Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Mixed-Criticality Systems based on a CAN Router
with Support for Fault Isolation and Selective
Fault-Tolerance

Roland Kammerer * Roman Obermaisser ** Mino Sharkhawy ***

* Vienna University of Technology, Austria
kammerer @vmars.tuwien.ac.at
** University of Siegen
roman.obermaisser @uni-siegen.de
*** Vienna University of Technology, Austria
mino.sharkhawy @ student.tuwien.ac.at

Abstract: In many application domains there is an increasing trend for mixed-criticality systems with
functions of different assurance levels on shared computing platforms. Today’s CAN-based platforms do
not support the requirements of mixed-criticality systems. A single CAN bus provides low cost, real-time
support and flexibility for applications where the communication service is not safety-relevant. Fault-
tolerance extensions for CAN impose incompatibility to legacy applications, high cost and overhead for
the entire CAN communication.

This paper introduces a CAN infrastructure for fault isolation and selective fault-tolerance, which
permits a balanced trade-off between cost and fault-tolerance for each subsystem of a mixed-criticality
system. We introduce replicated CAN routers that perform fault isolation based on a priori knowledge
of the permitted behavior of CAN nodes. Fault masking is supported selectively through the redundant
transmission of messages from safety-critical subsystems. The CAN routers perform input agreement on
pending messages for replica deterministic behavior, as well as output agreement on the delivery status
of messages. Software layers hide the fault-tolerance mechanisms to establish compatibility to legacy
software. The benefits of the proposed communication infrastructure are demonstrated in a simulation
of an example system.

Keywords: CAN, CAN router, Mixed-Ceriticality, Fault Isolation, Selective Fault Tolerance, Redundancy

1. INTRODUCTION In previous work solutions for addressing fault-tolerance by
active redundancy (see Rufino (1997)) and supporting a con-
sistent atomic broadcast mechanism have been developed (re-
fer to Rufino et al. (1998); Kaiser and Livani (1999); Livani
(1999)). For example ReCANCcentrate (Barranco et al. (2005))
and CANbids (Proenza et al. (2012)) provide fault-tolerance
by using star couplers but do not tackle support for mixed-

criticality systems.

The need to reduce the number of nodes and cables leads to
mixed-criticality systems, where multiple functions with differ-
ent importance and certification assurance levels are integrated
using a shared computing platform. Mixed-criticality is the
concept of allowing applications at different levels of critical-
ity to seamlessly interact and co-exist on the same networked
distributed computational platform.

Controller Area Network (CAN) (see ISO-11898 (1993)) is
one of the most-widely used protocols in applications where

This paper introduces fault-tolerance for CAN based systems
based on redundant CAN routers. The presented solution fo-
cuses on mixed-criticality systems, since safety-relevant nodes
can exploit media redundancy via two redundant routers and
a redundancy-management layer at the nodes. Non safety-

the communication network is not safety-relevant. In the au-
tomotive domain, today CAN is deployed in every produced
car although safety-relevant electronic functions employ either
internal fault-tolerance within the CAN nodes or use other
communication networks (e.g., FlexRay).

CAN lacks essential properties for systems that have substantial
timeliness and dependability requirements. The CAN protocol
does not support fault-tolerance by network redundancy and
multiple bit-flips can result in inconsistent message dissemi-
nations (i.e., no atomic broadcast mechanism, see Kaiser and
Livani (1999)). Furthermore, the mechanisms for achieving a
faulty node’s self-deactivation may cause substantial periods of
inaccessibility (2.5ms at 1 Mbps, see Verissimo et al. (1997)).

Copyright © 2014 IFAC

relevant nodes perceive a conventional CAN bus as the net-
work interface and messages are exchanged via a single router.
Redundant and non redundant communication shares the same
network infrastructure.

A coordination protocol between the routers ensures a consis-
tent state and a consistent redirection of CAN messages despite
unavoidable timing differences at the communication links to
the redundant routers. As a consequence safety-critical CAN
nodes consistently perceive the same temporal order of mes-
sages despite an arbitrary failure of another CAN node.

The paper is organized as follows: In Section 2 we provide
an overview about the system model and the services of the

12284

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

CAN ROUTER
(MPS0C)

Segment with
Multiple Nodes

Mgmt. Port
to Ethernet Network

Segment with a
Single Node

IP Cores:
CAN Interface Subsystem m Management Unit

1 1
S _Cf‘_N_ '_\‘?fj?_ ! TTNoC Time-Triggered Network-on-a-Chip

Fig. 1. System model of the CAN router

CAN router. We continue with the requirements for a redundant
router in Section 3. Section 4 discusses the design of algorithms
necessary to establish a consistent system state in a mixed-
critical router-based system. In Section 5 we evaluate the pro-
posed algorithms with the help of a model of the router, and
discuss the results in Section 6. Finally, we conclude the paper
in Section 7.

2. FAULT-TOLERANT CAN ROUTER

In previous work (see Obermaisser and Kammerer (2010);
Kammerer et al. (2012)) an MPSoC based CAN router was
introduced that supports fault containment and fault masking.
Figure 1 gives an overview about the CAN router. It is a device
that receives messages at its ports, processes these messages
and selectively forwards them to one or more destination ports.
Every router port is connected to a CAN bus that consists of one
or more CAN nodes. Every router port features its local Central
Processing Unit (CPU), memory, and software. This design
eases the distribution of the overall workload compared to a
single processor that has to deal with the whole workload and
allows better scalability (i.e., adding additional router ports).
We denote the combination of CAN controller, CPU, memory,
and software as a CAN Interface Subsystem (CIS). A CIS can
be in the role of a source CIS and/or destination CIS. It is in
the role of a source CIS if it received a CAN message from its
connected CAN segment and in the role of a destination CIS if
it delivers messages to its CAN segment. A CIS samples the
CAN bus and processes new messages periodically. We call
these periods activity cycles which are triggered faster than the
minimum interarrival time of CAN messages.

The router implements a star topology and is designed for fault
detection and fault containment. For the sake of brevity we
provide a short overview about the most important services,
but the interested reader is referred to papers describing the
services in more detail (see Obermaisser and Kammerer (2010);
Kammerer et al. (2012)).

e Message rate control: Monitoring and enforcing minimum
and maximum interarrival times of CAN messages. If a
message violates the specified minimum interarrival time,
the router blocks that message and logs the violation. With
the help of that service a faulty node like a babbling idiot
can only have a limited influence on other CAN segments.

o Message multicasting: The router allows for selective
multicasting of messages instead of broadcasting every
message to every other node. Selective multicasting for-
wards a message to nodes interested in that particular
message. On one hand this allows to use the existing

bandwidth more efficiently and on the other hand this
separation increases composability (see Kammerer et al.
(2013)).

e Identifier validation and translation: The router checks
for every CAN message that arrives at a CIS, if its
Identifier (ID) is in a (re)configurable set of allowed IDs.
If this is not the case, the message gets blocked and the
violation is reported. Identifier translation maps the ID of
an incoming message to another ID before it is delivered
to the destination CAN segment. This service is mainly
used to ease legacy system integration.

e Message checks and content translation: If desired, the
router can check the content of a message (e.g., range
checks) and it can translate the content of messages (e.g.,
converting between different measuring units).

e Message scheduling: Because of the star topology and the
resulting distinct CAN segments, it might happen that two
distinct source CISes send a message to the same destina-
tion CIS in the same activity cycle. Therefore, the desti-
nation CIS also receives these two messages in the same
activity cycle and has to decide which message it should
send first. To resemble the priority driven arbitration of
a traditional CAN bus, the destination CIS adds all the
received messages to a priority queue sorted by CAN IDs
and tries to send the first message in the queue. In the
following activity cycles all new messages are again added
to the priority queue. We overwrite old messages with the
same CAN ID in the queue. On one hand this simpli-
fies the implementation tremendously (i.e., we know the
maximum size of the priority queue before runtime) and
we consider newer messages always more important than
old/outdated messages. This service is the only one that
has to be slightly modified to support mixed-criticality.
We realized these higher level services by implementing
a store and forward behavior.

3. REDUNDANT CAN ROUTERS

A single CAN router already allows a basic level of mixed-
criticality integration. By cleanly decoupling CAN segments
with the help of a star topology and by selective multicasting,
High-Critical CAN Nodes (HCNs) can be separated from Low-
Critical CAN Nodes (LCNs). Even if LCNs send messages to
higher-critical CAN segments, the influence of LCNs can be
bound with the help of the message rate control service, espe-
cially by enforcing minimum interarrival times of messages.

With redundant CAN routers we achieve the two goals which
are the key contributions of this paper:

(1) Increased dependability: While a single router provides
extended fault detection and isolation mechanisms com-
pared to traditional bus-based setups, a single router can
be seen as a single point of failure. By means of redun-
dancy we avoid this single point of failure.

(2) Finer grained mixed-criticality: Even in case LCNs influ-
ence the timing of HCNs at one CAN segment, HCNs
feature a second connection to a copy of the router that
is not influenced by LCNss.

3.1 System Model for Redundant CAN Routers

A fault-tolerant system is based on two replicated CAN routers
that are interconnected by a so called interlink. Depending on

12285

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

Low-Critical
CAQBUS cis 1| |CIS 3| Node
cis 2|R1|CIS 4
RedMU
A <— Interlink B
'\ RedMU
o\ cis 1|R2[cis 3
High-Critical
Node cis 2| |CIS 4

Fig. 2. Redundant router setup with two HCNs (A, B) and two
LCNs (X, Y)

the criticality of a CAN node, it is connected via standard
CAN buses to one or both routers. Figure 2 shows a setup
consisting of redundant routers. In the following we describe
the functionality of all the components:

e CAN Nodes: These nodes are the source and/or the des-
tination of CAN messages. LCNs are connected to only
one router and are not changed in any way compared to
legacy CAN nodes (e.g., nodes X and Y in Figure 2).
HCN:s, like the nodes A and B, provide two CAN con-
trollers and a redundancy-management software layer to
interact with the replicated controllers. This layer handles
the interaction between the application software executed
on a CAN node and the underlying controller/hardware
layer. The layered approach provides transparent fault-
tolerance (see Bauer (2001)) and eases legacy software
integration because the application software does not need
to care about replication.

The software layer is also used for deduplication of
CAN messages at the destination CAN nodes (see Sec-
tion 4).

o CAN Buses: CAN buses are non redundant and conform
to the CAN standard. They interconnect CAN nodes and
CAN routers.

o CAN Routers: Routers provide the services described in
Section 2 and additionally handle the functionality that is
required for replication.

e Router Interlink: Redundant routers have to exchange in-
formation about messages they received from CAN nodes
and if none, one, or both routers were able to deliver a
CAN message to the destination node(s). This information
gets exchanged via a redundant interlink. In addition to the
before mentioned agreement on messages, the interlink is
also used to detect whether the opposite redundant router
is still operational by continuously sending and receiving
alive-messages.

e Redundancy Management Unit (RedMU): The RedMU
is a new component of the router that is responsible
for redundancy management. The advantages of using a
dedicated component will be discussed in Section 4. The
RedMU is similar to a CIS (i.e., a dedicated component
with its own CPU and memory). It does not feature a CAN
bus or CAN controllers itself. It acts as a proxy for high-
critical CAN messages and is connected to the interlink.

3.2 Agreement on Consistent State

In order to guarantee a consistent system state, the redundant
routers have to agree on the input they receive from connected

6
Lslcis1 clIs 3>
\s
RedMU

Pl
Fig. 3. High-critical message flow in a redundant router setup

CAN nodes as well as on the output the redundant routers sent
to destination nodes. Without these agreements messages could
be lost or messages could get duplicated. In the following we
discuss these agreements in detail:

Input Agreement Different cable lengths and slightly differ-
ent sending times of the replicated CAN controllers of a HCN
make input agreement necessary. Even if the CAN controllers
were perfectly synchronized and the cable lengths were exactly
the same, routers still need to decide if a message was already
processed or not, no matter if the routers operate time or event-
triggered. The CAN routers operate in cycles of activity and the
routers themselves are not perfectly synchronized. It is not even
possible to synchronize the individual time bases of the routers
in such a way that it would be guaranteed that the redundant
CAN messages are processed in the same activity cycle (refer
to Kopetz (1998)). CAN messages are event-triggered and can
occur indeterminately.

In a redundant setup the routers need to agree if a message
has already been processed or not. In order to allow message
checking especially in the temporal domain, the routers also
have to agree on timestamps when a message was received.
If two routers would use timestamps using only their local
time, it could lead to situations where one router discards a
message because of a minimum interarrival time violation and
the other one does not discard it. This could happen because the
two routers cannot be perfectly synchronized and one router
detects a violation of the minimum interarrival time whereas
for the second router the message interarrival time is within the
specified bound.

Output Agreement ~ Assuming that the agreement at the input
side of the router works as expected, there has to be a second
agreement phase at the output of the CAN routers. Again, the
routers are synchronized, but only with a certain precision.
Even in a perfectly functional setup it might happen that two
routers try to send the CAN message to their final destination
and that one router successfully sends the message and the other
one is not able to deliver its message. This might be the case
if the destination HCN tries to send a message itself. Assume
a setup like the one in Figure 2, where R;, R5, and B want
to send CAN messages. 1 and R want to deliver a message
from A to B and B simply wants to send a CAN message to the
routers. Due to different cable lengths and because the routers
are not perfectly synchronized, it might happen that R; wins the
arbitration race against B, but R loses it because the replicated
CAN controller on B connected to Ry started sending faster.

Message Flow in a Redundant Router Setup ~ Figure 3 shows a
typical message flow from a source HCN to a destination HCN.
First, the application of a HCN forwards the message it intends
to send to the software layer residing at the HCN. This software

12286

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

layer takes care that this message gets delivered to at least one
CAN router.

It is possible that the message is received by the CISes of
redundant routers at different activity cycles. Source CISes first
receive a CAN message from their CAN segment and simply
forward it to the RedMU. The RedMUs then agree on the
message and on the timestamp it was received. This agreed
information is then sent back to the source CISes. Therefore,
source CISes only receive agreed CAN messages and agreed
timestamps from the RedMU. These agreed timestamps are the
only source that is used for message checks in the temporal
domain. There is no point where the local time of the routers
is used for comparisons. Then, the CISes execute all the logic
that is executed in a single CAN router setup (e.g., message
checks, looking up the destination of CAN messages) and then
forward the message as usual to their destination CIS(es), which
eventually send the message.

At first it might seem strange that messages are sent from source
CISes to the RedMU and then back to the source CIS again.
While forwarding agreed messages from the RedMU directly
to the destination CISes is possible from a technical point
of view, it would have severe disadvantages. CISes already
contain the logic for checking CAN messages in the time and
value domains. Shifting this functionality to the RedMU would
increase the workload of the RedMU. It would also render the
RedMU as a single point of failure. With our design, where
message checking is still executed by the CISes, we can fall
back to the behavior of a single non-redundant CAN router in
case the RedMU fails (e.g., in a never-give-up scenario). If we
now assume that checking messages is better handled by CISes,
then it is obvious why we need a back-channel from the RedMU
to the source CISes.

We favored a dedicated RedMU component for several reasons.
Shifting additional logic required for redundancy management
to CISes would increase their complexity. Additionally, the
overhead for executing code required for redundancy manage-
ment would have a negative impact on the already stringent
timing requirements of CISes. With our design the impact on
CISes is as minimal as possible.

After the agreed CAN message is forwarded to the destination
CIS, every router tries to send the next message pending in
its queue. After the routers tried to send a message, they have
to agree if a router was able to deliver a message. If exactly
one router was successful, the redundant message gets removed
from the redundant router.

As both routers try to send a redundant message in the same
activity cycle, it is of course possible that both messages are
received at the redundant CAN controllers of the destination
HCN. The software layer at the destination node ensures the
deduplication of redundant messages. After deduplication only
one copy of the message is forwarded to the application exe-
cuted at the destination node.

Summarizing, the rest of the paper provides solutions for these
challenges:

e Sending HCNs: It might happen that a message is sent
to one router but not to the other (e.g., the router wanted
to deliver a message on the replicated CAN bus and was
faster).

e Router Input Agreement: Redundant CAN messages sent
from a HCN might be received by the routers at different
activity cycles.

e Router Output Agreement: CAN messages sent to a des-
tination CAN node might be delayed. One router wins
the arbitration to the destination CAN node, the other one
loses it.

e Receiving HCNs: A high-critical destination CAN node
has to decide when it should forward a message to its
application layer. How long has it to wait until it assumes
that a message received at one redundant CAN controller
will not arrive at the redundant copy? How do these nodes
handle deduplication of messages received at both CAN
controllers?

e Mixed-criticality: How do redundant routers process mes-
sages that only arrive at one router? Are the proposed
agreement protocols sufficient to handle mixed-criticality
setups? What are the limitations on the topology in which
mixed-critical nodes are connected to the router?

After providing our fault hypothesis, we will elaborate on these
challenges in Section 4.

3.3 Fault Hypothesis

The fault hypothesis defines the assumptions about the types of
faults that a system based on the CAN router has to tolerate.
This fault hypothesis is needed to design the fault-tolerance
algorithms of the CAN router and to perform its validation. We
assume that each CAN router is a fault-containment region. The
assumed failure mode of the CAN router is fail-silence, which
is justified by the internal error detection mechanisms and
the fault-tolerant MPSoC architecture (see Paukovits (2008))
used for the CAN router. In addition, each node with its CAN
buses is considered as a fault-containment region. A CAN
node can exhibit an arbitrary failure mode in the value or time
domain. We assume a single fault between fault containment
regions. For example the overall system is operational if one
CAN bus from a HCN connected to the router is faulty. In
that case the redundant router receives the message on the
redundant CAN bus. Extending this scenario where a HCN
sends a message to another HCN via the router, the system
tolerates a single bus failure on the receiving side of the router,
a single fault on the router interlink, and a single fault on one
of the buses that connects the router to the destination node.
Possible influences in the time domain for mixed-criticality
systems will be discussed in the following sections, especially
in Section 6.

4. DESIGN AND ALGORITHMS USED FOR
REDUNDANT MIXED-CRITICAL ROUTERS

In this section we describe how we intend to solve the chal-
lenges stated in Section 3.2.

4.1 Software Layer at High-Critical Sending CAN Nodes

Conceptionally, the software layer resides between the appli-
cation executed on a CAN node and the underlying replicated
CAN controllers. The software layer provides a simple Appli-
cation Programming Interface (API) to ease legacy software
integration. Whenever this layer receives a message from the
application, it stores the message in the send buffers of the
replicated CAN controllers and issues for both controllers a

12287

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

single transmit request (i.e., single-shot behavior in CAN ter-
minology). Additionally, the layer has to keep track if the last
message was successfully sent to at least one CAN router. As
long as one copy was received by one router, it clears both
transmit buffers of the CAN controllers. Only if both send
attempts failed, it issues a retransmit.

4.2 Router Input Agreement for High-Critical Messages

For high-critical traffic the RedMU might receive new data
from its connected CISes in every activity cycle. It is now
the purpose of the RedMU to communicate via the interlink
to the other RedMU, agree on the input and to decide if a
new message has to be sent back to the source CIS for further
message processing. Algorithm 1 shows the input agreement
that is executed in every activity cycle for every CIS. Assume
that the RedMUs exchanged their local input (i.e., the variable
local) and got back a message from the other RedMU (i.e.,
the variable remote). The variable agreed always holds the
value of the last agreed message. The variable agreed is
initialized to nil before the algorithm gets executed the first
time. Further assume that if there is no new CAN message to
agree, CISes send a ni1 message.

Require: RedMUs successfully exchanged their messages, lo-
cal message is denoted as L, remote message as R.

1: if R.data # nil then

2: if R.data # agreed.data then

3: if R.data = L.data then

4: L.time < min(L.time, R.time)
5: else

6: L.time < R.time

7: end if

8: L.data < R.data

9: end if
10: else > R.data = nil
11: if L.data = agreed.data then
12: L.data < nil
13: L.time < nil
14: end if
15: end if
16: agreed.data <— L.data
17: agreed.time <— L.time
18: sendMsgToCIS(agreed)

Algorithm 1: Input agreement protocol

First, the algorithm checks if there is a new message from the
remote side (Line 1). For now assume that the remote side did
not send a new message and the algorithm continues at Line 10.
The only thing the RedMU has to decide is if the new local
message has already been sent as the agreed message in the last
activity cycle. This can happen if the remote CIS received the
message in activity cycle n, but the local one in cycle n+ 1 (see
Section 3.2). Therefore, it compares its local message to the
stored agreed one (Line 11) and if they are equal, the message
was already processed and the local message gets discarded.

The other possibility is that we get a new message from the
remote side. If that is the case (Line 1), we then check if this
remote message is equal to the last agreed message. If this
is not the case, therefore it is an unprocessed new message,
the RedMU overwrites its local message. After executing this
algorithm the local variables hold the new agreed value

which is then stored to the variable agreed in Line 16 and
Line 17.

Agreeing on a timestamp is very similar to agreeing on the data
content. If we got new data from the remote side we have to
check if we also got that message on the local side (Line 2). If
this is the case we agree on the minimum timestamp of both
messages in order to be on the safe side. If we did not receive a
message locally, we agree on the timestamp received from the
remote side.

4.3 Router Output Agreement

Algorithm 1 showed that routers agree on the same value
for high-critical traffic. This value is then sent back to the
source CISes which finally send the message to the destination
CIS(es). For reasons explained in Section 3.2 it might happen
that one router successfully sends the message to the destina-
tion CAN node and the other router does not. We solve this
issue in the following way: Destination CISes try to send a
message exactly once in one activity cycle (single-shot). Then,
destination CISes have to wait before they can check if the
message was successfully sent. Checking immediately would
not be correct, because activity cycles are shorter than the time
it takes to send a CAN message. After waiting and checking
the status of the CAN controller, CISes send the current state
to the local RedMU. These messages contain the CAN ID and
boolean values if the message was successfully sent and if it
was a high-critical message. The RedMUs then decide how to
proceed and send a message back to the CISes. Algorithm 2
shows the proposed output agreement. In this section we ex-
plain the steps undertaken because of redundancy, the part of
the algorithm that adds support for mixed-critical setups gets
explained in Section 4.5.

The algorithm is executed by the RedMU for every CIS acting
as a destination CIS. It follows simple, but important rules:
CISes are synchronized within one activity cycle, so is their
agreement. Both CISes send their status (e.g., successful, failed,
or anil value if they did try to send), then wait for the RedMU
to decide, act accordingly in the next - and only the next -
activity cycle, wait if a potential transmission was successful
and then send their new status to the RedMU. The sequence of
sending status, waiting for the RedMU, reacting, waiting for the
CAN controller is synchronized and periodic.

The algorithm first checks if the messages are high-critical.
For now assume a non mixed-critical setup where both routers
always tried to send high-critical message that are input-agreed
and therefore have the same CAN ID. In that case the algorithm
continues at Line 13. If both routers failed to send the message,
they have to retry. If at least one successfully sent the message,
they continue with the next message in the priority queue.

4.4 Software Layer at High-Critical Receiving CAN Nodes

The software layer at HCNs is responsible for deduplication of
redundant messages. The destination CISes of redundant CAN
routers will try to send messages within the same activity cycle,
but there will be an unavoidable offset when these redundant
messages are received by a HCN. Factors for this offset include
that routers can only be synchronized within a certain precision
and that the cable length from a HCN to one router is probably
longer than the cable to the other router. We assume that the
routers are synchronized with a precision of one activity cycle.

12288

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

Require: RedMUs successfully exchanged their messages, lo-
cal message is denoted as L, remote message as R. Mes-
sages contain the CAN ID (ID, default: nil), the send status
(sent, default: false), and if the message is critical (crit,
default: false).

1: if L.crit = true and R.crit = true then
2: msg < AGREECRITICAL(L, R)
3: else if L.crit = false and R.crit = false then
4: msg <— AGREENONCRITICAL(L)
5: else
6: msg < AGREEMIXED(L, R)
7: end if
8: if L.ID = nil then
9: msg <— continue
10: end if
11: sendMsgToCIS(msg)
12:
13: function AGREECRITICAL(L, R)
14: if L.sent = false and R.sent = false then
15: return retry
16: else
17: return continue
18: end if
19: end function
20:
21: function AGREENONCRITICAL(L)
22: if L.sent = true then
23: return continue
24: else
25: return retry
26: end if
27: end function
28:
29: function AGREEMIXED(L, R)
30: if L.crit = true then
31: msg <— AGREENONCRITICAL(L)
32: else
33: if L.sent = true then
34: if R.sent = true then
35: msg < (delg.1p, continue)
36: else
37: msg <— continue
38: end if
39: else
40: if R.sent = true then
41: msg + (delg.1p,retry)
42: else
43: msg < retry
44: end if
45: end if
46: end if
47: return msg

48: end function

Algorithm 2: Output agreement protocol

If a HCN detects identical CAN messages at its redundant CAN
controllers that arrive within the duration of one activity cycle,
these messages are redundant and the software layer forwards
one copy to its application layer. The HCN does not need to be
synchronized to the routers, it just needs the ability to measure
one activity cycle. An important fact in this context is that
the time the routers take for their output agreement does not
influence the receiving HCN. Routers start to send redundant

messages within one activity cycle. Even if routers would need
hours for the output agreement, it is guaranteed that they will
not resend the message as long as one message was successfully
sent. A problem would arise if routers would send an identical
- but new - message within one activity cycle. This can never
happen as activity cycles are shorter than the time it takes to
send a CAN message. Routers have to wait until they are able
to agree if a message was successfully sent or not.

4.5 Support for Mixed-Critical Traffic

In order to support mixed-critical traffic all CAN nodes inter-
ested in this low-critical (i.e., non redundant) traffic have to be
connected to the same router, but without any limitations on the
topology. For example, some of the LCNs can be connected
to the same CAN segments, while others are connected to
distinct CAN segments connected to distinct CISes. It is even
possible to have multiple low critical subsystems, where some
are connected to the first router and others are connected to the
second one, as long as these subsystems do not need to receive
messages from LCNs connected to the distinct router. Messages
from LCNs do not cross router boundaries.

Input agreement modifications The router’s configuration
contains an additional boolean flag for every valid CAN ID that
is set if this message is of high criticality. Only if a message is
flagged as high-critical, it is sent to the RedMU. If it is low crit-
ical, it is directly processed by the CIS and if all checks succeed
it is sent to the destination CIS(es). Without executing the input
agreement stage and because high-critical messages are repli-
cated to the second router, we can ensure that low-critical mes-
sages do not have a timing impact on high-critical messages.
For example, a low-critical message that blocks a high-critical
message on one CAN bus has no timing influence because the
high-critical message gets also received on the redundant router
(assuming a fault free setup). Routers have to agree on high-
critical messages, but low critical messages do not block this
agreement. In order to avoid blocking from LCNs, we suggest
that all LCNs are connected to the same router. It might happen
that the router has to forward two messages from a source CIS
to destination CISes in one activity cycle. This happens if the
router has to forward a low critical message from a LCN and a
high critical message sent back from the RedMU. We deal with
that situation by doubling the bandwidth in the Time-Triggered
Network-on-a-Chip (TTNoC). Our TTNoC is triggered by the
system frequency which is considerably faster than the activity
cycles executed in the routers. Therefore, doubling the band-
width does not have a practical impact.

Output agreement modifications In a mixed-critical setup
there might be a situation that the priority queues of the re-
dundant CISes contain different entries. In the simple case
both CISes tried to send low-critical messages. In that case
Algorithm 2 continues at Line 21 and the RedMUs only have
to care about their local messages. If the local message was
successfully sent, they continue with the next message in the
priority queue, if not, they resend their local message.

Now assume a setup similar to that one shown in Figure 2. It
might happen that the priority queue of a destination CIS at
router R; contains a low-critical message at the head of the
priority queue and a high-critical message after it. For the sake
of simplicity, assume that the message with ID 3 is the head of
the queue followed by ID 5. The router Ry which only connects

12289

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

Table 1. Output agreement for mixed-criticality

[Router [Queue [Sent [Sent [Sent [Sent]
Ry 5,3 T T F F
Ro 5 T F T F

Ry gets delr.rp,cont | cont | delg.rp,retry | retry
Ry gets cont retry cont retry

HCNss lacks the entry with ID 3, but also contains the message
with ID 5 (i.e., the redundant high-critical message). Again, the
routers try to send the messages and send their status to the
RedMU. We have to differentiate four cases which are shown
in Table 1. In the following we discuss these four cases from
left to right:

If both CISes successfully sent their messages, 1 has to delete
the entry for the redundant message which was successfully
sent by the remote node from its priority queue. Ry can con-
tinue with the next message. If the low critical message was
successfully sent but the high critical one was not, the router
that sent the low critical message can continue, the router that
tried to send the high-critical one will retry. The third case is the
one in which the high-critical message was sent, but sending of
the low-critical failed. In that case the router that successfully
sent the high-critical message can simply continue. The router
that failed to send the low-critical message has to delete the
successfully sent message from its queue as it was successfully
sent by the redundant router and then it has to retry to send
its own failed message. In case both routers failed to send a
message, both have to retry. Starting from Line 29, Algorithm 2
executes the described steps.

While Algorithm 2 provides the base for a successful output
agreement, there is one last step that deserves a closer look,
namely the delr ;p function executed at the destination CISes.
Assume the most left case in Table 1 where both CISes sent
their messages successfully. Then, as discussed, the CIS at R;
has to delete the message with the CAN ID 5 from its queue
because it was successfully sent by Ry. But what if in the
meantime new messages with ID 5 arrived at the destination
CISes? In that case Ro would have added the ID to its priority
queue because its priority queue did not contain an entry with
ID 5. Remember that Ry consumed the entry with ID 5 from
its priority queue when it first tried to send the message with
that ID. New messages with ID 5 that arrived at R; in the
time between the send attempt of the message with ID 3 and
the output agreement overwrite the old message with ID 5 in
the priority queue. When R; now deletes the message with
ID 5 from its queue, it actually does not remove the message
Ry sent, but it removes a newer one. In a fault free setup this
would not lead to message loss because R»’s CIS contains the
new message in its queue and Ro will eventually send it. But
in case of a single fault like a cable break between Ry and
the destination node, Rs is not able to send this new message
and R; does not contain it. We solve this issue as follows:
Whenever a destination CIS receives a new message from the
TTNoC, it checks if the ID is already in the priority queue. If
not, it inserts it and sets a boolean flag updated to false.
If then new messages arrive and the ID is already in the queue,
the content of the message gets overwritten, and the updated
flag gets set to t rue. When a CIS gets the message from the
RedMU that it has to delete an ID from the priority queue, it
checks if the updated flag is set. If it is not set, therefore
no new messages with this ID arrived, the CIS simply deletes
the entry from its priority queue because the opposite router

successfully sent it. If the updated flag is set, the message
is not removed from the priority queue because it is in fact a
new message. Again, assume the left most case in Table 1 and
that new messages with the ID 5 arrived. For Ry this means
that the first arrival generated a new entry in the priority queue.
In case of R; the old and unsent message with the ID 5 got
overwritten and the updated flag was set. In that case R
does not remove the message from its priority queue. After the
agreement is executed (and because of the updated flag), now
both destination CISes contain an entry with the ID 5 in their
priority queues.

Finally, we discuss the code starting at Line 8. This part of the
algorithm is used to handle situations in which the local desti-
nation CIS did not try to send a message and therefore did not
contribute to the agreement except by sending a nil message.
Basically, if it did not contribute it can simply continue with
sending messages (or being silent).

4.6 RedMU Failure Detection

Detecting a failure of a RedMU is straight forward. Even if
there are no new CAN messages to agree upon, the input
agreement is executed in every activity cycle and the CISes
send nil messages that are distinguishable from silence on the
router interlink. These messages therefore act as an alive-signal
and given our fault hypothesis that the routers’ failure mode is
fail-silent, we can detect a failed router. The operation that is
then performed is application dependent. It might be desirable
to reach a safe system state or to continue with one router in a
never-give-up scenario.

5. EVALUATION

For evaluation we modeled the CAN router with the help
of TrueTime (see Henriksson et al. (2002)). TrueTime is a
Matlab/Simulink-based simulator for real-time control systems.
We started by modeling a single CAN router based setup (i.e.,
CISes, the TTNoC, CAN buses, CAN nodes) and reevaluated
previous results (see Kammerer et al. (2012)) that were exe-
cuted on the Field Programmable Gate Array (FPGA) based
prototype. After evaluating that the model matches the FPGA
based prototype in the time and value domains, we extended the
model to a redundant, mixed-critical setup. The setup consists
of the same components that are shown in Figure 2.

5.1 Test Cases and Results

During the development of the agreement algorithms we de-
fined a set of test cases that was executed on every iteration of
the protocols and compared to the expected outputs. Our set of
test cases allows us to do statement and branch coverage, but
due to the limited paper length we have to focus on a test case
that covers the proposed techniques in a mixed-critical setup * .
Figure 4 shows the temporal sequence of the test case as well as
the results. Bold arrows drawn between the RedMUs symbolize
the periodic output agreement. The dashed arrow between the
RedMUs in activity cycle 4 symbolizes input agreement. Please
note that the input agreement is executed in every activity cycle,
but for the sake of clarity we showed it only in cycle 4, which
is the only cycle where input agreement has an influence in this
test case.

1 Feel free to send an email to the first author to get access to the TrueTime
model and the source code used for branch coverage analysis.

12290

19th IFAC World Congress

Cape Town, South Africa. August 24-29, 2014

I I I I I I I I I I I
, AC1 , AC2 , AC3 , AC4 , AC5 , AC6 , AC7 , AC8 , AC9 , AC10
| | | | | | | | | | |
! Bl (D3) ! ! E(ID 1) not successful ! ! ! ! X1 ! ! !
I I I I I I I I I I I
CIS1l | — N — — S I e e — | = — — — />
I v I v L4 v (AL} I I I I I
I ©iX1} I \ {in: nil} Hggreed: AL} I I I I I
| R e Voot e N 1 | |
CIS3 | h— h—]% I | I — \r\ — ﬁ’ I I !% - | - I I -/ - I I ﬁ)
R1 - I [I Vo ' [I N I ‘r? I
queue: 1[I o \ 4] oot P | 1, ID1:A1 | IDL:Al | IDR AL | IDL:AL 1[I
controller:! [] Iy X1 ! X1 “‘ X1 1oxa X1 I x1 X1 s X1 VI | !
: I}‘{cont} : :‘ \\'l: I/‘{retry) : : \\ : I}‘{cont, del 1}:
: I: : : \‘)\:{ID 3 fall}l : : : \\:{ID 3 succ}ll :
1 '\ 1 \ 1
Reamu| gff\ffg‘L+4ﬂ P N B A Co iy
| | | | | | | | | | |
I I I I I I I I I I I
I I I I I I I I I I I I
| | | | | | | | | | | |
| | | | 1 | | | | | | |
I I I I I I I I I I I
RedMU| — o = — — — — ¥ =4 L e B = 4 T = — >
| N | A \/4 N | | 1 N |
I N I I 20 M cont} I I P N I
I \{\c""t} I \,’ iy v Ny I I L 10 1' succ} \‘\C""t} I
A e N
R2 I I I }' v I I I I I I
queue: Y Y [;o b \,I 1 [[, | Y [N I
controller:! [] [| S | o “‘ 4] Al A1 ! 1 I A1 ' !
| | S fpares: wu | | | | |
I I I ; itin: A1} i , AL} I I I I I
| | | ;! 1) ;! | | | | |
T I e e i e it e B
| | Fl (o1 | | | | Al | | |t

Fig. 4. Result showing input and output agreement in a mixed-criticality setup

In the selected case the LCN node X sends its message to
router 12;. The message gets processed at CIS 1 of router R;
and gets delivered to CIS 3. Starting from activity cycle 2, we
assume that the CAN bus connected to CIS 3 is occupied. It
could be occupied because other higher priority messages are
sent by node Y. For CIS 3 at R, this leads to a situation that it
is not able to send the CAN message to its destination node. In
cycle 2, CIS 3 tries to send the message X 1, but fails. In activity
cycle 3 we assume that the HCN A wants to send a message
with a higher criticality than the first message that was sent by
node X. At the CAN bus connected to CIS 1 of router R; this
attempt fails because the bus is faulty. At R, the message is
successfully received. Due to the input agreement this high-
critical message gets replicated to R; in activity cycle 4 and
is available at the source CIS in cycle 5. The next output
agreement is executed in cycle 5. The first attempt to send
X1 was in cycle 2, it takes one cycle until the CIS knows if
the transmission was successful, therefore the information that
the message with ID 3 failed is available and sent in activity
cycle 4. The outcome of the agreement leads for CIS 3 at R; to
a retry request that is received in cycle 6. CIS 3 of R, did not
send a message because it had no message to agree on and is
allowed to continue. Both try to send their according messages
in cycle 6. Note hat R, (re)tries to send the low-critical message
because it was already in the queue, while R tries to send the
high-critical message. Both CISes have to wait one cycle (AC 7)
before they send the status for the next output agreement in
cycle 8. The agreement algorithm decides for the CIS at Ry that
it is simply allowed to continue. CIS 3 at R; has to delete the
high-critical message from its queue and is otherwise allowed
to continue with the next message.

6. DISCUSSION

From Figure 4 we can conclude that high-critical messages
are not delayed by low-critical messages under our fault as-

sumptions and our suggested system design (i.e., all non-critical
nodes connected to the same router). As long as a high-critical
message is successfully sent to one router, the message will
be replicated to the redundant router (Figure 4, activity cy-
cles 3 to 5). In the test case shown, the bus connecting A and
Ry was faulty, but R, successfully received the message, which
was then replicated to 1?;. If the system only consists of HCNS,
a single fault between the fault containment regions does not
have an influence on the message. If we consider a mixed-
criticality setup, the situation changes. As long as the subsystem
that connects only HCNss is fault free, the subsystem that also
features LCN does not influence the high-critical system at all.
In a mixed-critical system it might be the case that the CAN bus
from router Rs to node B is faulty, and the LCN Y blocks the
bus between R; and node B. The influence can be damped by
assigning high-priority CAN-IDs to high-critical messages.

A second interesting result is shown in the behavior of R;. Al-
though the second message has a higher-criticality, the message
is blocked by the message X1 that was received by CIS 3 in
a previous activity cycle but not delivered because the CAN
bus to the destination node was occupied. This phenomenon
is called head of line blocking (see Davis et al. (2011)). The
interesting fact is that in a redundant router setup blocking
of high-critical messages by low-critical messages does not
have an influence if the CAN bus to the destination nodes that
receive high-critical messages is operational and all LCNs are
connected to a single router. In that case the redundant router
that only processes high-critical messages will deliver the high-
critical messages without any interference from the redundant
router that might suffer from head of line blocking.

Starting from activity cycle 8 we see how the output agreement
handles mixed-critical systems. It is obvious that CIS 3 at router
Rs is allowed to continue. In that case R» sent a high-critical
message which is also available at the redundant CIS due to
input agreement of high-critical messages at the source CIS.

12291

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

Therefore, router R; has to delete the corresponding message
from the queue before it is allowed to continue. By deleting this
message we ensure that the message is only delivered once to
the destination CAN node. In our scenario there was no new
occurrence of a high-critical message with the same CAN-ID
which allows us to simply delete the message from the queue
of CIS 3. In case there would have been new occurrences, they
would have been replicated due to the input agreement and the
message would not have been deleted because of the updated
flag discussed in Section 4.5.

7. CONCLUSION

In this paper we introduced a fault-tolerant CAN-based commu-
nication infrastructure for mixed-criticality systems. We pro-
vided a system model for two redundant CAN routers and
motivated the necessity to agree on a consistent system state
and how to achieve it. In the following we elaborated on the
software layers used at high-critical CAN nodes and the algo-
rithms for input and output agreement with a focus on mixed-
criticality. For the evaluation we selected a conclusive scenario
in which the proposed agreements are necessary to guarantee a
consistent system state. We showed and discussed that realizing
mixed-criticality systems based on the CAN router is feasible
and how to design such systems to achieve fault detection an
isolation in the temporal and value domain (e.g., connecting
low-critical nodes to a single router).

REFERENCES

Barranco, M., Almeida, L., and Proenza, J. (2005). ReCAN-
centrate: A replicated star topology for CAN networks. In
Proceedings of the 10th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA 2005), vol-
ume 2, 8 pp. —476. doi:10.1109/ETFA.2005.1612714.

Bauer, G. (2001). Transparent Fault Tolerance in a
Time-Triggered Architecture. Ph.D. thesis, Technische Uni-
versitit Wien, Institut fiir Technische Informatik, Vienna,
Austria.

Davis, R.1., Kollmann, S., Pollex, V., and Slomka, F. (2011).
Controller Area Network (CAN) Schedulability Analysis
with FIFO Queues. In Real-Time Systems (ECRTS), 2011
23rd Euromicro Conference on, 45-56. IEEE.

Henriksson, D., Cervin, A., and Arzén, K.E. (2002). True-
time: Simulation of control loops under shared computer

resources. In Proceedings of the 15th IFAC World Congress
on Automatic Control. Barcelona, Spain.

ISO-11898 (1993). Road vehicles — Interchange of
Digital Information — Controller Area Network (CAN) for
High-Speed Communication. Int. Standardization Organi-
sation, ISO 11898.

Kaiser, J. and Livani, M. (1999). Achieving fault-tolerant or-
dered broadcasts in CAN. In Proc. of European Dependable
Computing Conference, 351-363. URL citeseer.nj.
nec.com/235561.html.

Kammerer, R., Obermaisser, R., and Froemel, B. (2012). A
Router for the Containment of Timing and Value Failures in
CAN. EURASIP Journal on Embedded Systems.

Kammerer, R., Froemel, B., Obermaisser, R., and Milbredt, P.
(2013). Composability and compositionality in can-based
automotive systems based on bus and star topologies. INDIN

2013.
Kopetz, H. (1998). Real-Time Systems: Design Principles

for Distributed Embedded Applications. Kluwer Academic
Publishers.

Livani, M. (1999). SHARE: A transparent approach to fault-
tolerant broadcast in CAN. In Proc. of 6th Int. CAN
Conference (ICC6). Torino, Italy.

Obermaisser, R. and Kammerer, R. (2010). A router for
improved fault isolation, scalability and diagnosis in can.
INDIN 2010.

Paukovits, C. (2008). The Time-Triggered System-on-Chip
Architecture. Ph.D. thesis, TU Vienna.

Proenza, J., Barranco, M., Rodriguez-Navas, G., Gessner, D.,
Guardiola, F.,, and Almeida, L. (2012). The design of
the CANbids architecture. In Proceedings of the 17th
IEEE Conference on Emerging Technologies and Factory
Automation (ETFA 2012).

Rufino, J. (1997). Dual-media redundancy mechanisms for
CAN. Technical Report CSTC RT-97-01, Centro de Sistemas
Telematicos e Computacionais do Instituto Superior Técnico,
Lisboa, Portugal.

Rufino, J., Verissimo, P., Arroz, G., Almeida, C., and Ro-
drigues, L. (1998). Fault-tolerant broadcasts in CAN.
In Proceedings of the 28th International Symposium on
Fault-Tolerant Computing Systems, 150—159. Munich, Ger-
many.

Verissimo, P., Rufino, J., and Ming, L. (1997). How hard is hard
real-time communication on field-buses? In Proceedings of
Symposium on Fault-Tolerant Computing, 112-121.

12292

