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Abstract: 

This paper presents a quantitative framework for assessment of voltage stability in smart power networks. 

First, new stability indices similar to gain and phase margins in linear time invariant control systems are 

introduced. Then, a novel risk assessment framework incorporating the new stability indices is developed 

to methodologically quantify the voltage stability risks a power system faces at any given operating 

condition. In contrast to existing local stability indices and qualitative risk approaches, the indices and 

framework introduced provide analytical and quantitative evaluation of voltage stability and associated 

risks. The results are illustrated with a numerical example. 
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1. INTRODUCTION 

Power systems are designed to maintain an acceptable 

voltage profile throughout the network under normal 

operating conditions as well as after changes in the operating 

conditions, which could be due to load changes, disturbances, 

or faults. Voltage instability occurs in power systems when 

the voltage at a load bus drops well below its nominal value 

and cannot be brought back by voltage control mechanisms 

such as reactive power compensators. Abnormal (large) 

disturbances, unsustainable increase in load demand, or large 

decrease in power supply may lead to voltage collapse events 

in power systems. When a power system is heavily stressed 

(unable to meet the load demand), uncontrollable cascaded 

events may take place leading to unacceptable levels of 

voltage drops throughout the network. Therefore, all power 

distribution grids posses an inherent problem when operating 

under heavily stressed conditions and are susceptible to 

voltage instability in absence of adequate compensation 

schemes. This inherent weakness is likely to feature more 

prominently in future power grids as the load and generation 

compositions are expected to undergo a paradigm shift due to 

the integration of renewable and embedded generation into 

the grid. Hence the need for a smarter power grids. 

 

To be able to operate power systems in a more intelligent and 

smarter way, it is essential to be able to ascertain 

quantitatively the level of stress in the system at any given 

operating condition. This must be done in terms of metrics 

that are able to provide a quantitative measure of stability at 

any given operating condition and the risk of losing it. This 

requires taking into consideration load characteristics, 

generators primary control systems such as load-frequency 

control and reactive power-voltage control, and secondary 

control mechanism such as StatCom, synchronous 

condensers, fixed and switched capacitors and tap-changing 

transformers. Short term (few seconds) voltage instability, for 

example, occurs shortly after large abnormal events such as 

faults (Saha & Aldeen, 2011; Saha, Aldeen, & Tan, 2011, 

2013). In situations like these, inertial loads and devices 

which possess reactive power characteristics play a very 

important role. At the instant immediately after a fault, 

induction motors draw a large amount of reactive power, and 

may therefore contribute to the reactive power imbalance in 

the system and push the system to instability. 

Over the past few decades a large amount of literature has 

appeared dealing with the issue of voltage instability. An 

early significant result that provides a quantitative measure of 

voltage stability is reported in (Kessel & Glavitch, July 

1986), where an index of voltage stability, that has become to 

known as the L-index, is introduced. The index, which is a 

measure of how far the voltage of each node is from reaching 

the corresponding critical voltage (nose or bifurcation point), 

can be computed when all node voltages, all generator power 

angles as well as the network parameters are known or 

measured on-line. In (Overbye & DeMarco, 1991) the critical 

point is defined as the saddle node bifurcation (SNB) point 

rather than traditional nose point. However the analysis is 

confined to a lossless transmission line. This SNB concept is 

used in (Jia Hongjie, Yu Xiaodan , & Yixin, 2005) to present 

an improved stability L1-index. A test function, based on 

reduction of the load flow Jacobian to a smaller set of 

equations is proposed in (Canizares & de Souza, August 

1996). The reduction is shown to improve the detection of the 

static voltage collapse point. This is then followed by 

(YangWanga, Wenyuan Li, & Lua, 2009) where an 

equivalent system model and voltage phasors are used to 

assess an equivalent voltage collapse index. Later (D. 

Devaraj  & J. Preetha Roselyn, 2010)  presented an 

assessment of the voltage stability using ANN. An online 

voltage stability assessment method using feed forward 

neural network based on L-index is presented in (S. 

Kamalasadan , D. Thukaram , & Srivastava, 2009,). In this 
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method the neural network is trained by using a set of data 

acquired of the power system (load and generator bus 

voltages, real and reactive power) under different loading 

conditions and calculated corresponding L-indices. In 

(Debbie Q. Zhou, U. D. Annakkage, & Athula D. Rajapakse, 

2010) an ANN algorithm is proposed to imitate continuation 

power flow in order to effectively estimate the nose point of 

each load bus at any given operating point. The approach 

uses both bus voltage magnitude and angle obtained from 

phasor measurement units (PMUs) as the inputs to the ANN 

along with active/reactive power of both load and generator 

buses. For optimal placing of PMUs a suboptimal search 

method is developed in the paper. 

The literature on quantitative risk assessment and mitigation 

is rather limited (Garvey, 2009). One example is the Secure 

Rank framework (R. A. Miura-Ko & Bambos, 2007) for 

prioritizing vulnerabilities on a computer network. In the 

Risk-Rank model of (T. Alpcan & N. Bambos, 2009) risk 

levels are transferred between components of an organization 

due to interdependencies between these components. The 

framework quantitatively keeps track of the risk in an 

organization by utilizing a diffusion model similar to that of 

the well-known Page-Rank algorithm used by Google. In(J. 

Mounzer, T. Alpcan, & N. Bambos, May 2010), an 

optimization scheme is built on top of this framework, where 

a system administrator allocates resources to mitigate 

exposure to risk, and (P. Bommannavar, T. Alpcan, & N. 

Bambos, June 2011) a game-theoretic extension is developed. 

The recent work (Y. W. Law, T. Alpcan, M. Palaniswami, & 

S. Dey, November, 2012) presents a quantitative risk 

framework for cyber security of smart grid. 

 

In this paper we present a new analytical approach to voltage 

stability. The approach determines the bifurcation point of 

any system analytically without having to solve load flow 

equations or carry out simulation studies as most existing 

result require. Then we quantify voltage stability in terms of 

new analytics (metrics). We call these stability indices, which 

are akin to phase and gain margins used in linear control 

system theory. The salient advantages of the new approach 

over existing approaches are: (i) it only uses the magnitude of 

the bus voltages, which are already available from the load-

flow calculation carried out by power companies to operate 

their systems, and (ii) it provides exact assessment of indices 

(no approximation is used). Based on these new stability 

indices, an analytical framework for voltage stability risk 

assessment is developed. The framework quantifies voltage 

stability risks using a probability approach and facilitates 

explicit cost-benefit analysis and optimisation. Hence, the 

framework evaluates the stability risk associated with any 

given system operating point taking into account global 

characteristics of the system. 

The organisation of the paper is as follows. In Section 2, we 

provide analytical framework to calculate the voltage 

collapse point. In Section 3, we introduce stability indices to 

quantify the voltage stability, followed by risk assessment 

framework in Section 4. In Section 5, we present a numerical 

example and result analysis. Finally we conclude the paper in 

section 6.    

2. MODEL AND VOLTAGE COLLAPSE POINT  

Figure 1 shows a generator bus, i, and a load bus, j. The 

complex power balance equation at the generator bus is  

 
i Gi Gi Gi DiS P jQ S S                                               (1) 

For the load bus  

 
Dj i k jS S S S                                                            (2) 

 
Figure 1: Generator bus connected to a load bus 

Consider a simple power system comprising a generator 

supplying a load at the end of a long transmission line, as 

shown in Figure 2. 

 

Figure 2: Two Bus Power System 

Let the load power factor cos Dpf   be kept constant. And 

let  

 tan D

D

D

Q

P
                                                               (3) 

The complex power can be expressed as 
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where 
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2

1 2 2( )j
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 where 21 line    .  

 

From equation (5) real and reactive power is expressed as 

 

 
2

1 2 2cosD line lineP Y V V G V                                   (6) 

or  

 
2

2 1 2 cosD line lineP G V Y V V                                    (7) 

and 

 
2

1 2 2sinD line lineQ Y V V B V                                   (8) 
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2 1 2 sinD line lineQ B V Y V V                                    (9) 
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After squaring both sides of equation (7) we obtain 

  
22 42 2 2

2 2 1 22 cosD D line line lineP P G V G V Y V V      (10) 

Similarly from equation (9) we obtain 

  
22 42 2 2

2 2 1 22 sinD D line line lineQ Q B V B V Y V V      (11) 

Using equation (3) in  (11) we write  

 

 

2 42 2 2

2 2

2 2

1 2

2
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D D line line

line

P P B V B V

Y V V

 



 


                                 (12) 

Addition of equations (10) and (12) gives 
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       (13) 

 

The solution to equation (13) is 
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                                                                                            (14) 

This is an exact solution of load bus voltage at any given 

operating condition and load power factor. 

2.1 Calculation of Critical (Bifurcation) Point 

Critical voltage also called nose or bifurcation point is a 

condition where the bus voltage is about to transit from the 

stable to unstable region and thus no amount of load shedding 

can restore it back to stability. At this point the amount of 

power that can be drawn by the load at the bus is maximum, 

beyond which the system become voltage unstable. From 

equation (14), it is clear that maximum load power that 

causes voltage collapse occurs when the term in the square 

root is zero, i.e. when the following condition is satisfied 

 
 

2
2 2

1

2 2

2 ( )

4 (1 ) 0

cr

cr

D line line line

line D

P G B Y V

Y P





 

  

                               (15) 

Once maximum power is computed from the solution of 

equation (15), the critical voltage for each bus can be 

computed from 

 

2 2

2 1

2 2

2 ( )

2

cr

cr

line D line line

line

Y V P G B
V

Y

 
                       (16) 

 

Equations (15) and (16) provide an exact identification of the 

bifurcation (critical) point. 

3. STABILITY INDICES  

Voltage stability is a measure of how far an operating point is 

from the critical point. Three new indices are introduced in 

this paper to quantify voltage stability. They are: (i) phase 

margin, (ii) gain margin, or (iii) incremental area under the P-

V curve, as illustrated in Figure 3. These measures can be 

assessed on line every time a load flow is carried out, as 

explained in detail below.  

 

3.1 Phase Margin (PM) 

In control system theory, phase margin is widely used to 

ascertain system stability, analogous to which we define 

phase margin (PM) as a measure of voltage stability of a 

power system. It may be seen from the P-V curve (Figure 3) 

that at voltage collapse point, slope of the P-V curve is 

   

 1 2tan 90cr

D cr

V

P
  

 


 (17) 

 
Figure 3: PV curve showing proposed stability indices  

where the system becomes unstable. Phase margin at an 

operating point i  is the measure of angular difference 

between the angle 
i  measured at point i  (obtained from the 

slope P-V curve at that operating point) and the angle of P-V 

curve at the voltage collapse point, which is 90cr  . 

Mathematically PM is expressed as 

 PM 90i i   (18) 

where 
1 2tani

D i

V

P
  



is the P-V curve slope at the operating 

point i. From Figure 3, it may be seen that as the load 

demand increases, the slope of the P-V curve also increases. 

Hence, from equation (18) it is obvious that phase margin 

decreases as the load demand increases. As the load demand 

reaches the critical loading value i.e. DcrP  the phase margin 

becomes zero. This is illustrated in Figure 3.  

2

D i

V

P




may be calculated from the Jacobian matrix (J) at any 

operating point, which is a result of the load-flow 

calculations , where the Jacobian at operating point i is 

defined as 
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                                                    (19) 

3.2 Gain Margin (GM) 

As described in section 2, at the critical voltage or bifurcation 

point, the bus voltage (
crV ) transits from the stable to 
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unstable region and no amount of load shedding can restore it 

back to stability. In analogy to gain margin (measure of 

stability) used in linear control system theory, we introduced 

a stability index called gain margin (GM). The gain margin is 

defined as the distance of an operating point from the critical 

point. This can be quantified by measuring the load bus 

voltage at operating point i (
2iV ) and subtract it from the 

critical voltage, 
2crV , computed from equation (16), i.e. 

 
2 2i cr iGM V V                                                             (20) 

From Figure 3, it may be seen that as the load demand 

increases, the load bus voltage decreases. Hence from 

equation (20), it is obvious that gain margin decreases as load 

power demand increases. Eventually, as the load demand 

reaches the critical loading condition 
DcrP the gain margin 

becomes zero. Therefore, as in control systems, the proximity 

of GM to zero is an indication of how close the system is to 

voltage instability.   

3.3 Incremental Area Under the Curve ( AUC ) 

Another stability measure introduced in this paper is 

incremental area under the curve ( AUC ). It may be seen 

from Figure 3 that, for lagging power factor loads, as the load 

demand increases the incremental area under the P-V curve 

decreases and eventually becomes zero, once the power 

demand reaches the critical value 
DcrP . This stability measure 

can be computed at any given operating point as follows 

  

  2

Di

Di

P

i D D cr

P

AUC V P dP V



                               (21) 

 

Remark 1: It may be worth noting that proposed stability 

indices describe three different aspect of system stability. The 

phase margin (PM) stability index describes how fast the 

system is heading towards the voltage collapse point; gain 

margin (GM) describes how far the system is from the 

voltage collapse point and the incremental area under the 

curve ( AUC ) stability index describes incremental change 

in net energy in the system as the power demand increases 

towards the critical value DcrP . 

 

3.4 Standardisation of Indices 

In order to have a standard measure of voltage stability, the 

above three indices are presented in terms of per unit values. 

For lagging power factor load case, let 0( )S P  (stability index 

at no load) denote the base value of any of the three stability 

indices and ( )DiS P is the value at any operating condition i. 

Then the per unit value of the index is computed as 

 

  
0

( )

( )

Di

pu

S P
S

S P
   (22) 

In the case of leading power factor loads, the load acts as a 

reactive power source and injects reactive power at the bus. 

The amount of reactive power injection increases as the load 

demand increases thus providing voltage support at the load 

bus. However a point will be reached when the amount of 

reactive power used by the line is equal to the reactive power 

injected by the load. At this load demand  
2, maxD VP , load bus 

voltage is maximum  2maxV . From then on the system 

behaves the same as that of lagging power factor i.e. the 

reactive power requirement of the lines is larger than that 

provide by the load and generator. This deficit will continue 

to increase with the increase in the load demand until the 

critical point is reached. In order to conform to the lagging 

power factor case, we define  
2, max( )D VS P  as the base for the 

leading power factor load. So for leading power factor loads, 

the per unit value of the index is computed as 

 

  
max

( )

( )

Di

pu

D

S P
S

S P
   (23) 

3.5 Calculation of 
2, maxD VP  

From equation (13) we have 
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Differentiating equation  (24) with respect to 
DP  we obtain 

 

 

2 2

2 2

3 2 2 2

2 2 1

2( ) 2 (1 )

4 2 2 ( )

line line D

D
line D line line line

V V G B P

P V Y V P G B Y V

 



    


    
 

 (25) 

Setting equation (25) to zero, we find the maximum voltage 

in terms of  
2, maxD VP  as 

 
2

2 2

2 , maxmax
2( ) 2 (1 ) 0line line D VV G B P       (26) 
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Substituting (27) into (13) obtain the following loading 

condition for which the voltage reaches its maximum value 

 
 2

22

2 max

, max 2 21

line

D V

line

Y V
P

Y



 


 
 (28) 

Equations (27) and (28) provide the operating condition 

where the load voltage reaches maximum value for leading 

(capacitive) loads. For such loads, we can identify three 

regions of operations: (i) To the left of 
2, maxD VP point the 

system has surplus reactive power which provides voltage 

support, (ii) at this point the surplus become zero, which 

means that the surplus reactive power is now used by the line 

due to the increase in the load and thus line current, and (iii) 
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to the right of this point the system has deficit reactive power, 

which means that the system in this region starts to loss its 

ability to provide reactive power support for the line 

culminating in total collapse at the critical loading condition. 

 

4. RISK ASSESSMENT FRAMEWORK  

The voltage stability indices introduced in the previous 

sections provide a solid foundation for quantitative 

assessment of voltage stability risks. While these indices are 

useful for evaluating system voltage stability at any given 

operating point, a comprehensive methodology is necessary 

for assessing and mitigating voltage stability risks. In this 

respect we next introduce an analytical framework for 

voltage stability risk assessment. The framework quantifies 

voltage stability risks by using a probability approach and 

facilitates explicit cost-benefit analysis and optimisation as 

depicted in Figure 4. Hence, the framework provides a 

vehicle for making informed decisions on assessing and 

mitigating risks.  

There are multiple definitions of risk and the word is 

“overloaded” due to its common usage in daily life. The 

definition of risk adopted in this paper is a probabilistic one 

and can be summarised as “the probability of a bad event 

happening times the magnitude of the bad event” (Hubbard, 

2009). To formalise this definition, let E  be the universal set  

which contains the voltage collapse event, e , corresponding 

to the system reaching the critical point and the default event 

of the system staying away from the critical point denoted by 

 . Then, we define the set E  as { , }E e n . 

 
Figure 4: Risk Assessment Framework 

The probability of the event, e, of the system reaching a 

critical point is defined as ( )P e . In general, the risk 

probability is expressed as ( )voltage e EP max P e . The 

magnitude of the voltage collapse event, e, e.g. the monetary 

damage a (partial) voltage collapse would cause, is captured 

by the function ( )M e . Here, the voltage instability will result 

in a damage quantified by the amount M which follows from 

the cost of the load shedding when the system reaches the 

critical point. Thus, the voltage stability risk Rvoltage is 

formally defined as 

 :voltage voltageR P M                                                       (29) 

The impact of a voltage collapse event, M, is more related to 

the business aspects of the problem. It can be quantified 

based on the characteristics of the specific power system 

which determines its scope, legal requirements, and the 

service level agreements with customers.  In this paper we 

define M as 

  $ / DcrM MWh P VCR   (30)

where
DcrP  is the real power demand at the critical or 

bifurcation point and the “value of customer reliability or 

 $ /VCR kWh (AEMO, 2012)” is used to describe the „value 

of lost load‟ or „customer cost of service interruption, or 

simply „outage cost‟. The VCR used in this paper is the 

official one published by the Australian Energy Market 

Operator (AEMO) in 2012 with the purpose of estimating the 

marginal value of reliability to electricity consumers. It is a 

composite value of all sectors (residential, commercial, 

agricultural, and industrial), which is based on surveys 

designed to estimate the costs faced by consumers as a result 

of electricity supply interruptions.  

The calculation of the risk probability Pvoltage, however, is a 

function of the system operating point. The stability indices 

developed in the previous sections are hence essential for a 

methodological assessment of the risk probability. 

There is clearly more than one way of devising a risk 

probability measure. We have, therefore, chosen an axiomatic 

approach in this paper. The axioms are based on the voltage 

stability indices introduced in the section 3. In this paper, we 

introduce the following three axioms which together define a 

class of risk probability functions. 

 

A1. Pvoltage is a probability measure, i.e. 0 1.voltageP   

A2. Pvoltage =1 at critical point, and 0voltageP   at other stable 

operating points. 

A3. Pvoltage is non-decreasing in the “distance” between the 

system operating point and the closest critical point as 

quantified by a stability index. 

A variety of functions mapping the stability index to risk 

probability can satisfy the axioms A1-A3. Among others, we 

propose two such functions that relate to the either of the 

three stability indices; a linear function defined as 

    1voltage Di pu DiP P S P   (31) 

where puS  is the per unit index defined in equations (22) for 

lagging power factor loads or (23) for leading power factor 

loads. This index could be any of the three indices introduced 

in the section 3 (phase margin, gain margin or incremental 

area under the curve) at a given operating point 
DiP . An 

alternative family of functions satisfying the Axioms A1-A3 

is    

  

 

 
max

1

pu Di

pu Di

S S P

S P

voltage DiP P e

 
 
 
    (32) 

where     max ,  operating pointmax pu DiS S P i   and   is 

a calibration parameter. For     the mapping represents a 

“risk averse” approach and for     the mapping captures a 

“risk taking” approach. In order to attain a consistent risk 

probability measure across all three stability indices, we 

determine the calibration parameter α from the slope of the (

Real Power 
Demand

Stability 
Index

Risk 
Probability

Risk
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V

V


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
) curve. Thus, the risk (probability) maps the system 

operating point to a real value within the range [0,1] 

quantifying the risk state of the system at any given operating 

point.  

5. APPLICATION EXAMPLE  

AND ANAYSIS OF RESULTS 

Two bus power system shown in Figure 2 is considered as 

the example power system in this paper, where a single 

machine is connected to a load through a transmission line

 0.01 0.5lineZ j pu  . Family of P-V curves and 

corresponding bifurcation points for different power factor 

loads are shown in Figure 5. First we will analyse the results 

for lagging power factor and unity power factor load.     

5.1 Lagging and unity power factor load case  

Under no load conditions, since there is no power transfer 

from source bus to the load bus, the voltage (both magnitude 

and angle) at both buses are the same, i.e. 
1 2 1 0V V pu   . 

In order to meet the increase in power demand at the load 

bus, the source (generator bus, i.e. bus 1 in the example 

system) needs to transfer power equal to the sum of load 

demand and the loss in the transmission line (both real 

 2

lineI R  and reactive  2

lineI X ).  

Active power transfer from generator to load may be 

approximated by 

 
1 2

sinG

line

V V
P

X
  (33) 

where  1 2     is called the power angle. To meet the 

increase in the load demand, with 
2V decreasing, the power 

angle must increase, as 
1, lineV X are fixed.  On the other hand, 

reactive power transfer from the source to the load is 

approximated by 

 
 1 1 2 cos

G

line

V V V
Q

X


  (34) 

Thus an increase in  accompanied by a decrease in 
2V  will 

result in an increase in the amount of reactive power supplied 

by the generator. The amount of reactive power used in the 

transmission line is approximated as 

 
 

2

1 2

line

line

V V
Q

X


  (35) 

It is therefore clear that incremental reactive power used in 

the line is higher than that supplied by the generator, i.e. 

 

 
 1 1 2 cos

line G

line

V V V
Q Q

X

  
     (36) 

Thus it can be concluded from equation (36) that the reactive 

power deficit in the system will increase as the load demand 

increase. This deficit will grow to the point where the 

generator‟s capacity is fully utilised and no additional 

reactive power injection is possible. This point is the critical 

(bifurcation) point. 

Figure 5 shows that, for loads with higher power factor the 

effect of load increases on the voltage level is less severe. For 

example, loads with unity power factor are more tolerant to 

load increases than loads with to 0.98 lagging because of the 

availability of extra reactive power. This illustrated by the 

different bifurcation points in Figure 5 where high power 

factor loads have their critical points occurring to higher load 

and voltage levels. The above analysis is also clearly 

demonstrated in (Figure 6(a) - Figure 8(a)), where proposed 

stability margins ( , , AUC)PM GM   are shown to decrease at 

different rates (the highest is caused by the lowest power 

factor) as the load demand increases. At the bifurcation point, 

the stability margins become zero, which means that system 

is about to transit from the stable to unstable regions. Once 

this point is breached, no amount of load shedding or reactive 

power compensation can restore the voltage to normality. On 

the contrary, load shedding after reaching bifurcation point, 

will only exacerbate the voltage decline as shown in Figure 5.  

 

Figure 5: Family of P-V curve for the Example power system load bus 

 
                    (a)                                                           (b) 

Figure 6: Phase Margin 

Figure 9 (a) - Figure 11 (a) shows the risk probability 

calculated using proposed stability margins ,PM GM and 

AUC respectively. It may be seen from the figures that the 

risk probability increases slowly initially with the increases in 

real power demand. But as the load demand increases closer 

to the critical value DcrP the risk probabilities surges to unity 

stating that the system has reached the critical point.  

 5.2 Leading power factor load case  

In the case of leading power factor loads, the load injects 

reactive into the system. However, real power is still supplied 

by the generator to the rest of the system. As the load demand 

increases, then it is clear that from equation (33) that the 

power angle   increases. The increase in the load demand is 
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accompanied by an increase in the reactive power injection 

into the system by the load itself. If this increase is larger 

than the reactive power used by the line, the load bus voltage 

increases. From equation, it is obvious that with the increase 

in the load angle   the load bus voltage increase as shown by 

the P-V curves in Figure 5 for the two leading power factor 

loads i.e. 0.98 and 0.96 leading. 
 

                                                
                                (a)                                                           (b) 

Figure 7: Gain Margin  

 
                               (a)                                                           (b) 

Figure 8: Area under the Curve 

 
                            (a)                                                           (b) 

Figure 9: Risk Probability (Calculated using stability index PM) 

 
                           (a)                                                            (b) 

Figure 10: Risk Probability (Calculated using stability index GM) 

As the load demand further increases, the reactive power 

used by the line increases until becomes equal to that 

supplied by the load bus. At this load demand (
2, maxD VP ) the 

load bus voltage is maximum ( 2maxV ) as shown in Figure 5. 

Beyond 
2, maxD VP load demand, the system behaves exactly the 

same as that of a lagging power load. Eventually, the critical 

or bifurcation point is reached (as shown by the diamond 

symbol in Figure 5) when the reactive power used in the line 

cannot be satisfied. 

 
                              (a)                                                           (b) 

Figure 11: Risk Probability (Calculated using stability index AUC) 

Phase margin for leading power factor case is shown in 

Figure 6(b). As explained above, the increase in load demand 

up to
2, maxD VP  brings about an increase in the load bus voltage 

(from P-V curve Figure 5). However the rate of increase in 

the load bus voltage, as shown in the P-V curve, decreases 

from maximum (PM> 90 ) at no lead to zero ( PM= 90 ) at

2, maxD VP . Using 
2, max( )D VPM P as the base value, it follows 

that phase margin (in per unit) is higher than unity (PM>1) at            

the no load condition and is unity (PM=1) at
2, maxD VP . Once 

load power demand increases to more than
2, maxD VP , the phase 

margin decreases and becomes 0 at DcrP .  

 Remark 2: It may be worth noting that for leading power 

factor load, phase margin stability index may be sub divided 

in two regions  

i) PM 1 (for
2, max0 D D VP P  ). In this region, the system 

stability enhances as load demand increases. But the stability 

enhancement rate decreases with the increment of load 

demand (as the voltage increment rate decreases) and 

becomes zero (as the voltage increment rate is zero) at PM=1

 
2, maxD D VP P .  

ii) 0 1PM  (for
2, maxD V D DcrP P P  ). In this region the 

system behaves similarly as that with a lagging power factor 

load.  

Gain margin for leading power factor load is shown in 

Figure 7(b). The increase in load demand up to
2, maxD VP  brings 

about an increase in the gain margin, as the load bus voltage 

increases. The GM attains maximum value when the load 

demand reaches
2, maxD VP , as at this point the load bus voltage 

increases to a maximum value. This indicates that system is 

most stable at load demand
2, maxD VP . Once the load power 

demand increases to more than
2, maxD VP , the gain margin 

decreases and becomes 0 at DcrP . Stability index AUC is 

shown in Figure 8(b) which may be analysed similarly as the 

stability index GM. 

Risk probability calculated using PM is shown in Figure 9 

(b). As the PM decreases with the increase in load demand, 

the risk probability increases exponentially and becomes 1 

(maximum) at load demand DcrP .  If GM and AUC  are 

associated with risk probability, form Figure 10(b) and 

Figure 11 (b) we can see that risk probability decreases to 

zero at load demand
2, maxD VP . This states that system is most 
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stable at load demand
2, maxD VP . Beyond this point (

2, maxD VP ), 

the system behaves exactly the same as the lagging power 

factor load case, i.e. as the load demand increases the risk 

probability increases. 

     
                               (a)                                                           (b) 

Figure 12: Risk (Calculated using stability index PM) 

 
                               (a)                                                           (b) 

Figure 13: Risk (Calculated using stability index GM) 

 
                               (a)                                                           (b) 

Figure 14: Risk (Calculated using stability index AUC) 

Figure 12 - Figure 14 shows risk (in terms of financial loss 

(dollar values)) associated with the increment of load demand 

in the example power system. When the load demand 

increases to critical value
DcrP , the system becomes unstable 

and 
DcrP amount of load is lost. Financial loss (due to the loss 

of power demand
DcrP ) is associated with value of lost load, 

 $ /VCR kwh , as shown in equation (30). In this paper, the 

VCR value, $61.83/ kWh , published by the Australian Energy 

Market operator (AEMO) for the Victoria State of Australia 

is used and the system base is considered to be 100 MVA. It 

may be seen from Figure 12 - Figure 14 that financial risk 

increases as load demand increases and approaches maximum 

value at the critical value of load demand, DcrP .  

6. CONCLUSION 

New quantitative metrics for on-line assessment of voltage 

stability in power networks and associated risk analysis is 

presented in this paper. First, new stability indices similar to 

gain and phase margins in linear time invariant control 

systems are introduced. Then, a novel risk assessment 

framework incorporating the new stability indices is 

developed to methodologically quantify the voltage stability 

risks a power system faces at any given operating condition. 

In contrast to existing local stability indices and qualitative 

risk approaches, the proposed indices and framework provide 

a global and quantitative evaluation of voltage stability and 

associated risks. The results are illustrated with a numerical 

example. The extension to generic scalable multi-machine 

case is under investigation. 
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