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Abstract: In this paper, an MPC scheme for a missile pitch axis autopilot is proposed. The
scheme uses a nonlinear prediction model to give it an ability to push the controlled missile very
close to its operating limits, and is stabilised through the use of an ellipsoidal terminal constraint.
Tracking performance and computational load of the scheme are compared to that with a linear
prediction model and other types of terminal constraint. Specifically, the choice of ellipsoidal,
polytopic, or no terminal constraint is discussed. The terminally constrained nonlinear MPC
scheme achieves comparable solution times to that with a linear prediction model, whilst being
more aggressive to give a superior tracking performance.

Keywords: Predictive control, nonlinear control, missiles, stability

1. INTRODUCTION

Model Predictive Control (MPC) has a number of at-
tractive properties for the control of a guided airframe.
It explicitly handles constraints and has the ability to
directly take into account plant nonlinearities. These are
crucial as MPC would be able to push a missile to operate
near its physical limits, at high angles of attack where
aerodynamics are highly nonlinear (Gros et al., 2012).
The other components of MPC such as objective cost
and prediction horizon can be formulated to achieve the
most desirable control behaviour. This makes MPC suited
to address current challenges in missile autopilot design,
which often revolve around the inability to account for
nonlinearities, changes in missile behaviour during flight,
and different missile configurations (Jackson, 2010).

Despite the aforementioned advantages, applications of
MPC for guiding missiles are rare. This is primarily due
to the high computational demand of MPC which can be
problematic for applications in areas where plants posses
fast, nonlinear dynamics, such as in the case of a missile
(Hu and Chen, 2007). This makes the trade-off between
theoretical advantages and implementability of MPC for
missile control an important discussion.

To address the issue regarding computational burden,
typical approaches include simplification of the problem
formulation through model linearisation, relaxation of con-
straints, or bounding by uncertain linear models. Although
reducing computational cost, these approximations can
potentially have detrimental effects on the closed loop
? This research was supported under the Australian’s Research
Council’s Linkage Projects funding scheme (Project LP11020025).

performance of the controller, such as a steady-state error
due to model-plant mismatch or even instability.

The prediction model dictates the complexity of the per-
taining optimisation problem in MPC. A nonlinear predic-
tion model is associated with a higher computational load
than a linear model due to the nonconvex nature of the re-
sulting optimisation problem for most real-world applica-
tions. Early methods in solving MPC with a nonlinear pre-
diction model utilised the direct multiple-shooting (Bock
and Plitt, 1984) or collocation (Biegler, 1984). To achieve
computational times needed in missile applications, a
fast algorithm involving a sequential convex programming
(Tran-Dinh and Diehl, 2010) to solve the nonlinear MPC
scheme is followed in this paper. For benchmarking, the
prediction model is simplified by a typical linearisation.

In this paper, a terminal constraint is used to guarantee
stability of the MPC. In the early derivations of MPC
stability, the terminal constraint was used to impose
the terminal state to coincide at an invariant point, the
origin (e.g. Mayne and Michalska, 1990). This is rather
restrictive and in subsequent developments the notion of
an invariant region (rather than an invariant point) was
introduced (Michalska and Mayne, 1993). Chen et al.
(1998; 2001) extended the theory by approximating the
invariant region as an ellipsoid. An alternative approach in
approximating such a region is to use a polytope (Cannon
et al., 2003), which could better approximate the invariant
region. These approaches derive closed-loop MPC stability
with a linear differential inclusion (LDI) approximation of
the nonlinear plant model, which simplifies calculation of
the terminal region at the expense of being conservative.
This paper compares the ellipsoid and polytopic terminal
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region for missile autopilot. Further, these two approaches
are compared to a computationally simpler approach with
a relaxed constraint, i.e. the use of no terminal region.

The comparisons of the prediction models and terminal
constraints are on the basis of how quickly the controller
can drive the missile to track a given acceleration com-
mand and its computational load. This is to establish an
understanding of the quality of nonlinear MPC with an
ellipsoidal terminal constraint in terms of tracking perfor-
mance and implementability of achieved solution times.

2. PLANT MODEL

2.1 Missile pitch-axis dynamics

The missile autopilot control in the pitch-axis as depicted
in Fig. 1 is governed by the equations

α̇ = q + cos (α)Fz(α, δ)/(mV ) (1a)

q̇ = L(α, δ)/Iy (1b)

a = Fz(α, δ)/(mg) (1c)

where the aerodynamic lift force Fz and pitching moment
L are modelled by (Nichols et al., 1993)

Fz = 0.7M2P0S [CZα,1(2−M/3)α+ CZα,2α |α|+
CZα,3α

3 + CZδδ
]

(2a)

L = 0.7M2P0Sd [CLα,1(8M/3− 7)α+ CLα,2α |α|+
CLα,3α

3 + CLδδ
]
. (2b)

α is the angle of attack and q = ϕ̇ is the pitch rate of
the missile. The output of the system a is the normal
acceleration of the missile in multiples of gravitational
acceleration g. Missile speed V = MVs, where Vs is the
speed of sound, is treated as constant at Mach number
M = 2.5. The actuation of the fin deflection δ is modelled
as a second order system:

δ̈ = −ω2
aδ − 2ζω2

aδ̇ + ω2
aδc. (3)

Aerodynamic coefficients CZα,1, CZα,2 etc., other flight
condition and missile frame parameters, along with con-
stants related to (3) used are the same as given in Nichols
et al. (1993). Note that the symbols CZα,1, CZα,2 etc.
follow the standard nomenclature, and are different to that
used by Nichols et al. (1993).

The dynamics of the missile can be put in a concise form:

˙̃x = f̃(x̃, u) (4a)

y = h(x̃) (4b)

with state variables x̃ = [α, q, δ, δ̇, δc]
T ∈ Rnx , control

variables u = δ̇c ∈ Rnu , and output y = a.

The missile operation is subject to a number of constraints.
A constraint on α is associated with the fact that aerody-
namic coefficients used are only valid for a range of α. Fin
deflection δ and its rate δ̇ are subject to mechanical limits
of the actuator. Although there is no physical restriction
that limits q, a constraint is imposed (made large for it to
never be active) to make compact constraint polytopes

X = {x̃ : −x̄ ≤ x̃ ≤ x̄} , U = {u : −ū ≤ u ≤ ū} (5)

where ≤ and ≥ denote element-wise inequalities. This
describes a region within missile physical limitations and
accuracy of aerodynamic coefficients. The states and input

limits are x̄ = [ᾱ, q̄, δ̄,
¯̇
δ, δ̄]T, and ū =

¯̇
δ respectively. Due

Fig. 1. Missile on the pitch-axis plane.

to these constraints, the missile is only capable of tracking
a maximum acceleration of amax.

2.2 Tracking problem formulation

The autopilot control receives a commanded normal accel-
eration a◦ to track from the missile guidance law. Desired
steady-state values of state variables x◦ which achieve
a◦ are obtained from the solution of 0 = f̃(x◦, u◦) and
a◦ = h(x◦). The system is injective therefore a com-
manded normal acceleration a◦ is associated with one
unique steady state x◦ = [α◦, q◦, δ◦, 0, δ◦]

T
, u◦ = 0.

If a◦ 6= 0 then x◦ 6= 0. The system can be formulated as
an error system with an equilibrium at the origin x = 0:

x = x̃− x◦ (6a)

ẋ = f̃(x̃, u) = f̃(x+ x◦, u) =: f(x, u) (6b)

X = {x : −x̄ ≤ x+ x◦ ≤ x̄} , U = {u : −ū ≤ u ≤ ū} (6c)

3. MODEL PREDICTIVE CONTROL

The missile in continuous time t is controlled at each
sampling time ti, for i = 1, 2 . . . separated by a sampling
period Ts, i.e. ti+1 = ti + Ts. At each sampling instant,
with current state x(ti), the MPC scheme considered in
this paper is to solve the optimisation problem

min
xk k=1...N+1
uk k=1...N

N∑
k=1

`(xk,uk) + e(xN+1) (7a)

s.t. x1 = x(ti) (7b)

xk+1 = Φ(xk, uk) ∀k = 1 . . . N (7c)

xk ∈ X, uk ∈ U ∀k = 1 . . . N (7d)

xN+1 ∈ Xf (7e)

where Φ(xk, uk) = xk +

∫ tk+i

tk+i−1

f(x(τ), uk) dτ. (8)

The subscript k is used to discretise the continuous vari-
ables x and u into N discrete prediction variables to be
solved by computational means. Here, N characterises the
prediction horizon of the MPC scheme. The prediction
model Φ(xk, uk) takes an initial state xk and integrates
the tracking error model (6b) over one sampling period
with zero-order hold input uk to obtain a predicted state
xk+1. The solution of (7a–e) are the optimal state x∗k and
control sequence u∗k, ∀k = 1 . . . N , the first of which, u∗1, is
applied as feedback control to the plant.

3.1 Cost function

The cost function (7a) (with stage cost `(·) and terminal
cost e(·)) is a performance measure of the missile within
the prediction horizon, indicating how far the states are to
the desired values. A typical quadratic cost function:

`(x, u) = ‖x‖2Q + ‖u‖2R , e(x) = ‖x‖2P (9)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

458



is used. Q and R are positive definite stage cost weighting
matrices for the state and control variables respectively,
and P is the terminal cost weighting matrix. Minimising
(9) drives the error x to zero and the system states x̃ to
the steady state x◦ corresponding to the command a◦.

To only penalise errors in states relevant to the accelera-
tion, the following formulation is used for Q and R:

Q = CTC where C =
∂h

∂x̃

∣∣∣∣
x◦,u◦

, R = εR (10)

noting that ‖x‖2CTC ≈ (a− a◦)2. This eliminates the need
for tuning of Q and R, and simplifies the design process
of the controller. Because the input u is constrained, there
is no need to penalise its deviations from zero. R is set
to εR where 0 < εR � 1 to ensure that (7a–e) is locally
convex with respect to u, and avoid a chattering control
behaviour. The value of P is chosen to ensure stability and
will be found using different approaches in Section 3.3.

3.2 Prediction model

To solve (7a–e) with the nonlinear prediction model, equa-
tions (7b–c) can be formulated as a dynamic system rep-
resenting the difference between the states xk and an esti-
mate of their values x̂k, ∀k = 1 . . . N , represented by a 1st-
order Taylor expansion along the estimated trajectories:

xk+1 = Φ(x̂k, ûk)+
∂Φ

∂x

∣∣∣∣
x̂k,ûk

(xk−x̂k)+
∂Φ

∂u

∣∣∣∣
x̂k,ûk

(uk−ûk).

(11)
Defining the Jacobians and a new vector Fk at each time
step in the horizon as

Ak =
∂Φ

∂x

∣∣∣∣
x̂k,ûk

, Bk =
∂Φ

∂u

∣∣∣∣
x̂k,ûk

, (12a)

and Fk = −Φ(x̂k, ûk) +Akx̂k +Bkûk (12b)

the differences between the true and estimated states and
controls can now be captured in the following equality
constraint, replacing (7b–c) in the optimisation problem:


B1 −I

A2 B2 −I
. . .
AN BN −I





u1
x2
u2
x3
...
uN
xN+1


=


F1 −A1x1

F2

...
FN

 .

(13)
Following Tran-Dinh and Diehl (2010), the overall nonlin-
ear MPC (NMPC) algorithm to solve (7a–e) is:

Algorithm 1. [NMPC] (k = 1 . . . N + 1 for x and k = 1 . . . N for u)

0 Obtain the current state x(ti). Initialise the estimate:
x̂k = x(ti), ûk = 0. Set j = 0.

1 Get an optimal (xk, uk) by solving (7a) s.t. (7b,7d–e,11).
Denote this optimal solution (x̂∗k, û

∗
k). j = j + 1.

2 Compute normalised mean squared errors: ∆x =
1

N+1

∑N+1
k=1 ((x̂∗k−x̂k)/x̄)2,∆u = 1

N

∑N
k=1((û∗k−ûk)/ū)2.

3 If ∆x < εx and ∆u < εu, or j > jmax for some
thresholds εx � 1, εu � 1, and jmax, then go to 4.
Otherwise re-initialise: x̂k = x̂∗k, ûk = û∗k and go to 1.

4 Apply control û∗1. Move forward in time: i = i+ 1. Note
that at this step, û∗1 ' u∗1 (as per Remark 1 below).

5 Obtain x(ti). To hot-start Steps 1–3, re-initialise the
estimate: x̂k = x̂∗k, ûk = û∗k. Then shift: x̂k+1 = x̂k,
ûk+1 = ûk. Set j = 0. Go to 1.

In Step 1, (7a) s.t (7b,7d–e,11) is solved as a quadratic
program (QP). Then Steps 2–3 effectively impose the
condition xk+1 = Φ(xk, uk) for (11), ultimately satisfying
(7c). In Step 3, the condition j < jmax can be used to
ensure that the optimisation is solved under a certain time.

Remark 1. [Convergence of Algorithm 1 (Theorem 1 in
Tran-Dinh and Diehl (2010))] (x̂k, ûk) in Steps 1–3 of
Algorithm 1 converges to (x∗k, u

∗
k) if (x̂k, ûk) is initialised

sufficiently close to (x∗k, u
∗
k).

Linear prediction model

Algorithm 1 yields an exact solution of (7a–e). As a bench-
mark, a computationally simpler alternative which yields
an approximate solution of (7a–e) can be achieved by
a time-invariant linearisation of (7c) about the reference
(x̃ = x◦), i.e. origin of the error system (x = 0), yielding
a linear MPC scheme (LMPC) with

xk+1 =
∂f

∂x

∣∣∣∣
0

xk +
∂f

∂u

∣∣∣∣
0

uk = Axk +Buk (14)

in place of (11). Now in (13), Ak = A, Bk = B, and
Fk = 0, ∀k = 1 . . . N in place of (12a–b). Consequently,
(7a–e) can be solved as a QP in one step, simplifying
the computation of u∗ at each sampling instant, although
introducing a greater model error in approximating (7c).

3.3 Terminal constraint

The terminal constraint xN+1 ∈ Xf , along with the
stage cost `(·), terminal cost e(·), and prediction horizon
N are responsible for the stability of the MPC scheme.
Specifically, to follow Mayne and Rawlings (2009) closely:

Theorem 1. [MPC Stability (Mayne and Rawlings, 2009)]
For continuous f(·), `(·), e(·), and compact X and U ,
the closed-loop error system with (7a–e) is asymptotically
stable about the origin if Xf is a subset of Xs and X,
where Xs is defined as a control invariant region where once
the system state x enters, there is a terminal controller
u = κ(x) ∈ U such that Φ(x, κ(x)) stays within Xs.
The methods of computing Xf followed in this paper are
derived on a linear differential inclusion (LDI) approx-
imation of the nonlinear missile model, which is more
conservative and easier to analyse. The terminal controller
considered is a linear controller κ(x) = Kx for some gain
matrix K. An associated control Lyapunov function (CLF)
with u = κ(x) can be determined once x enters Xs.

No terminal constraint The conditions in Theorem 1
are sufficient but not necessary for closed-loop stability.
Guarantee of stability without a terminal constraint has
been shown by approximating a stable combination of P
and N (Parisini and Zoppoli, 1995) for example. Grüne
and Pannek (2011) use controllability assumptions which
are in general very challenging to verify for a given
nonlinear system. Thus, for a given N , trial-and-error is
employed for P when no terminal constraint is used.

Ellipsoidal terminal constraint In this paper, a terminal
constraint (7e) is used to guarantee stability through The-
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orem 1. To keep (7e) simple for computational purposes,
Xf will be restricted to either a polytope or ellipsoid.

With a finite prediction horizon, a stable MPC scheme
under Theorem 1 might be infeasible in driving the states
into the terminal region. In an effort to make the scheme as
practicable as possible, a maximal volume terminal region
is desired, such that the optimisation problem is feasible
for the largest set of initial states. An ellipsoid

Xf = E = {x : xTWx ≤ γ} (15)

for some W and γ is a common choice, with a volume of
vol(E) = 4/3π det(W/γ). This paper follows Chen et al.’s
(2001) proposed stable NMPC with Xf = E , with a
terminal cost weighting P = W . The associated CLF is

‖Φ(x,Kx))‖2P − ‖x‖2P ≤ −`(x,Kx). (16)

For volume maximisation of E under state and input
constraints, and such that Xf ⊆ Xs, Chen et al.’s approach
through linear matrix inequalities is used in this paper.

Polytopic terminal constraint As an alternative to an
ellipsoid, a polytope

Xf = Π = {x : ‖V x‖∞ ≤ λ} (17)

for some V and λ can be chosen as the terminal region,
with a volume of vol(Π) = (2λ)nx/det(V ). Cannon et al.’s
(2003) work for stability under such a terminal region and
its volume optimisation is followed in this paper, with
P = Q and an associated CLF of

‖V Φ(x,Kx))‖∞ − ‖V x‖∞ ≤ 0. (18)

Cannon et al.’s first method (Theorem 3 and Remark 5)
is used for the volume optimisation of Π under state and
input constraints, and Xf ⊆ Xs. The motivation for Xf =
Π is that it may lead to a volumetrically larger Xf than
with Xf = E depending on the exact shape of Xs. This
comes at a cost; the two methods for volume maximisation
of Π by Cannon et al. are nonconvex. They are associated
with multiple local minima, unlike the convex, globally-
optimum method for E .

Tracking of non-constant references

As the reference a◦ changes, the constraint polytope X in
(6c) changes, and so does the region Xs. As a result the
terminal constraint must be recalculated. Recalculation of
the terminal region Xf is computationally expensive and
is not feasible to do within each sampling period. A simple
approach is to precompute a set of Xf for a finite number
of acceleration commands aL = {a1 . . . anl

}:
El = {x : xTWlx ≤ γl} l = 1 . . . nl. (19)

In this subsection, E is interchangeable with Π. nl is the
number of precomputed terminal regions. l = 1, 2 . . . nl
corresponds to a◦ = a1, a2 . . . anl

, in increasing order from
a1 = 0 to anl

≈ amax. Note that Xf for a◦ = amax contains
only the origin. The terminal region can be recalculated
with (the system is symmetric about the origin thus an
extension for a negative acceleration command is trivial):

Assumption 1. [Strictly shrinking Xf ] El2 ⊆ El1 ∀l2 > l1.

Proposition 1. [Stability for set-point changes] Consider
the following method for determining the terminal con-
straint for a given a◦ /∈ aL: Find as and al, the smaller
and larger immediate neighbours of a◦ in aL respectively,
with the associated terminal regions Es and El. Set the
terminal constraint with Xf = El. For continuous f(·), `(·),

e(·), compact X and U , and satisfaction of Assumption
1, the method (extended accordingly for a◦ < 0) leads
to asymptotic stability of the closed-loop error system
in tracking set-point reference changes to a◦ /∈ aL for
−amax ≤ a◦ ≤ amax.

Remark 2. Assumption 1 is made on the basis that as a◦
increases, the constraint polytope X shifts away more from
the origin. Thus, since E is symmetric about the origin,
a smaller terminal region is required to keep El ⊆ X.
If Assumption 1 is valid, El ⊆ Es in Proposition 1. The
method given in the proposition is then conservative in
guaranteeing stability with a more restrictive constraint.

Remark 3. [Stability for time-varying references] Theorem
1 and Proposition 1 are valid for set-point references. For
time-varying references i.e. trajectory tracking, the error
system has been shown to converge to a bounded re-
gion under certain assumptions (Falugi and Mayne, 2012).
For an asymptotically constant reference, Faulwasser and
Findeisen (2011) presented an MPC approach where con-
vergence to zero of the tracking error is guaranteed.

4. SIMULATION RESULTS

MatLab simulations were conducted to demonstrate the
controller performance in tracking an acceleration com-
mand. Parameters used are typical in missile autopilot:
Ts = 10 ms, ᾱ = 20◦, q̄ = 1000◦ s−1, δ̄ = 45◦, and
¯̇
δ = 500◦ s−1. For NMPC εx = εu = 10−4 and jmax = 10.
Prediction horizon N and simulation time T are indicated
for each individual result presented. Gurobi (Gurobi Op-
timization, 2013) was used to solve the QP pertaining to
(7a–e). Acado (Houska et al., 2011) was used to calculate
Φ(·) using a 4th order Gauss-Legendre method in 16 steps,
and the Jacobians in (11). In what follows, “rise time” is
the time taken for the controlled missile to reach and stay
within ±10 % of the desired acceleration command.

The presented NMPC scheme with an ellipsoidal terminal
constraint is used to control a simulated missile model in
tracking a given command. The missile model is initialised
at the origin, and the controller is used to drive the
model to track a 20,−5, 5 g acceleration step for 0.5 s
each. The response exhibits zero steady-state error and no
overshoot, with a rise time of about 150 ms (Fig. 2). This
confirms stability in tracking set-point changes as posed in
Proposition 1. The controller is also tested to track a non-
constant reference, applying the method in Proposition 1
in choosing a terminal constraint at every sampling time.
The controller achieves a lag of about 100 ms in tracking a
15 g, 2 Hz sinusoidal reference (Fig. 3). This result shows
that the controller exhibits a bounded, although non-zero
error, as per Remark 3.

To understand the quality of the presented NMPC as a
controller on the basis of tracking performance and compu-
tational time, it is compared with the more typical LMPC
approach outlined in Section 3.2. It is then benchmarked
against the use of polytopic and no terminal regions.

4.1 Linear vs. nonlinear prediction model

Comparing NMPC and LMPC, both schemes achieve zero
steady-state error and no overshoot for a step change
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Fig. 2. Response to step changes in acceleration command.
An ellipsoidal terminal constraint is imposed. N = 25.
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Fig. 3. Response to a sinusoidal acceleration command
with 15 g amplitude and 0.5 s period. An ellipsoidal
terminal constraint is imposed. N = 25.

(Fig. 2), and a similar phase lag in tracking a sinusoidal
reference (Fig. 3). In Fig. 2, NMPC exhibits an almost
bang-bang response immediately after each step change,
pushing the input u to its upper and lower limits for 0.1 s
or so. This is less evident in LMPC, demonstrating that
NMPC is more aggressive than LMPC, producing control
commands with greater deviations from 0 (Table 1).

NMPC’s aggressiveness leads to faster rise times by about
10-20 ms (Table 2), and an overall better performance as
measured by the cumulated difference between the actual
and desired acceleration (Table 3). This highlights the
capability of NMPC to push the missile nearer to its limits
to better track a given command than LMPC.

The superior performance of NMPC for tracking comes
at a cost of computational load. NMPC takes around 10-
15 ms longer to solve in each sampling time (Table 4)
than LMPC. Nonetheless, computational times achieved
by NMPC have the same order of magnitude as a typical
missile sampling time of 10 ms. This is promising for
practical implementation, where a dedicated processor and
compiled code can be used to reduce computational time.

Furthermore, in NMPC simulations, the iteration limit is
set at jmax = 10 to let ∆x < εx and ∆u < εu in each
sampling instant. For practical implementation, jmax can
be set sufficiently small to guarantee that a solution is
obtained within each sampling period. The first input û∗1
does not change significantly between iterations of Steps 1–
3 in Algorithm 1. Changes mostly occur in the latter part
of the sequence – which is not taken as feedback control –
allowing jmax ∼ 1 without much performance degradation.

Table 1.
∫ T
0
u2dt in tracking a step change to

various a◦ from 0 g. T = 0.5 s, N = 25.

Xf = E Xf = Π No Xf

a◦ NMPC LMPC NMPC LMPC NMPC LMPC

5g 1.00 0.86 1.00 0.86 0.99 0.85
10g 1.00 0.69 1.00 0.69 1.00 0.69
15g 1.00 0.64 1.00 0.64 1.00 0.63
20g 1.00 0.66 1.00 0.66 1.00 0.66

Values are normalised on results for NMPC with Ellipsoidal Xf .

Table 2. Rise time in milliseconds. N = 25.
Xf = E Xf = Π No Xf

a◦ NMPC LMPC NMPC LMPC NMPC LMPC

5g 150 164 150 165 150 165
10g 152 171 151 171 153 171
15g 152 171 152 171 153 171
20g 160 170 160 170 160 170

Table 3.
∫ T
0

(a−a◦)2dt in tracking a step change
to various a◦ from 0 g. T = 0.5 s, N = 25.

Xf = E Xf = Π No Xf

a◦ NMPC LMPC NMPC LMPC NMPC LMPC

5g 1.00 1.00 1.00 1.00 1.00 1.00
10g 1.00 1.01 1.00 1.01 1.00 1.01
15g 1.00 1.01 1.00 1.01 1.00 1.01
20g 1.00 1.01 1.00 1.01 1.00 1.01

Values are normalised on results for NMPC with Ellipsoidal Xf .

Table 4. Solution time in milliseconds, aver-
aged for tracking constant and 2 Hz sinusoidal
references with 5, 10, 15, 20 g steps and ampli-

tudes respectively. T = 0.5 s, N = 25.

Xf = E Xf = Π No Xf

NMPC LMPC NMPC LMPC NMPC LMPC

25.7 10.1 18.8 6.7 17.5 5.4
(1.97) (1.92) (1.95)

Average iterations taken in NMPC are given in brackets.
Simulations were run on a 3.4GHz, 8.0GB, 64-bit desktop.

As shown in Figs. 2 and 3, the performance with jmax = 1
is barely distinguishable from that with jmax = 10.

4.2 Ellipsoidal vs. polytopic vs. no terminal region

To further gauge the quality of the presented NMPC
scheme, the use of an ellipsoidal terminal constraint (Xf =
E) is compared with a polytopic (Xf = Π) or no terminal
constraint (no Xf ). The choice of terminal constraint has
an effect on the quality of the controller, both in tracking
performance and solution time. In terms of tracking per-
formance, the use of no Xf is shown to be able to achieve a
performance similar to that with Xf = E (Fig. 4), although
there is a potential performance degradation (e.g. a steady-
state error) when the terminal cost is poorly chosen.

With regards to solution time, although an appropriately
chosen terminal constraint guarantees closed-loop stabil-
ity, it inevitably has an associated computational bur-
den, adding 1-5 ms of solution time for both NMPC and
LMPC (Table 4). The constraint Xf = Π is linear and
less computationally burdensome to solve than Xf = E
which quadratically constrains the pertaining optimisation
problem. The results shown in Table 4 are consistent with
this notion; NMPC and LMPC with Xf = E take about
4 ms longer in solution time than those with Xf = Π.
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eration commands. Q for the no terminal constraint
case is as indicated in the legend (Qi denotes the ith
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Fig. 5. 2-dimensional projections of controller terminal
region with NMPC to track a 10 g acceleration.

In Fig. 5, a volume-optimal ellipsoidal terminal region E
is compared a polytopic one Π for tracking a 10 g acceler-
ation. The associated volumes are vol(E) = 6.8× 107, and
vol(Π) = 8.8 × 107. The larger volume of the polytope is
consistent with results presented in Cannon et al. (2003),
allowing for shorter prediction horizons, and ultimately
faster solution times. Further shortened prediction hori-
zons can be used when no terminal constraint is imposed.

It is important to consider the effort required in calculating
the terminal constraint for the controller. In optimising
the volume of Π in Fig. 5, a number of initial conditions
for the optimiser were used until a volume larger than E
was obtained. As previously stated, global optimality is
not guaranteed for the result since the optimisation of Π
is nonconvex. There is more effort required to calculate
Π compared to E , which is more costly to design for the
controller and is often undesirable in real-life practice.

5. CONCLUSIONS

An MPC scheme with a nonlinear prediction model and
an ellipsoidal terminal constraint for missile autopilot is
presented. It is shown that the use of a nonlinear prediction
model pushes the missile more to its limits to produce bet-
ter tracking performance than that with a linearly approxi-
mated prediction model, and the terminal constraint guar-
antees stability in constant reference tracking. Although
the presented scheme is associated with a higher compu-
tational load, it maintains comparable solution times to
schemes with a linearised approximation and/or polytopic
or no terminal constraint in each sampling instance for a
typical missile autopilot applications.
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