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Abstract: Repetitive control (RC) is well known as a method for tracking a periodic command as well as 
eliminating the influence of a periodic disturbance. An issue that can be encountered in applications is 
that the period of the disturbance can vary. In some cases one can monitor a drift in the disturbance 
period, but in other cases the period can fluctuate sufficiently fast that one wants an RC law that is robust 
to period fluctuations. Several studies address this problem using higher order RC incorporating a 
negative weight on errors from some previous period. This paper presents a systematic design procedure 
that can be used to improve RC robustness to disturbance period fluctuations. Methods are given to 
present the information needed to make the necessary tradeoffs when tuning the set of design parameters.  
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1. INTRODUCTION 

Repetitive control (RC) is an effective control method that 
can produce zero error in a control system tracking a periodic 
command, or cancel the influence of a periodic disturbance.  
If the purpose is to eliminate the influence of an external 
periodic disturbance, it is necessary for the RC system to stay 
synchronized with the disturbance, and RC is typically rather 
sensitive to accurate knowledge of the period. Several 
situations can occur. In some applications, the disturbance is 
related to a periodic command being executed, in which case 
one can easily stay synchronized. In Ahn et al. (2013) the 
disturbance period is the period of rotation of a control 
moment gyro (CMG) on a spacecraft run using three phase 
motors, and one knows the phase from the commands to the 
motors. A little more generally, one can try to measure the 
period in real time. Tsao et al. (2000) analyze this kind of 
application. RC can be effective provided that the change in 
period is sufficiently slow that the RC convergence time 
keeps the system close to zero error. Sometimes the period 
fluctuates, and in this situation one wants an RC design that 
is robust to uncertainty in the disturbance period. It is this 
situation that motivated Steinbuch (2002) and Steinbuch et al. 
(2004). The approach there develops higher order RC to 
create improved robustness to the disturbance period. Higher 
order RC makes use of measured errors not only from the 
previous period, but also from one or more earlier periods. Lo 
and Longman (2005) and (2006) develop an understanding of 
how this approach can improve period robustness, from both 
a frequency response point of view and a root locus analysis 
approach.  
 

Fig. 1. Basic RC system 
We comment that in experiments reported in Ahn et al. 
(2013), using knowledge of the 3 phase motor voltage inputs 
to CMGs, the discretization of the period based on the sample 
time interval used in measurements was sufficiently large that 
robustification to period uncertainties was preferable. Ahn et 
al. (to appear), presents an alternative approach to 
robustification to period uncertainties. It makes use of RC 
designed for multiple periods, and makes the periods 
identical.  
In this paper we develop a systematic procedure to use to 
design higher order RC systems with improved robustness to 
disturbance period fluctuations. The parameters to be 
adjusted during the design process are listed, and then various 
kinds of graphical plots can be used to know the influence of 
each parameter so that one can make intelligent trade-off 
decisions. In Section 2, we review the design of the higher 
order RC. The mathematical formulation for the design 
method is presented in Section 3. Then the detailed design 
procedure is presented in Section 4. A simple design 
simulation is discussed in Section 5. Finally, in Section 6 we 
summarize the main contributions. 

2. FORMULATION OF HIGHER ORDER REPETITIVE 
CONTROL 
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2.1   Basic Repetitive Control (RC) -- First Order RC 

We consider the block diagram in Fig.1 as the repetitive 
control (RC) system, where ( )R z  is the repetitive controller, 
and ( )G z  is a closed loop transfer function of a feedback 
control system. Before going to the higher order RC, consider 
first order repetitive control formulations. The most basic 
form makes use of the concept of the discrete time equivalent 
of a separate integral control operating on each time step of 
the disturbance period. Suppose that the period of the 
disturbance (or command, or both when both are present) is 
pT , where T is the sample time interval, and p is the number 
of time steps per period. Then the simplest form of RC is 

( ) ( ) ( 1); ( ) /( 1)pu k u k p e k p R z z zφ φ= − + − + = − .       (1) 

The command at time step k is equal to the command one 
period back, plus a repetitive control gain φ  times the error 
one time step ahead of one period back (the T dependence in 
the arguments is dropped for notational simplicity). The one 
step ahead compensates for the usual one step delay going 
through ( )G z . Note that stability of the repetitive control 
system is determined by the characteristic polynomial 

( ) ( ) 1R z G z = − . And the root locus produced by varying the 
repetitive control gain φ  has the zeros of the original 
feedback control system, and in addition it has a new zero at 
the origin. The poles are the poles of the original feedback 
control system, which are assumed to be inside the unit circle, 
and in addition there are p poles on the unit circle introduced 
by the repetitive controller. In practice, it is convenient to 
design the RC law in the frequency domain, using the form 

( ) ( )[ ( ) ( ) ( )];
( ) ( )( ) .

( )

p

p

z U z F z U z z E z
F z zR z
z F z

= + Φ
Φ

=
−

                        (2) 

This generalizes equation (1) by replacing φ z with ( )zΦ  
that can include not only a gain, but also a compensator. 
Methods of designing the compensator include those in 
Longman (2010). Also, ( )F z  is introduced which can be a 
zero phase low pass filter used to make a frequency cutoff of 
the learning process. Such a cutoff makes it easier to obtain a 
convergent process, but this is done at the expense of not 
trying to learn to eliminate periodic errors above the cutoff. 
From Fig. 1, one can write *[1 ( ) ( )] ( ) ( ) ( )G z R z E z Y z V z+ = − , 
and using equation (2) one obtains the difference equation 
whose solution is the tracking error of the control system 

[ ]{ } *( ) 1 ( ) ( ) ( ) ( ) ( ) ( )p pz F z z G z E z z F z Y z V z⎡ ⎤ ⎡ ⎤− − Φ = − −⎣ ⎦ ⎣ ⎦ .  (3) 

When there is no filter, i.e. F(z) = 1 as in equation (1), then 
the forcing function on the right side of (3) becomes zero 
because it is the difference of the value of periodic functions 
at the present time and shifted one period ahead. Hence, in 
this case the error converges to zero provided the 
characteristic polynomial in curly brackets on the left has all 
roots inside the unit circle. 

2.2  Higher Order RC 

Higher order RC refers to RC laws that make use of error 
information from not just the previous period, but additional 
previous periods as well (Longman (2010)). Generally, it has 
been difficult to determine any clear benefits for higher order 
RC. But Steinbuch (2002), (2004) suggests using higher 
order RC with negative coefficients on the measurements for 
some previous period errors, in order to make RC less 
sensitive to accurate knowledge of the period, or to period 
fluctuations. The form for Nth order RC corresponding to (1) 
is 

1
( ) [ ( ) ( 1)]

N

j
j

u k u k jp e k jpα φ
=

= − + − +∑ ,                  (4) 

where N is the number of periods one wishes to include, and 
the 1 2, ,..., Nα α α are weights to be chosen by the designer. 
One may think of this as creating a weighted average, in 
which case each weight should be non-negative. However, as 
pointed out in Steinbuch (2002), there is no need to restrict 
the weights to be positive. The generalizations of equations 
(2) and (3) to include a compensator and zero-phase low-pass 
filter are 

( 1) ( 2)
1 2

( 1) ( 2)
1 2

( ) ( )
( )

( )

N p N p
N

N Np N p N p
N

F z z z z
R z

z F z z z

α α α

α α α

− −

− −

⎡ ⎤Φ + + +⎣ ⎦=
⎡ ⎤− + + +⎣ ⎦

L

L
          (5) 

{ }
{ }

( 1) ( 2)
1 2

( 1) ( 2) *
1 2

( )[1 ( ) ( )] ( )

( ) [ ( ) ( )]

Np N p N p
N

Np N p N p
N

z F z z G z z z E z

z F z z z Y z V z

α α α

α α α

− −

− −

⎡ ⎤− − Φ + + +⎣ ⎦

⎡ ⎤= − + + + −⎣ ⎦

L

L
(6) 

and the characteristic equation ( ) ( ) 1R z G z = −  is again given 
by setting the curly bracket on the left to zero. The conditions 
needed to converge to zero error again require that all roots of 
the characteristic polynomial lie inside the unit circle, and 
that the forcing function on the right of difference equation 
(6) is zero. The latter occurs when no cutoff filter is used, so 
that ( ) 1F z = , and in addition it is necessary to restrict the 
choice of the jα  to satisfy 

1 2 1Nα α α+ + + =L .                                         (7) 

3. MATHEMATICAL FORMULATION FOR 
ROBUSTIFICATION  

Steinbuch (2002) demonstrated that higher order RC can be 
effective at minimizing the influence of a fluctuating 
disturbance. Steinbuch (2002) and Lo (2006) show how 
higher order RC can widen the notches around the 
fundamental frequency and its harmonics in the sensitivity 
transfer function from disturbance (as an equivalent output 
disturbance on the feedback control system output) to 
resulting error. We will propose a systematic design 
procedure to use for this purpose.  

3.1  Repeating the p Poles on the Unit Circle 

The first order repetitive controllers in equations (1) and (2) 
with the cutoff filter removed, places p poles on the unit 
circle at the fundamental frequency and its harmonics. This 
produces a notch at each of these frequencies in the form of a 
cusp in the magnitude frequency response of the sensitivity 
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transfer function from disturbance to error. Disturbances with 
the frequency at the bottom of the cusp produce zero error, 
but because the cusp has steep sides, small deviations from 
this addressed frequency can result in poor disturbance 
rejection. Repeating these poles eliminates the cusp 
producing a zero derivative at the zero minimum in the plot, 
and widens the notches. Using (5) with ( ) 1,F z = one 
produces a higher order RC law repeating each pole N times 
according to 

( 1) ( 2)
1 2( ) ( 1)Np N p N p p N

Nz z z zα α α− −− + + + = −L  .       (8) 

Lemma 1: Define the following equations 
1 ( 1) ( 1)

1 2
( 1) ( 1)

1 2 1

1
( 1) 1 1 ( 1) 1 1

1 2

( 1) [ ( )]( 1)

[( 1) ( )

( ) ]

[ ].

p k kp k k p k k p k p
k

k p k kp k k k p

k k p k
k k k

k p k kp k k p k p k
k k

z z z z z

z z z

z

z z z z

α α α

α α α

α α α

α α α α

+ − −

+ −

−

+ + + − + +

− = − + + + −

= − + + − +

+ − −

= − + + +

L

L
(9) 

Then the coefficients satisfying (9) can be determined from 
the following recursive formula  

1
1 1

1 1
1

1
1

1

, ( 2, , )

.

k k

k k k
i i i
k k
k k

i k

α α

α α α

α α

+

+ +
−

+
+

= +

= − =

= −

L                           (10) 

Proof: After establishing equation (9), it is straightforward to 
calculate (10). Note that relation (7) is easily verified 

1
1 1

2 2

( )
k k

k k k k k
i i i k

i i

α α α α α+
−

= =

= − = − +∑ ∑ ,                  (11) 

which results in 
1

1 1 1 1
1 1

1 2

1
k k

k k k k
i i k

i i

α α α α
+

+ + + +
+

= =

= + + =∑ ∑   .                 (12) 

3.2 Placing the Additional Poles from Higher Order RC Near 
but not at the Original p Poles  

Repeating the roots produced one or more zero derivatives at 
the bottom of each notch, eliminating the cusp and locally 
widening the notch. Consider starting with third order RC 
with three roots at each frequency of the given disturbance 
period. Then we can easily widen each notch further by 
separating the two additional roots, moving one to a 
neighbouring frequency below the original frequency, and the 
other to a corresponding neighbouring frequency above the 
original frequency. If we go to still higher order RC, then one 
can easily consider including additional neighbouring 
frequencies, or decide to repeat each of the roots. Both will 
have beneficial effects on how separated the walls are of the 
frequency notch at the addressed fundamental frequency and 
its harmonics. The following equation expresses all such 
possibilities, with p frequencies having the addressed period, 
k additional different fundamental frequencies and harmonics 
to place in the neighbourhood of the original frequencies, 
each of which is repeated nj times  

0 1

( 1) ( 2)
1 2

1

( )

( 1) ( ) ( ) ,k

Np N p N p
N

n nnp p p
k

z z z

z z q z q

α α α− −− + + +

= − − −

L

L
                (13) 

where 0 1 .kn n n N+ + + =L  For simplicity of exposition, we 
illustrate the design process using the third order RC case as 
described above, which corresponds to 3,N =  

0 1 2 1n n n= = = , and from (13) we have 
3 2

1 2 3 1 2( ) ( 1)( )( )p p p p p pz z z z z q z qα α α− + + = − − −     (14) 

The relations between 1 2 3, ,α α α and 1 2,q q can be directly 
calculated as follows and satisfy 1 2 3 1α α α+ + = . 

1 1 2

2 1 2 1 2

3 1 2

1
( )

.

q q
q q q q

q q

α
α
α

= + +
= − + +
=

                                  (15) 

Consider 0 0 0 0(cos sin ), (cos sin )z r i z r iθ θ θ θ= + = + and 
make use of De Moivre’s theorem to write the solution of the 
equation  0

nz z=  as  

1/ 1/ 0 0
0 0

1/ 0
0

2 2
cos } sin ,

2
, , ( 0,1, , 1).

n n

n

k k
z z r i

n n
k

r r k n
n

θ π θ π

θ π
θ

⎧ + + ⎫⎛ ⎞ ⎛ ⎞= = +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

+
= = = −K

   (16) 

Use the result to design the poles in (14). First, for the factor 
( 1)pz − , because z0 = 1, (r0 = 1, θ0 = 0)  we have 

2 21, , ( 0,1, , 1),kr k p
p p
π πθ θ= = = − ∆ =K  ,         (17) 

where θ∆ is the angel interval between the p values of θ  for 
these p roots on the unit circle. Let the sampling time period 
be T, and considering θ = ωT = 2π fT , we have / ,f k pT=  
( 0,1, , 1), 1/k p f pT= − ∆ =K . Here k=1 is the fundamental 

frequency of the reference signal and the disturbance signal. 
f∆  is the interval between the frequencies. These pole 

placements ensure the output of the closed loop system 
perfectly tracks the reference signal and eliminates the 
influence of the disturbance signal. The sensitivity transfer 
function of the closed loop system will be zero at the above 
fundamental frequency and all harmonics up to Nyquist 
frequency. Between these frequencies, the sensitivity transfer 
function will not be zero and instead will be amplified 
because of the Bode integral theorem also known as the 
waterbed effect.  Continuing with the third order RC 
problem, choose 1 2,q q  as the following conjugate form 

1,2 1 1(cos sin )q iθ θ= ±                                    (18) 

De Moivre’s theorem applied to the factor 1( )pz q−  produces 
the following poles  

1/ 1 1
1

1

2 2cos sin ,

2
1, , ( 0,1, , 1)

p
q

q q

k kz q i
p p

k
r k p

p

θ π θ π

θ π
θ

⎧ ⎫⎛ ⎞ ⎛ ⎞+ +⎪ ⎪= = +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

+
= = = −K

      (19) 

We introduce parameter c to indicate how much the extra 
poles for this term have been moved from the p original poles. 
The value of c indicates how the root is moved as a fraction 
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of the distance ∆θ  from one of the original pole to the next 
pole. Select the first pole (k=0) as 

1 1 1,
2 2

c c
p

θ
θ= × ∆ − < <                         (20) 

If c = 0.1 the new poles are placed at  

2 21, 0.1 , ( 0,1, , 1),q q
kr k p
p p
π πθ= = + × = −K     (21) 

and similarly with a minus sign when c is negative for 
moving the q2 of the third set of poles in the opposite 
direction from the original p poles.  

4. PROCEDURE AND TOOLS FOR ROBUSTIFIED RC 
DESIGN 

This section discusses the tradeoffs to be made by the 
designer when generating an RC system robustified to period 
fluctuations. The design parameters to be chosen and tuned 
include: (1) The number of repeats of the original p poles, n0 . 
(2) The number of additional poles k and how many times 
they are repeated, 1 2, , , kn n nL . These poles must be in 
conjugate pairs with each pole in a pair repeated the same 
number of times. Together, (1) and (2) pick the order of the 
RC, N. (3) For each pair, pick the location as the fractional 
distance from one of the original p poles to the next, c1  and 
c2 , etc. (4) Adjust the overall RC gain φ . (5) Design a zero-
phase cutoff filter F(z) , and in the process consider 
adjustment of the sample time interval T.  
Initial Assumptions: For clarity of exposition, we make some 
assumptions about the problem to be addressed. We consider 
that the RC adjusts the command going through a zero order 
hold feeding a continuous time feedback control system 
G(s) , and we know the poles and zeros of the equivalent 
digital system G(z) . As in the previous section we restrict 
ourselves to n0 = n1 = n2 = 1  so that N = 3  and we adjust one 
c. It will be clear how to generalize. The initial discussion 
considers the case that all zeros of G(z)  are inside the unit 
circle. Then the compensator is chosen to cancel the poles 
and zeros of the system and include an overall gain 
Φ(z) = φG−1(z) . The sensitivity transfer function from 
command minus output disturbance, Y * − V , to error E is 
S(z) = 1/ [1+ R(z)G(z)] . The F(z)  is set to unity for the first 
phase of the design process. The magnitude plot of the 
sensitivity transfer function and the root locus plot of its 
poles as a function of gain φ  contain the fundamental 
information needed. 
The Objective: The design objective is to widen the notches 
in the magnitude plot of the sensitivity transfer function. This 
plot is now a standard plot for all systems under 
consideration. Analogous to the definitions of Q factor or 
bandwidth, we can pick a magnitude, e.g. 0.5, and at this 
magnitude on the plot, record the notch width. This width is 
the same for all notches. Hence, the first design tool is a plot 
of the notch width as a function of the choice of c, and for 
several choices of overall gain φ . This plot allows us to find 
values of these two design variable for a chosen desired notch 
width. 

Tradeoff 1: The chosen value of c widens notches, but 
introduces small peaks at the bottom of the notches, between 
the original pole locations and the newly introduced pole 
locations. The height of these peaks deteriorates the 
disturbance cancellation at these peaks. The second design 
tool is a plot of the height of these peaks as a function of the 
values of c for several choices of φ . Again the same plots 
apply to all systems under consideration. 
Tradeoff 2: The repetitive control system is a feedback 
control loop and hence is subject to the Bode integral 
theorem, also known as the waterbed effect. Widening 
notches attenuates disturbances at more frequencies, and this 
must be paid for by the increase of disturbance amplification 
at the peaks occurring between the notches. The third design 
tool is then a plot of the height of these peaks as a function of 
the choice of c for several choices of φ . Again this plot 
applies to all systems under consideration.  
After an initial assessment using this plot, one can do a more 
precise evaluation. The sensitivity transfer function goes 
from an output disturbance to error. The physical disturbance 
normally occurs before the plant in the feedback control 
system, and there is a transfer function from the actual 
disturbance to its equivalent output disturbance. One 
multiplies this transfer function times the sensitivity transfer 
function to assess how broadband disturbances that are not 
periodic with the addressed period, influence performance. 
One may need to make a compromise. 
Evaluating the Needed Notch Width: Ideally, one has data 
that indicates not only the nominal period, but the nominal 
amplitudes of each harmonic, so that one knows how 
important it is to address each harmonic. Note that all notches 
are widened by the same amount. Given an expected 
fluctuation range for the disturbance period we can widen the 
notch for the fundamental frequency by the appropriate 
amount. But when the fundamental period varies by ∆ω , the 
first harmonic varies by 2∆ω , etc. Hence, the actual desired 
notch widening could be determined by harmonics instead of 
the fundamental. As a result, a chosen amount of widening 
can attenuate errors for the fundamental and lower harmonics, 
but higher harmonics can be amplified. One can make 
appropriate choices, and then use the cutoff filter F(z)  to 
prevent amplification of higher harmonics.  
Cutoff Filter and Sample Rate: Consider the effects of 
doubling the sample rate, this doubles the value of p, cuts the 
value of T in half, doubles Nyquist frequency, and allows one 
to see roughly twice as many harmonics. Increasing the 
sample rate gives better fidelity representation of the 
continuous time signals, but probably introduced more 
harmonics that should be cut out of the RC learning process. 
The cutoff frequency needs to be determined based on: (1) 
The considerations above related to period fluctuation and 
harmonics. (2) The limit imposed by inaccurate knowledge of 
the system dynamics at high frequencies, a limit that can only 
be determined by hardware tests. (3) Possible need to limit 
the learning frequency range to avoid requiring too large 
actuator outputs trying to correct errors far above the control 
system bandwidth.   

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6511



 
 

     

 

Evaluation of Stability Range: The RC system is likely to be 
unstable for particularly small values of overall gain φ . 
When the pole on the unit circle is a triple pole, the three 
departure angles will be spaced 60 degrees apart, and two of 
the roots in the root locus plot will depart outward from the 
unit circle. It is not a particularly important issue, but a fourth 
standard plot is the minimum gain φ  needed for stability, as 
a function of value of c. One can also record the maximum 
gain for stability, which can become of interest when we 
generalize the class of systems.  
Generalization of the Design Process: The above discussion 
considered that all zeros of G(z)  were inside the unit circle 
so that all zeros could be cancelled by poles. When the pole 
excess of G(s)  is three or more, and the sample rate is not 
unusually slow, there is one or more zeros introduced outside 
the unit circle when converting to G(z) . There are at least 
two main approaches to dealing with these zeros. One is the 
compensator design optimization in the frequency domain 
due to Panomruttanarug and Longman discussed in Longman 
(2010). And the second is due to Tomizuka, also discussed in 
the same work. Here we consider the latter approach because 
it lends itself to making design tool plots analogous to those 
given above. One designs Φ(z)  to contain the gain φ  as 
before, and to cancel all poles and zeros of G(z)  that are 
inside the unit circle. Then for any zero outside the unit circle 
on the negative real axis, one introduced a zero at the 
reciprocal location inside the unit circle, and also introduces a 
pole at the origin. Then one can normalize so that the DC 
gain without considering φ  is unity.  
Generally, there is one zero outside the unit circle for pole 
excess of 3 or 4 in G(s) , two outside for excess of 5 or 6, etc. 
And the locations of these zeros approach asymptotic values 
as T approaches zero (given by Astrom and also discussed in 
Longman (2010)), and does so reasonably quickly with 
sample rate.  Given any pole excess and the associated zero 
location(s), one can again produce standard plots to use in the 
design process, analogous to those discussed above. A new 
aspect is that the notches no longer need to be identical, and 
become a function of p. One can use the magnitude frequency 
response of the sensitivity transfer function and the root locus 
plot as a function of φ , to see its effect. Again one can 
produce the same standard plots to assist in creating the 
design tradeoffs, the notch width plot, the height of the peaks 
inside the notches, the height of the peaks between the 
notches, and the stability range for φ .  

5. SIMULATION RESULTS 

There are many methods to design the compensator Φ(z), in 
order to focus our method, we assume the ( )G z is minimal 
phase and stable, then create a compensator that is equal to 

/ ( )G zφ , where φ  is a scalar gain parameter. From the 
subsection 3.2, we have the third order RC as follows 

2 2
1 2 3 1 2 3

3 3 2
1 21 2 3

( ) ( )
( )

( 1)( )( )

p p p p

p p pp p p

z z z z z z
R z

z z q z qz z z

α α α α α α

α α α

⎡ ⎤ ⎡ ⎤Φ + + Φ + +⎣ ⎦ ⎣ ⎦= =
− − −⎡ ⎤− + +⎣ ⎦

 

We choose the sampling rate f=100 [Hz], and the reference 
signal is periodic with period p=10 time steps. So the 

fundament frequency is 10 [Hz], Nyquist frequency is 50 
[Hz], and 

2 2 36[deg] 0.628[ ], 10[Hz]
10

frad f
p p
π πθ∆ = = = = ∆ = = . 

The root locus plot for the 3rd order RC system is defined by 

                      
2

1 2 3

1 2

1
( 1)( )( )

p p

p p p

z z

z z q z q

φ α α α⎡ ⎤+ +⎣ ⎦ = −
− − −

 

when φ  changed from 0 to ∞ . The sensitivity transfer 
function is defined by 1

3( ) [1 ( ) ( )]S z R z G z −= + We use Matlab 
for simulation. For c=0, 0.1, 0.2, we plot out the loot locus 
and the sensitivity transfer functions ( 1)φ = . 
Fig.2 is the case of subsection 3.1, which makes each of the p 
original poles into triple poles. It does widen notches but the 
effect is limited. Fig.3 is the case for c=0. 1. Compared with 
Fig.2, the triple pole in same place split a litter. The interval 
frequency between these poles is 10% of the fundamental 
frequency, that is 10 0.1 1[Hz]× = . That means the notch is 
extended from 9 [Hz] to 11 [Hz] around the fundamental 
frequency (Fig.3 (b)). Fig.4 is the case for c=0. 2, compare 
with the Fig.3, the triple pole in same place split more wide. 
The interval frequency between these poles is 20% of the 
fundamental frequency, that is 10 0.2 2[Hz]× = . That means 
the notch is extended from 8 [Hz] to 12 [Hz] around the 
fundamental frequency (Fig.4 (b)). These simulations show 
using the parameter c as a freedom, we can obtain the desired 

Fig.2. (a) Rout locus for c=0. 
 

Fig.2 (b) Sensitivity transfer function for c=0. 
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range of the notch. It is very useful in practical applications. 

6. CONCLUSIONS 

In feedback control, normally one can only attenuate the 
effects of disturbances on the output. However, repetitive 
control is capable of completely eliminating the influence of 
a periodic disturbance, but it uses knowledge of the 
disturbance period to do so. The usual first order RC has a 
frequency response plot from disturbance to error with a cusp 
that goes to zero at all frequencies of the given period. But 
slight changes in the period move the response up the sides of 
the cusp very quickly, making RC very sensitive to accurate 
knowledge of the disturbance period being addressed. In 
some applications, the disturbance period fluctuates with time, 
and to address such applications one needs to have RC that 
has wider notches in place of the cusps, making the RC 
robust to period fluctuations. Often one uses a sensor to keep 
the RC period tuned to the actual period of the disturbance. 
However, Ahn et al. (to appear) cites situations in which the 
discretization produced by picking an integer value p for the 
number of time steps in a period, is enough to see a need for 
widening notches. This need also appears when one is 
monitoring a drifting period, one that has non negligible 
change within a period. This paper develops a systematic 
design process to produce RC that is robust to period 
fluctuations or period uncertainties, and which can also be 
used when the period drifts. Design aids or design tools are 
presented to help the designer address the issues and tradeoffs. 
These plots show what benefits are obtained by a choice of 
design variables, and at what expense in terms of tradeoffs 
with other performance characteristics.  
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Fig.3 (a) Rout locus for c=0.1. 

Fig.3 (b) Sensitivity transfer function for c=0.1 

   Fig.4 (a) Rout locus for c=0.2. 

  Fig.4 (b) Sensitivity transfer function for c=0.2. 
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