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Abstract: High penetration of renewable energy to the grid may cause a number of problems
such as supply and demand mismatch, voltage fluctuations and even network instability. Electric
Vehicles (EVs) with on-board batteries are capable of supporting the grid with large integration
of renewable energy sources by absorbing (charging) the excessive amount of energy and
returning it (discharging) to grid when needed. This paper proposes a new smart control
algorithm using the idea of Certainty Equavilent and Adaptive Control and a ”customer
participating program” to coordinate both the charging and discharging of EVs to achieve
the above objective. The advantages of the proposed algorithm come from its simplicity,
robustness and hence a promising opportunity for real-life applications in future smart grid.
The effectiveness of the proposed scheme is evident by the numerical simulations on a micro-
grid system with high penetration level of wind energy
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1. INTRODUCTION

Renewable energy has become increasingly important in
our fight against climate change and energy crisis. How-
ever, it has a major disadvantage of being an intermittent
resource which limits its integration to the power grid. It
is generally accepted that under current conditions, the
maximum amount of renewable energy that the power
system could accept without risk of instability is only 20-
25% (EWEA, 2005). Among a number of solutions that
have been explored in order to increase the renewable
energy penetration to the grid, one feasible approach is to
use electric vehicles (EVs) as energy storage or demand re-
sponse tool to deal with the variation in renewable energy
generation, provided that the scenario of EV proliferation
becomes reality (Wade, 2010).

This potential benefit of EVs has recently attracted the
attention of many researchers. While most of the prior
work has focused on controlling only the charging of
EV (Sortomme and El-Sharkawi, 2011), (Deilami, 2011),
(Linni, 2013), (Richardson, 2012) (Grid to Vehicle - G2V),
few have explored the discharging aspect (Vehicle to Grid-
V2G). Although the infrastructure for V2G might not be
commercially feasible in the near future, it is our belief
that V2G has a crucial role in tackling the problem of
intermittent renewable energy sources. Therefore, it is
necessary to develop a control algorithm that addresses
both the G2V and V2G .

Among the works examining both G2V and V2G, the
most recent ones could be generally divided into two main
trends. In the first trend, the Load Frequency Control
(LFC) technique is employed to adjust the charging or
discharging rate of EVs according to the frequency de-

viation signal, which is a measure of power imbalance
in the system (Ota, 2012a) (Ota, 2012b) (Yunfei, 2013).
Although LFC technique has the advantages of simplicity
and easy implementation, it only considers EV as a normal
demand response equipment rather a smart energy storage
unit. Hence, LFC has not yet exploited all of the benefits
of EV. Moreover, there is also a possibility that under the
LFC scheme, some EVs may not be fully charged before
their time of departure since the customer requirements
are normally traded off for the network stability.

As for the second trend, researchers such as (Saber and Ve-
nayagamoorthy, 2012) and (Khodayar, 2012) use dynamic
programming optimisation to find the optimal charging
or discharging schedules for all EVs for a day ahead that
minimises the total expected cost of the power system.
With the dynamic programming approach, charging plans
for all EVs are actively and optimally scheduled, which can
provide a much better result than that of LFC. However,
since there are different uncertainties involved in the prob-
lem such as the error in renewable energy, load demand
forecasting and even the availability of EVs themselves, the
dynamic programming approach requires comparatively
overwhelming computation work (Bertsekas, 2005). Al-
though advanced solving methods, such as Particle Swarm
Optimization (PSO), have been applied to the problem
above, it still takes hours or even days to compute the
result, which might not be feasible for real applications.

In our work, we do not attempt to find a final solution
from a large complex dynamic programming considering
all kinds of uncertainties at the beginning of the control
period (i.e. a day). Alternatively, we propose a novel
approach in which at each time step, we only solve one
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deterministic optimisation problem that minimises the
cost objective from that time step till the end, using
forecast information about renewable energy resources and
load demand as if there were actual value. This produces
optimal charging or discharging control sequences for all
EVs; however, only the first components (the solution
for the current time step) are used while the rest are
discarded. Such control process is repeated continuously
with updated information to obtain a new control solution
for each new time step until the end of the whole control
period, and the fundamental concept is based on the
principle of Certainty Equivalent and Adaptive Control
(CEAC). As a result, the optimal solution of the proposed
algorithm is simple and efficient in computation and is
robust subject to system uncertainties. (Bertsekas, 2005).

In order to further improve the performance of the al-
gorithm, a ”customer participating” scheme is proposed
which requires information from EV owners about their
charging plans. This scheme on the surface seems impracti-
cal in reality as it would probably affect customersćomfort.
The true reality is however the opposite. Based on a survey
conducted in Victoria, Australia on load control response
project, up to 80% of the participants would accept charge-
management of their EVs only if their vehicles are fully
charged when they need them. Interestingly, nearly 40%
are willing to do so if this could ”provide a better environ-
ment outcome” even though ”there is no financial benefit
for them” (Goverment, 2013).This result of government
survey indicates the feasibility of the customer participa-
tion scheme proposed in this paper

The paper is organised as follows. Section II describes the
control scheme and Section III presents the simulation
data and results. Conclusion is provided in Section IV.

2. OPTIMAL CONTROL SCHEME FOR ELECTRIC
VEHICLES

Consider a micro-grid system which consists of 5 main
components (Figure 1): a conventional power plant (PG),
a renewable energy source (PRE), a load (PD), a group
of EVs (PEV ) and a standby generator (PA) to provide
ancillary service.

The stability of the system requires that, the total net
power injected and consumed in the system must be
balanced at any time, which means:

PG(t) + PRE(t) + PD(t) + PEV (t) + PA(t) + PLoss(t) = 0 (1)

Where:

- PG(t): power output of the conventional power plant
at time t. PG provides the base load demand and
normally is constant with only a small amount of
variation for spinning reserve.

- PRE(t): power output of the renewable energy source
at time t

- PD(t): load demand at time t
- PEV (t): total charging or discharging demand of all

the EVs

PEV (t) =

N∑
i=1

PEV i(t) (2)

(With N is the number of participating vehicles).
PEV i(t) can be negative or positive representing
charging or discharging power, respectively.

- PA(t): power output of stand-by generator at time t
- PLoss(t): loss in the system at time t. Ploss generally

depends on the power flow of the system and is hence
partly correlated to the location of EV’s charging
points and their current charging power.
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Fig. 1. A Micro-grid system with 5 main components

If there is no control over the power consumed by EVs,
there can be a mismatch between the supply and demand
due to the fluctuation of both renewable energy and load
demand. In order to keep the system in balance, the grid
operator must require expensive ancillary service from
stand-by generators or import power from other area. This
is partly the reason why high renewable energy penetration
is generally not favoured by grid operator.

A centralised control scheme based on linear optimisation
is proposed in this paper to coordinate the charging and
discharging of all participating EVs. Assume that a group
of vehicles is controlled within a window of time (for
example one day) which is divided into M small time
steps [t1, t2, ..., tM ]. At each time step tm ∈ [t1, t2, ..., tM ],
the central controller will solve the optimisation prob-
lem to find the optimal charging or discharging schedule
[PEV i(tm), PEV i(tm+1), ..., PEV i(tM )] for all the partici-
pating vehicles with the objective of minimising the power
imbalance F (t) = PG(t) + PRE(t) + PD(t) + PLoss(t) +
PEV (t) in the system from time tm to time tM (cost-to-go
from tm to tM ).

minimize
PEV (t)

‖ F (t) ‖, t ∈ [tm, tm+1, ..., tM ] (3)

where PRE(tm) and PD(tm) are actual value measured
at the current time step t = tm. From t = tm+1 to
t = tM , forecast data are used, which is normally provided
from network operator for a period of time ahead. For
example, in Australia, AEMO (Australia Energy Market
Operator) normally publishes predicted information about
a-day-ahead load demand for different states. Prediction
data is generally subjected to error.

Although the outcome of the optimisation is a control
sequence [PEV i(tm), PEV i(tm+1), ..., PEV i(tM )] (with i ∈
N), we only use the result at the current time step tm by
ordering all participating vehicles i to charge with their
particular power P = PEV i(tm) and forget about the rest.
Moving to the new time step, new information is updated
to the central controller, and the optimisation is processed
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again with the new cost-to-go objective from this current
time step till the end. This process is repeated until the
end of the control window.

In order to improve the performance of the controller, the
proposed owner participation scheme requires information
from the EV owners about their charging plan at the
beginning of the day, such as number of charging processes
per day, arrival and departure time for each charging
process, the State of Charge (SOC) or energy level at
the beginning and desired state of charge at the end.
For the SOC at the beginning of the planned charging
period, customers may alternatively provide information
about their travelling distance or even their next charging
location. Then computer will estimate the SOC based on
the average energy consumption per miles of their cars.
This information needs not to be precise; however, once the
car is actually plugged into the charging point and sends
out a charging request to the control centre, the owner is
required to provide accurate information about the time
of departure and the desired SOC. This information acts
as a commitment or contract of the car owner to the grid
operator.

The set of information that a vehicle owner number i
needs to provide is as follows:

- The number of charging jobs required: ni
- The starting SOC of each charging no. n : Es(i, n)

with n = [1...ni]
- The desired SOC of each charging job: Ed(i, n) with
n = [1...ni]

- The commence time of each charging job: Ts(i, n)
with n = [1...ni]

- The departure time of each charging job: Td(i, n) with
n = [1...ni]

In return for customers’ contribution, all the charging
requirements from vehicle owners will be fulfilled if only
1. they are not physically infeasible 1 , and 2. the cars
remained plugged in during their committed period.

The details of optimisation algorithm are formulated as
follows:

• The objective of the algorithm is:

minimize
PEV (t)

‖F (t)‖, t ∈ [tm, tm+1, ..., tM ] (4)

Here it is assumed that the power loss is constant
and relatively small compared to the load demand
and supply. Since RE and load are forecast values,
the objective function of (4) becomes: F (t) = PG(t)+

P̃RE(t) + r(t) + P̃D(t) + d(t) + PEV (t), where r(t)
and d(t) are error or noise signals,respectively, and

P̃RE(t), P̃D(t) are forecast values. To deal with the
uncertainties or errors in the prediction, the algorithm
solves the problem in the worst case scenario, when
the wind power is lowest and the load demand is
highest, which is:

Minimize Maximize
PEV (t) |r(t)|,|d(t)|

‖F ′(t)‖

t ∈ [tm, tm+1, ..., tM ]
(5)

1 An example of physically infeasible requirement is fully charging
an empty car battery within a minute

with F ′(t) = PG(t) + P̃RE(t) − |r(t)| + P̃D(t) +
|d(t)|+ PLoss(t) + PEV (t)

This is a robust mean square linear optimisation
under uncertainties (El Ghaoui, 1997), which makes
sure that the control algorithm is stable and that all
the charging requests are guaranteed to be met.

• The constraint set of the optimisation algo-
rithm is presented as follows:

PEV (t) =

N∑
i=1

PEV i(t) (6)

Constraint (6) requires that the total EV power
must equal to the sum of power from each individual
electric vehicle.

PEV i(t) = 0;

i ∈ N ; t /∈ [Ts(i, n), Td(i, n)]; n = [1, ..., ni]
(7)

Constraint (7) requires that the charging power
PEV i(t) = 0 when car i is not plugged in.

−Pmax(i, n) 6 PEV i(t) 6 Pmax(i, n)

i ∈ N ; t ∈ [Ts(i, n);Td(i, n)];n = [1, ..., ni]
(8)

Constraint (8) requires that the charging or dis-
charging power must not exceed the maximum power
of the charger. The value of Pmax depends on the
charging facility.

∫ Td(i,n)

Ts(i,n)

η × PEV i(t)dt = Ed(i, n)− Es(i, n)

− a∫ Td(i,n)

Ts(i,n)

η × PEV i(t)dt 5 Ed(i, n)− Es(i, n)

+ a

i ∈ N ; n = [1, ..., ni]

(9)

Constraint (9) makes sure that all EVs are charged
up to their desired state of charge at the end of the
charging period. When providing the charging plan,
customers may arrive late or early at the charging
point and with their SOC different from estimated
value. To deal with this uncertainty, a fuzzy approach
is employed, which accepts the planned charging task
, as long as the result is within a bounded interval [-a;
a]. For committed jobs in which an EV has actually
arrived and send the accurate data, the constraint (9)

becomes equality constraint
∫ Td(i,n)

Ts(i,n)
η 2 ×PEV i(t)dt =

Ed(i, n) − Es(i, n) (with a = 0), and this job is
guaranteed to be completed. It should be noted that
during the actual charging period, the starting energy
level is the energy level at the end of the previous step
Es(i, n) = Ei(tm−1) 3 and the starting time is the
current time step Ts(i, n) = tm

Emini 5 Ei(t) 5 Emaxi; i ∈ N (10)

2 Charging efficiency
3 Ei(t) - Energy level of car i at time t
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Constraint (10) makes sure that the maximum and
minimum capacity is never breached to prolong the
battery life.

The block diagram of the whole control process is displayed
as in Figure 2. Furthermore, it is worth mentioning that
although the above control algorithm is developed for
a finite period of time, it could be easily modified to
formulate an infinite control problem by means of using
a sliding window of time as long as new information is
continuously fed into the central controller.

Centre Controller

Minimise ||F(t)||
s.t constraints

F(t)
PEV(tm)PEVi(tm)

i=[1,…,N]
PEVi(tm); ….;

PEVi(T)
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Fig. 2. The block diagram of the proposed control scheme

3. SIMULATION AND RESULT

3.1 Description of simulation model

A test system is modelled in Matlab environment to
evaluate the performance of the proposed control scheme.
In this system, there are two conventional power plants
G1 and G2 with capacity of 4,250 kW and 750 kW,
respectively. During the day, both generators are scheduled
to run in parallel while during night time, G2 is shut
down.The renewable source is a wind farm representing
all the large scale wind generators in Victoria region,
Australia scaled down by a factor of 100. The total rated
power of the wind farm is 3,770kW so the wind penetration
level is around Pwind

PG1+PG2
= 43% which is relatively high.

The load source is also modelled from history electricity
demand of Victoria region being scaled down to kW
unit. A set of wind and load demand data is randomly
selected on a day with 5-minute interval from the historical
database and used them as the forecast values. In order to
model the inaccuracy in the prediction, errors of 3% and
5% are introduced to the load and wind data, respectively
(Figure 3 and Figure 4).

As far as the EVs are concerned, there are 600 cars in
total, of which 280 are Mitsubish i-MiEV and the rest
are Nissan Leaf (the proportion of Mitsubishi and Nissan
cars resemble the actual proportion of these two types
in Victoria (Goverment, 2013)). Each vehicle is scheduled
with a charging plan including the number of charging
jobs per day, and information about energy level as well
as charging period for each charging request. The energy
level at the beginning and the end of each charging job (2)
are created based on the information of EV driving history
in Victoria, Australia - for example mean and standard
deviation of EV travelling distance per day (Table 1).
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Table 1. Electric Vehicle Usage data in Vic-
toria, Australia (Goverment, 2013) (With AV-

Average, SD-Standard deviation)

Vehicle use Mitsubishi Nissan
attribute iMiEV LEAF

AV SD AV SD

Distance travelled 24.5 12.7 32.8 15.3
per day(km)

SOC at 57.5 10.2 52.0 9.4
plug in %

Average 0.150 0.179
energy economy

(kWh/km)

Table 2. An example of energy level at the
beginning and at the end of each charging jobs

from Vehicle no. 1 and 2

Vehicle Charging Charging Charging
no. job 1 job 2 job 3

Es Ed Es Ed Es Ed

kWh kWh kWh kWh kWh kWh

1 14.57 14.57 14.28 14.28 12.85 16

2 13.73 13.73 13.28 13.28 11.01 16

For the timing of each charging events, it is assumed that
vehicle owners leave home for work in the morning, and
as soon as arriving at their offices at the mean time of
8:30am, they start to charge up their EVs. The car will
remain plugged in until around 5:30pm and re-plugged
at about 7:00pm after retuning back to home. For 10%
of the electric vehicle population, owners will disconnect
their cars to go for lunch at 12pm and return at around
1pm to continue their charging (Table 3). The standard
deviation for the above mean value is 30 minutes. Similar
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to the prediction data for wind and load values, errors
are introduced to model the inaccuracy in the charging
plan information provided by customers. In other words,
customers can possibly arrive at the charging point later
or earlier than their proposed plans (Table 4).

In this case study, we adopt a control policy in which if
an EV arrives earlier than its plan, the central controller,
upon receiving the early charging request, will run two off-
line optimisation problems to determine whether it should
let this vehicle start charging at the next time step or defer
the charging until the original time. In the case when a car
does not arrive on time, the central controller will create a
new arrival time with 15-minute delay. There can be some
penalty measures to discourage late arrivals, but at this
stage, this is out of the scope of this paper.

Table 3. Scheduled starting time and departure
of each charging job from Vehicle no. 1 and 2

Vehicle Charging Charging Charging
no. job 1 job 2 job 3

Ts Td Ts Td Ts Td

1 7:50 12:10 13:05 17:15 19:20 5:40

2 8:00 12:10 13:05 17:05 19:10 5:35

Table 4. Actual starting time and departure of
each charging job from Vehicle no. 1 and 2

Vehicle Charging Charging Charging
no. job 1 job 2 job 3

Ts Td Ts Td Ts Td

1 7:55 12:20 13:00 17:15 19:30 5:40

2 8:10 12:10 13:00 17:10 19:05 5:35

Finally, we assume that during the day, EVs have access
to fast charging facilities with Pmax1 = 7.68kW at their
workplace car park (equivalent to level II charging stan-
dard), while during their charging period at home, the
maximum power is only Pmax2 = 2.88kW (equivalent to
level I charging standard) (International, 2013)

The model is simulated in two different scenarios - with
and without the central controller to compare the impact
of the proposed optimal control scheme for EVs.

3.2 Scenario 1 - Without the central controller (free
charging policy)

In this scenario, it is assumed that all the vehicle owners
return home at around the mean time of 7pm and immedi-
ately start charging their cars with maximum power until
the battery tanks are full. The energy levels or SOC at the
beginning of the charging period are created based on the
EV driving history in Victoria region. The result of this
simulation is presented in Figure 5 and Figure 6.

It could be clearly seen from the result that the system is
constantly out of balance (Figure 3) due to the fluctuation
of wind energy. On top of that, additional imbalance is
added to the system during the night when all of the
vehicles are being charged at the same time (Figure 4).
With this level of power imbalance, the grid operator must
require costly ancillary services to keep the whole system
stable or even have to upgrade the physical infrastructure
for additional peak demand from EVs.
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3.3 Scenario 2 - With the central controller

In the second scenario, the central controller will coor-
dinate the charging and discharging power of 600 EVs.
The result of the simulation is presented in Figure 7. It
shows that during the early morning (from 6:00 to 7:15)
or late afternoon (17:15 to 19:20), most cars are on the
road. Without their support, there is a large mismatch
between supply and demand, which is similar to scenario
1. However, from 7:15 to 16:00 and from 19:20 to 4:30
(next day)-when most of the cars are plugged in-they are
instructed to charge or discharge optimally by the central
controller. As a result, the gap between power supply and
demand is significantly reduced to nearly zero. The trend
is also flattened for most of the time, except for two short
periods from 16:00 to 17:15 and from 4:30 (next day) to
5:55 (next day) when most EVs are nearly fully charged
with little capacity in the car battery pool to utilise.
A flattened power demand trend means that the grid
operator can easily schedule power dispatch from base-
load power plants to bridge the gap instead of having to
mobilise costly emergency ancillary service from standby
generators.

With respect to customer satisfaction, all of the charging
requests from all of the participating vehicles are fulfilled.
In other words, all EV batteries reached their desired
energy level before their departure time. To illustrate, we
examine the case of vehicle 1. During the day, when vehicle
1 is plugged in, its battery is charged up to the required
energy level 4 at the end of each charging period (Figure

4 Charging request of Vechile 1 is presented in Table 2 and Table 4
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9), despite the fact that the central controller instructed
it to charge or discharge with different power rate (within
the maximum power constraint) (Figure 8) to support the
network grid.
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Finally, by using the interior-point method to solve the
optimisation problem in this simulation, the longest com-
putational process time is only 17s for 17 iterations on
a normal desktop computer. The process time could be
faster with a more powerful workstation.

4. CONCLUSION

In conclusion, the proposed control scheme has proved its
ability to exploit EV battery in supporting a very high
penetration level of wind energy to the grid, while at the
same time customer satisfaction is always guaranteed. The
computational process time is comparatively short, hence
it is promising for real-life applications. Currently, power

loss is ignored in this study, but it will be considered
in future work to further enhance the efficiency of the
system. Moreover, we will also look at the options of
using aggregators as distributed controllers to extend the
scale of the system as well as employing pricing scheme to
stimulate favourable customer behaviour.
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