of water to the mill [m3/h]
MFS 0 200 88.20  Flow rate of solids to the mill [t/h]
MFB 0 4 2 Flow rate of steel balls to the mill [t/h]
CFF 400 500 423.11  Flow rate of slurry to the cyclone [m?/h]
SFW 0 400  261.62 Flow rate of water to the sump [m3/h]
Qspeed 0 100 82 Percentage of critical mill speed [%)]
CVs

PSE 60 90 80 Product particle size [% < 75 pm)]
LOAD 30 50 45 Total charge of the mill [%]

SVOL 2 9.5 3 Level of the sump [m?]

THP 0 200 88 Throughput (coarse and fine solids) [t/h]
CFD 1 2 1344  Cyclone feed density [kg/m3]

and ten seconds are present between the sump-to-cyclone
and cyclone-to-mill respectively.

Mill state equations

X = MIW — PRy (1)
e () Ve @
Ko = A~ R 2 o

P

Dso; [1 +ag, (me+xm+xms+xmb

Umill

o)

. MFS P Xor
Xomr = Qp — we ( ) (4>
DS DS¢T er + Xms
X‘ o MFB _ sz‘ll‘P ( me >
mb DB ¢b DS (er + Xms) + DBme

Sump state equations

. Vv o X mwXmw CFFXg,
Xsw = ve - + SFW (6)
Xoms + Xonw Kosw + Xss
d VVQDmeXms CFFXss
Xss = - 7
Xms + me XS’UJ + XSS ( )
. vaDmeme CFFXsf
Xy = -
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The circuit contains six outputs shown in (9)-(14).
Pmill = Pmaa: . (]-_
5P1)Z£ - 2XP5P716PSZZEZ’I" - 5PSZE)(aspeed)aP (9)

LOAD = Xy + Xons + Xonr + Xont (10)
SVOL = Xss + Xsuw (11)
Xsw + XssDS
CFD = 28w T ZssZS 12
XS’LU + XSS ( )
pSE = Yeto (13)

cso
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THP =V, (14)

Equations (15)-(17) are intermediate equations used in
the state and output equations. Velocity components Vg,
Vewu, Vepu, Veso and Veg, are presented in Le Roux et al.

(2013).
0.5
1 X
= (1 — ( - 1) ’”3) (15)
€S’U me
Xpw + Xmr + Xins + X
Z;c _ mw mr ms mb 1 (16)
UmillUP,, a0
Z,=—%2 1 (17)
LpP’"'Lll_’L’
Table 2. Description of subscripts
Subscript  Description
Xa_ f-feeder; m-mill; s-sump; c-cyclone
X_A w-water; s-solids; c-coarse; f-fines; r-rocks; b-balls
V__A i-inflow; o-outflow; u-underflow

The mill power consumption is of interest in this study.
The power that the mill motor supplies is given by (9). The
relationship between mill load and power is often assumed
to be parabolic (Craig et al. (1992), Powell et al. (2009),
(2011)). In the case study presented here, an increase in
load results in an increase in power up to when the mill
is approximately 45 % full; when the load increases above
this value, the power starts to decrease.

3. CONTROL FORMULATION
3.1 Control Objectives

As discussed earlier, the main control objectives for this
new formulation is to achieve both a good ‘quality’ (prod-
uct size or PSE) and good ‘quantity’ or throughput (THP).
An additional advantage of minimizing power was also
studied.

The control configuration is shown in Fig 2 where the
difference between the NMPC Base and NMPC Opt is the
energy term in the cost function. Effectively, the goal for
the optimized case is to minimize the largest contributors
to power consumption, i.e. dgpeeq, While still maintaining
the desired set-points for PSE, LOAD and THP.

FW
Setpoints: . SVOIL DI Control S o Nonlinear

PSE g\ > q Plant
LOAD PSE MIW
THP LOAD T Xow MFS
SVOL THP MFB
CFD _| NMPC Base CFF

NMPC Opt Qspeed

Fig. 2. Block diagram illustrating control configuration
implemented.

3.2 Nonlinear model predictive control (NMPC)

The MPC controller was designed using the full non-
linear state space equations as described in Section 2.3.
The objective of the controller is given by (18) where u
represents the manipulated variables to solve the nonlinear

optimal control problem by minimizing a performance

index (J).

In (18)-(27), x are the states with initial values x¢, y refers
to the controlled variables, y ), refers to the set-points, and
p refers to the parameter values for the system.

min J(u,xp,p) (18)
st.yeYuel (19)
X(t) = f(X(t), X(t - (Tsc + 7—cm));
u(t), u(t — (7sc + 7em)), P) (20)
Y(t) = g(X(t)7 X(t - TSC)’ u<t)’ u(t - TSC)’ p) (21)
Tse = 308, o = 10s (22)
u={MIW,MFS,MFB,CFF,aspcci, Xsw}®  (23)
y = {PSE,LOAD,THP}" (24)
Y={yeR™|y, <y <y} (25)
U={ueR™uwy <u<u,} (26)
Np
J(u,%0,p) = D (¥~ ¥,) " Qu(y — ¥s)
n=1
NP
+> Ay"Q,Ay
n=1
Nc NP P
T maill
+ n; Au' Q;Au+ g ; B (27)

The upper and lower constraints for the CVs are given by
vy« and y; respectively and are shown in Table 1. Similarly,
for the input vector, u, and u; are also included.

The prediction horizon (N,) should be chosen based on
the longest settling time between the manipulated and
controlled variables (Seborg et al. (2004)). This would
result in a IV, > 500 due to the PSE-apecq combination.
For practical purposes a N, value of 18 was chosen which
corresponds to a 3 minutes prediction. One control move
was implemented and kept constant for the prediction
horizon, this showed good results. aspecq has been included
as a control variable to control PSE and THP effectively.
THP is regarded as an important control variable and
given a larger weight. agpecq has been constrained between
0.7 and 1. Rate constraints on outputs have been included.
Note that for the base case simulation the weight for power
was set to zero. The matrices Q1, Q2, Q3 and ¢4 represent
the weights for the CVs, rate of the CVs, rate of MVs and
power term respectively. These are significant differences
from to the robust NMPC presented in Coetzee et al.
(2010). The output weights were chosen based on the goal
to achieve a high throughput and high quality. The input
weights were chosen based on the maximum acceptable
movement of an input variable.

Ql = dia‘Q(le q2, CIS) (28)
Q= 2‘11 Y = 2.5, = 200 (29)
Ylmas
Q2 B

2= 5 —1Y2m.. = 06,32 =20 (30)
y2ma1

G = Yy = 53 = 200 (31)
3maz

Q, = 10" *diag (41,42, ¢3) (32)
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Q; = diag(r1,72,73,74,75,76) (33)
T = 2 "maz — 507771 = 10_5 <34)
Mae
Ty = 2T2 1720 = 100,79 = 107° (35)
"2 maz
T3 — —4
3= 5 T30, = 2,73 = 10 (36)
3’!71(1/1'
T4 _ -5
T4 = 5T, = 90,74 = 10 (37)
dmac
f5 _ -5
T5 = 27’7’.577”11, = 0.277"5 = 10 (38)
Smax
T6 _ —4
T6 = —5 3 T6mas = 2,75 = 10 (39)
6’!71.!)“7.'

The weight q4 was only implemented in the optimized
simulation and not in the base case simulation.

g4 =18 (40)

3.8 Dynamic Inversion (DI)

The sump volume has traditionally been controlled using
single loop PID. From (6), it is clear that there are non-
linear dynamics. Dynamic inversion was chosen because
of its simple design and easy online implementation. This
method leads to a closed form solution for the controller
and guarantees asymptotic stability for the error dynam-
ics (Enns et al., 1994). Dynamic inversion was used for
SVOL and Xj,, control. The desired X, value is fed from
the MPC. In this way, the two controllers could be said
to be coupled with one another. SFW has the largest
impact on both these values and was therefore used as
the manipulated variable. Dynamic inversion allows the
specification of a desired response path by choosing a
proportional gain value (K,) and an integral gain value
(K1) such that: E+K,E+K; [} Edr =0 where E =Y —
Y* (the difference between the measured value (Y) and
the setpoint (Y*)). For SVOL control, (41) results where
E =AS,, = SVOL—-SVOL*. Equation (42) results from
algebraic manipulation and solving for the control variable
SFW.
d

dt
SFWsyvor = (CFF — Vi —

t
7K] / (ASvol)dT
0

t
(ASM)[) + Kp(ASvol) + K]/ (ASwl)dT =0 (41)
0

V;si) - Kp(ASvol)

(42)

K, was chosen to be 30, this was based on a desired settling
time of approximately 2 minutes. K was chosen to be ten
times less than K. This resulted in good sump volume
control without exceeding any input constraints on SE'W.
The sump level was to be maintained between 2 and 9.5
m?. The K, value is significantly larger than expected due
to the sampling time of 10 seconds.

Similarly for sump water (Xg,) control: F = AXg, =
Xsw — X7, The solution for SFW is shown in (43).
CFFXgy Vi ¢ X2,

SFW =
Koo T X o + Xes Xoms + X

—K; /t(AXsw)dT — Ky(AX.,)  (43)
0

K, was chosen to be ten times as much as the SVOL K,
value. The K; value was also chosen to be ten times less
than the K.

A convex combination of SFWgyor and SFWx, was
chosen for smooth control of both outputs. This convex
combination is shown in (44).

SFW = (1 - A\)SFWx., + \SFWsvor  (44)
0 if LB<SVOL<UB
! (SVOL — LB) if Min < SVOL < LB

Min — LB

A(SVOL) =

(SVOL —UB) if UB < SVOL < Max

if SVOL < Min or
1 SVOL > Max

Lower Bound(LB) = 3.25, Upper Bound(UB) = 8.25,
Minimum = 2, Maximum = 9.5

Max —UB

(45)
4. RESULTS
4.1 Simulation setup

To illustrate the control capability and the effect of in-
cluding an energy factor in the nonlinear MPC objective
function, an 8 h and 24 h simulation run was performed
using the control formulation described in Section 3. Dy-
namic inversion and a nonlinear MPC was used to control
a nonlinear ROM ore milling circuit described in Section
2.3. A sampling time of 10 seconds was used for the
simulation. State estimation is not the focus of this paper
and full state feedback is assumed. In practice, observers
will have to be used as all states are not measured, see
e.g. (Olivier et al. (2012)). Also, this study aims to show
the control accuracy and not the noise-handling capability.
An additional constraint on aspeeq was added to ensure
smooth control: Aagpeeq < 0.005.

The implementation of time delays was achieved by utiliz-
ing previous state values in the state vector. The fmincon
function requires an objective function and can cater for
various constraint functions (such as equality and inequal-
ity constraints). Within the objective function, the states
and outputs of the mill and sump are propagated (which
are a function of the control moves). The outputs are
checked if they are within equality constraints defined in
the constraints function. The constraints function com-
prises of inequality input and output constraints defined
in Table 1.

4.2 Control accuracy

Two disturbances and one set-point change was applied
during the 8 h simulation. Additional spillage water was
added to the sump between 2 h and 2.5 h with a magnitude
of 30 m3/h. The MIW was reduced by 10 m3/h from 4 h
to 4.5 h to simulate an input pipe leak. A THP set-point
change was made at 6 h moving from 88 t/h to 90 t/h,
PSE and LOAD remained constant.

Figure 3 illustrates how well the control configuration
performs with disturbances and a set-point change. The
sump volume is within the desired limits.

Figure 4 illustrates how well the nonlinear dynamic inver-
sion control technique operates.
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Fig. 3. Output variables and set-point tracking
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Fig. 4. Dynamic inversion control. Desired and output
value for the hold-up of sump water.

It should be noted that all the manipulated variables
and other important variables such as the power output,
rheology factor and the cyclone feed density are within
acceptable regions.

4.8 Power consumption comparison

Various set-point changes were made to the throughput
(THP) and particle size (PSE) every 4 hours. The total
charge of the mill (LOAD) was kept constant at 45%
full. An energy factor was added to the nonlinear MPC
to illustrate the additional possibilities that this control
configuration possesses. The results show that the power
from the mill is tightly linked with the circuit outputs
i.e. changing P,,;; will have a direct effect on whether
the outputs reach set-point. The power consumed by
the pump, after the sump, was regarded as negligible
compared to the power consumed by the mill.

In the first run, the energy factor was not taken into
account (qq = 0). The weight g4 was introduced in the
second simulation run with a starting value of 30. The
error between the PSE measured value and the set-point
value was determined every hour and if the error was larger
than 0.1 %, the run was flagged as unsuccessful. Similarly
for THP, an unsuccessful run resulted if the THP error was
larger than 1 %. Once a run was flagged as unsuccessful,
the run was restarted with a new ¢4 value. The new ¢4
value is 90 % smaller than the previous ¢4 value.

The results show that in 24 h, and an energy term weight
(g4) of 18, a 332.7 kWh reduction in energy resulted with
a 0.6% drop in THP and 0.1% drop in PSE. These results
shows that the system is tightly integrated with power and
that if the end result is to minimize power, there will, as
expected, have to be some sacrifice in THP or PSE. The
energy difference was calculated using the trapezoidal rule
for the P,,;; output variable.

Figure 5 shows the difference in P,,;; between the base
case (¢4 = 0) and the minimized energy case (¢4 = 18).
Figure 6 illustrates the difference in the additional outputs,
rheology factor and cyclone feed density. The rheology
factor shows very similar outputs while the density shows
a slight change.

P [KW] saving
s
8

10 ! ' 1 v 1
0
_ i ;

0 500 1000 1500
t(min)

Fig. 5. P, output difference between base case and
optimized case in kW. Optimized case contains energy
factor in NMPC objective function.

< 1900}
= 1800 1
! \

3
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0 500 1000 1500
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—— Without energy term With energy term

Rheology
°

0 500 1000 1500
t(min)

—— Without energy term With energy term

CFD [kg/m®]

0 500 1000 1500
t(min)

Fig. 6. Output variables for base case and optimized case
simulation.

PSE, THP and LOAD tracking is shown in Fig. 7. In the
second run, the LOAD is around 47% full. This result
conforms with the model, the P,,;; value is reduced as
the mill load moves away from 45% full.

Set-point ]|

=
3

With energy factor
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Without energy factor

N
3
o

500 1000 1500
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Set-point |4
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8
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T r
e
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With energy factor

THROUGHPUT [m®]

500 1000 1500
t(min)

°

Without energy factor

With energy factor |

SVOL [m?]
@ B
Ty T

500 1000 1500

Fig. 7. Controlled variables for base case and optimized
case simulation.

Figure 8 shows the dynamic inversion controller tracking
the Xy, set-point from the MPC. The energy factor run
shows the effect of the convex combination (described in
(44)). A compromise in reaching the desired X, can be
seen due to the prevention of the sump running dry.
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Fig. 8. Dynamic inversion control for base case and opti-
mized case.

Figure 9 and 10 show that the manipulated variables are
all within constraints.

8 3
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I .
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Fig. 9. Manipulated variables for base case and optimized
case simulation.
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o
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Fig. 10. Manipulated variables for base case and optimized
case simulation.

Depending on the product processed and the type of mill
used, the cost of electricity may be significantly less than
the value of the product produced. However, as the cost of
electricity increases the re-evaluation of cost-vs-profit will
be worthwhile. The results show that this milling circuit
model is close to power optimized when including aspeed
as a manipulated variable.

5. CONCLUSION

A combined nonlinear dynamic inversion and nonlinear
model predictive control design approach is followed in this
paper to propose a new effective control design philosophy
for complex milling circuits, which meets the ambitious
objectives of high product quality, high throughput, man-
ageable loads in the mill as well as minimizing the power
consumption for the mill. Effectiveness of the proposed

approach has been demonstrated by taking various combi-
nations of throughput, PSE and load. A study has also
been carried out to demonstrate the power savings by
lowering product quality and/or throughput, which is not
reported due to space constraints. It can be noted that
recent studies show that power can be saved by imple-
menting a real time optimizer on a supervisory outer-loop
level. This paper, on the other hand, tries to save energy
in the inner loop (by additionally penalizing an energy
factor as part of the cost function). Hence, there is a
scope to combine the two philosophies to obtain a better
energy savings, which is a topic for future research. Future
research should also contain noise and effects of modeling
errors.
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