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Abstract: Endogenous insulin secretion (UN) plays the leading role in glucose homeostasis. Understanding 

pathological changes in UN may enable greater insight into the etiology of metabolic disorders particularly 

those related to hyperglycemia. The dynamic insulin sensitivity and secretion test (DISST) is a dynamic 

test that is able to quantify patient-specific insulin sensitivity (SI) values and UN profiles. The DISST uses 

measured glucose, insulin and C-peptide assays with pharmaco-kinetic/dynamic glucose, insulin and C-

peptide models to identify SI and UN profiles. This study proposes a range of proportional-integral-

derivative (PID) and proportional-derivative (PD) models to define UN as a function of glucose 

concentration. With relatively low percentage of residual error between measured C-peptide and fitted C-

peptide response from the PID and PD models, it elucidates a more direct physiological link between 

insulin secretion to glucose concentration level. 

 

1. INTRODUCTION 

Insulin is secreted by pancreatic β cells to maintain 

normoglycemia. Impaired endogenous insulin secretion (UN) 

is part of major cause metabolic disorders, such as glucose 

intolerance or hyperglycemia. Hyperglycemia, if left 

untreated, ultimately leads to type 2 diabetes (T2D). 

Understanding the UN secretion profile is thus a critical 

aspect of characterizing this metabolic disorder (Ferrannini et 

al., 2005, Pacini et al., 2003).  

 

Assessing insulin secretion through mathematical modelling 

received considerable attention during the 1970s (Bergman et 

al., 1971, Grodsky, 1972, Cerasi et al., 1974). Unlike insulin 

sensitivity (SI) (DeFronzo et al., 1979), there is no gold 

standard for β cell function or UN. However, modelling 

insulin secretion as a function of peripheral C-peptide levels 

by mathematical deconvolution has become a widespread 

approach (Eaton et al., 1980, Van Cauter et al., 1992). This 

method proves more accurate than direct measurement of 

insulin levels as insulin and C-peptide are co-secreted in an 

equimolar fashion from β cells (Rubenstein et al., 1969) and 

the rate of insulin clearance is more variable than the rate of 

C-peptide clearance.  

 

Relationships between insulin sensitivity and insulin 

secretion have been defined by previous studies (Docherty et 

al., Bergman et al., 1981, Bergman et al., 2002, Cretti et al., 

2001, Cobelli et al., 2007). The intravenous glucose tolerance 

test (IVGTT) with minimal model has been the most 

frequently used model-based (Toffolo et al., 1999, Breda et 

al., 2001b). However, the minimal model is known to 

produce ambiguous SI values and erratic correlation with the 

gold standard, euglycemic hyperinsulinaemic clamp (EIC) 

(Saad et al., 1994, Pillonetto et al., 2002). The DISST 

provides a highly correlated metric of SI to the EIC with 

R=0.81 (McAuley et al., 2011). The DISST also provides 

quantitative measures of UN via deconvolution of C-peptide 

data (Lotz et al., 2010).  

 

Finally, the nature of the feedback interaction between of 

glucose excursions and the resultant secretion of UN has 

received some attention in previous studies (Breda et al., 

2001b). However, the aim of this study was to further 

validate the previously proposed proportional-derivative (PD) 

gain model of the glucose/UN dynamic to a proportional, 

integral and derivative (PID) gain model. 

 

2. METHODOLOGY 

2.1 Participants 

 

82 female participants were recruited from the Otago region 

of New Zealand to take part in a 10-week dietary intervention 

trial defined in Te Morenga et al (2010). Inclusion criteria 

required a body mass index (BMI) greater than 25, or greater 

than 23 and a family history of type 2 diabetes, or ethnic 

disposition toward type 2 diabetes. Participants were 

excluded if they had a major illness, including established 

diabetes, at the time of testing. In total, 74 participants 

provided 200 full test DISST data sets. The cohort details 

were summarised and presented in Table 1. 

 

Table 1: Participants details 

Sex 

M/ F 

Age  

[years] 

Q1 Q2 Q3* 

BMI 

[kg·m-2] 

Q1 Q2 Q3* 

Status 

NGT/ IFG/ T2DM** 

0/ 74 

35 

43 

50 

27.6 

32.6 

37.0 

63/ 11/ 0 

* Q1 Q2 Q3 are the IQR values from tabulated data. 

** NGT, normal glucose tolerance; IFG, impaired fasting 

glucose; T2DM, type 2 diabetes mellitus. 
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2.2 Clinical Procedure 

Participants reported in the morning after an overnight fast. 

Each participant had a cannula inserted in the ante-cubital 

fossa (vein in inner elbow) for blood sampling and 

administration of glucose and insulin boluses.  Blood samples 

were drawn at t=0, 5, 10, 15, 20, 25, 30, 35, 40 and 50 

minutes.  The 10g IV glucose bolus (50% dextrose and 50% 

normal saline) was administered intravenously at t=6 minute. 

The 1U IV insulin bolus was administered intravenously at 

t=16 minute. Blood samples were assayed for plasma glucose 

(Enzymatic glucose hexokinase assay, Abbot Labs, Illinois 

USA), insulin and C-peptide concentration (ELISA 

Immunoassay, Roche, Mannheim, Germany). 

 

2.3 Physiological Model 

 

2.3.1 DISST Model 

The DISST provides quantitative measures of both SI and UN 

profile (Lotz et al., 2010, McAuley et al., 2007, McAuley et 

al., 2011), and is similar to the insulin modified IVGTT, 

which uses an alternative dosing and typical modelling 

approach (Bergman et al., 1979, Ward et al., 2001). The 

DISST model identifies the UN profile via the deconvolution 

of C-peptide assays (Van Cauter et al., 1992). 

Equations 1-5 of DISST model is categorized by:  

C-peptide Pharmaco-Kinetics, 

�� = −��� + �	
� + ��� + 
���  (1) 

�� = −��� + ��� (2) 

 

Insulin Pharmaco-Kinetics, 

�� = −��� − �� �1 + ��� − ���� �� − �
 + 
����
+ �1 − ��
 
���  

(3) 

�� = −��� + ������ + ���� � (4) 

 

and Glucose-Insulin Pharmaco-Dynamics 

 � = −!"#� −  $
 − %�� � −  $�$
 + &'�" (5) 

 

where the nomenclature is shown in Table 2. 

 

Typically, the DISST model uses the participants fasting 

glucose level (G0) as their basal glucose concentration (GB). 

However, evidence suggests that the G0 and insulin 

concentration is slightly higher than their overnight ‘basal’ 

levels especially for diabetes participant (Holman et al., 

1977, Holman et al., 1978, Holman et al., 1981, Holman et 

al., 1979). In this analysis, GB was identified in concert with 

SI and Vg using the Gauss Newton parameter identification 

method.  

 

Table 2: Nomenclature of the DISST model 

 

2.3.2 UN model 

Four UN models are proposed in this paper. The proposed UN 

models were categorized into 2 main elements; with or 

without UB value, and with or without integral control, (�.    
 

Model 1 - PIDUB: 

 
� = 
$ + ()� −  $
 + ⋯ 

…+ (�, � −  $
-.'
/ + (0〈 � 〉 (6) 

 

Model 2 - PDUB: 

 
� = 
$ + ()� −  $
 + (0〈 � 〉 (7) 

 

 

Model 3 - PIDonly: 


� = () + (�, � −  $
-.'
/ + (0〈 � 〉 (8) 

Variable Unit Description Role 

C pmol·L-1 Plasma C-peptide 

concentration 
measured 

I mU·L-1 Plasma insulin 

concentration 
measured 

G mmol·L-1 Blood glucose 

concentration 
measured 

Y pmol·L-1 Interstitial C-peptide 

concentration 
simulated 

Q mU·L-1 Interstitial insulin 

concentration 
simulated 

QB mU·L-1 Basal interstitial insulin 

concentration 
simulated 

UN mU·min-1 Endogenous insulin 

secretion  

simulated/ 

deconvoluted 

k1, k2, k3 min-1 C-peptide transport rates a-priori 

Vp L 
Plasma insulin distribution 

volume 
a-priori 

Vq L 
Interstitial insulin 

distribution volume 
a-priori 

nk min-1 Renal insulin clearance rate a-priori 

nI min-1 Plasma-interstitial diffusion 

rate 
a-priori 

nC min-1 Interstitial insulin 

degradation rate 
a-priori 

Uex mU·min-1 Exogenous insulin input 

rate 
a-priori 

Pt mmol·min-1 Exogenous glucose input 

rate 
a-priori 

pgu min-1 Non-insulin mediated 

glucose disposal rate 
a-priori 

αI L·mU-1 Hepatic insulin clearance 

saturation parameter 
a-priori 

GB mmol·L-1 Basal blood glucose 

concentration 
identified 

Vg L 
Glucose distribution 

volume 
identified 

nL min-1 Hepatic insulin clearance 

rate 
identified 

xL 1 
Fractional first-pass hepatic 

insulin extraction 
identified 

SI L·mU-1·min-1 Insulin sensitivity identified 
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Model 4 - PDonly: 

 
� = () + (0〈 � 〉 (9) 

 

where UN is the modelled endogenous insulin secretion 

[mU·min
-1

]; UB is basal insulin [mU·min
-1

]; (P, (I and (D 

are the proportional, integral and derivative gains 

(mU·L·mmol
-1

·min
-1

, mU·L·mmol
-1

·min
-1

  and mU·L·mmol
-

1
, respectively). 〈 � 〉 indicates the coefficient of (D is equal to 

zero if negative. 

 

UB is derived from Equation 1 and 2 assuming a steady state 

at t = 0 minute: 

 
$ = �	�/�� (10) 

 

where �/ denotes a steady state C-peptide measured value at . = 0. 

 

2.4 Parameter Identification 

Experimental data was fit to the DISST model using the 

iterative integral method (IIM) (Docherty et al., 2012, 

Docherty et al., 2009). Initially, C-peptide data was 

deconvoluted using Equations 1-2 to define UN. The IIM was 

used to identify nL and xL in Equation 3 from insulin data, and 

GB, SI and Vg in Equation 5 from glucose data. Note that, GB 

was identified in concert with SI and Vg using the Gauss 

Newton parameter identification method. Later, (P, (I and (D were identified using IIM with the glucose simulation of 

Equation 5 and measured C-peptide data. Equation 1 and UN 

from Equations 6-9 can be used to define ��: 
 �� = −��� + �	
� + ��� +⋯ 

…+ 
$ + () + (� 4 � −  $
-.'/ + (0〈 � 〉��  

(11) 

Next, rearranging known parameters and PID terms, yields: 

��5�� + ��� + �	
� + ���6 − 
$ 

= () + (�, � −  $
-.'
/ + (0〈 � 〉 (12) 

 

Integrating both side yields: 

(),  	-.8
/9:;:<�=)>

+ (�, � −  $
-.8
/9:::;:::<�=�>

+ (0, 〈 〉� -.8
/9:;:<�=0>

= �� ?�8 − �/ +, ��� + �	
� − ���8
/ -.@ − 
$, -.8

/9:::::::::::::::;:::::::::::::::<ABC>
 

(13) 

 

Grouping terms and redefining in a least squares form, yields: 

D�(&� �(�� �(E�⋮ ⋮ ⋮�(&8 �(�8 �(E8 G H
()(�(0I = DJK%�⋮JK%8 G 

(14) 

Gains of the PID models were identified using Equation 14 

whereas the �(�8 column of the matrix was struck off for the 

PD models. The performances of these UN PID and PD 

models were assessed via model residuals and interpretation 

of population trends. 

 

2.5 Statistics and Analysis 

 

Model residuals and interpretation of population trends were 

used to assess the performance of these PID and PD models 

based on fitted C-peptide versus measured C-peptide values. 

The residual error of C-peptide determines the performance 

of the UN profile of PID and PD models against de-

convoluted UN profile as shown in Equation 15-17. 

 

Mean Residual error of C-peptide (µ) is defined: 

L�.
 = 1�∑�N8''�O�.
 − �P�QR#S�O�.
 (15) 

 

Standard error of C-peptide (σµ) is defined: 

TU�.
 = T�.
√�  
(16) 

 

where standard deviation (σ) is defined as: 

T = W∑X�N8''�O�.
 − L�.
Y��  

(17) 

 

The p-values are defined with signed ranksum (prs) and 

Kolmogrov Smirnov test (pks). All analysis was undertaken 

using MATLAB (R2013b, Mathworks, Inc., Natick, MA, 

USA). 

 

3. RESULTS 

 

Table 3 shows the identified parameter values across the 

cohort. There were less significant differences between 

derivative gains, (0 of Equation 6 and 7 (Signed ranksum: 

prs<0.001 and Kolmogorov Smirnov: pks=0.85) and (0 of 

Equation 8 and 9 (prs<0.001, pks=0.92). This result shows the 

performance of each derivative controller from each model 

was the same when capturing the effects of increased glucose 

concentrations. The same phenomenon can be seen for () for 

the PIDonly or PDonly models (prs<0.001, pks=0.53). However, 

a distinct significant difference in () for PID or PD model 

with UB value (prs<0.001, pks=0.03). 

 

Fig. 1a the shows UN profile from the proposed PID and PD 

models from Equation 6-9 and the deconvoluted UN profile 

from Equation 1. Fig. 1b shows a typical model response 

fitted to the measured C-peptide data with the modelled 

responses of Equation 11. 

 

Fig. 2 illustrates the residual error of all PID and PD models 

between the measured C-peptide data and the response 

modelled by Equation 11. Residual errors for PIDonly or 

PDonly value tended to stay within 10% of the measured data, 

which is within measurement error.  
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Table 3: Tabulated data of basal blood glucose (GB), insulin sensitivity (SI), distribution volume of glucose (Vg) and PID gains 

identified across 200 participants 

 

 GB 
SI 

[×10-4] 

Vg 

PIDUB (Eq (6)) PDUB (Eq (7)) PIDonly (Eq (8)) PDonly (Eq (10)) 

(P 
(I 

[×10-2] 

(D 

[×102] 
(P 

(D 

[×102] 
(P 

(I 

[×10-2] 

(D 

[×102] 
(P 

(D 

[×102] 

25% 3.37 4.40 12.30 7.41 9.93 7.69 13.11 6.98 33.27 0.15 7.15 36.01 7.32 

Median 4.10 6.20 13.97 21.33 18.86 11.33 31.48 11.40 44.19 1.05 11.57 46.56 12.01 

75% 4.55 8.52 15.76 50.66 39.61 17.32 61.35 17.19 56.64 26.19 18.67 60.05 19.28 

 

 

 

Fig. 1: UN (A) and C-peptide (B) profile for Subject 108. The 

solid black line is the deconvoluted UN derived from 

Equations 1-2. The ‘+’ are C-peptide measured data points. 

 

 

 

Fig. 2: Residual error (mean and standard error, SE=SD/√N) 

between the measured C-peptide data and the response 

modelled by Equations 6-9. 

 

 

4. DISCUSSION 

 

The DISST protocol measures C-peptide with plasma glucose 

and insulin. The typical DISST approach regarding C-peptide 

identifies UN via a mathematical deconvolution (or direct 

inversion) process. However, identifying UN in such a way 

fails to elucidate the connection between glucose 

concentrations and the UN reaction. By defining the model-

based UN profiles as dependent on glucose levels the 

modelling approach is more physiologically representative. It 

has been shown that insulin secretion is dependent on both 

peripheral glucose levels, and glucose gradient (Cherrington, 

1999).  

 

The UN PIDUB model in Equation 6 defines UB based on 

information from the fasted C-peptide measurement. The 

proportional and integral terms (() and (�) effectively 

determines the second phase of UN (U2) and is thus, an 

important characteristic in the prediabetic state (Pories et al., 

2012). The derivative term ((0) determines the first phase of 

UN (U1) as a function of increasing glucose level. This 

approach has been applied previously by Cobelli et al. and 

Ferrannini et al. (Mari et al., 2002, Dalla Man et al., 2010, 

Toffolo et al., 2001, Breda et al., 2001a). However, the 

proposed PIDUB and PDUB models offers simplicity compare 

to previous models. Furthermore, Cobelli et al and Ferrannini 

et al used kinetic models of C-peptide developed by Eaton et 

al (Eaton et al., 1980); where the proposed PID and PD 

models use the kinetic C-peptide model from Van Cauter et 

al (Van Cauter et al., 1992). 

 

In contrast, The PIDonly and PDonly models have not been 

applied previously. The approach differs by assuming UB can 

be defined as a function of GB and (). As a result, () takes 

the role of identifying the basal endogenous insulin 

production rate while (� aims to identify U2. Equation 7 and 

9 provided a validation of the impact of integral gains 

towards the identification process of UN. 

 

Fig. 1(a) shows the difference between deconvoluted UN 

profile and identified UN from the proposed PID and PD 

models. It can be clearly seen that the general trends of UN 

from the proposed models were in accordance with the 

deconvoluted UN profile. However, UN identified from the 

PIDonly or PDonly models were more consistent to the 

deconvoluted UN profile in comparison to the PIDUB or PDUB 

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

t [min]

U
N
 [

m
U

.m
in

-1
]

0 10 20 30 40 50
600

700

800

900

1000

1100

1200

1300

1400

t [min]

P
la

s
m

a
 C

-p
e
p

ti
d

e
 [

p
m

o
l.
m

in
-1

]

 

 

PID
UB

 model

PID
only

 model

PD
UB

 model

PD
only

 model

-30

-20

-10

0

10

20

30

t [min]
 0  5  10  15  20 25  30  35  40 50

ψψ ψψ
ti
 (

%
)

 

 

PID
UB

 model

PID
only

 model

PD
UB

 model

PD
only

 model

A B 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2103



 

 

     

 

models. Fig. 1(b) shows the fitting profile of C-peptide of 

response model by PID or PD models and Equation 1. The C-

peptide profile from response model of PIDonly and PDonly 

models is more accurate than the more established 

approaches. This result is further confirmed by the residual 

plot in Fig. 2.  

 

Fig. 2 shows the residual error between measured C-peptide 

data and the response modelled by PID and PD models and 

Equation 1. Residual errors for PIDonly or PDonly value tended 

to stay within the 10% of the measured data. The residuals 

for the PIDUB and PDUB models were higher in comparison. 

However, all were within measurement errors. 

 

Fig. 1(b) shows that the PIDonly and PDonly models capture the 

inflection in the C-peptide decay which is not captured by the 

typical approach. This difference results in much lower 

overall residuals that are not distant from the assay error 

reported by the manufacturer (CV=4-5%). Fig. 1 and 2 show 

minimal impact of the integral control term towards UN 

identification. Hence, it may be a sensible recommendation 

that (� should be ignored in future studies.  

 

This study was undertaken in a cohort of adult female 

participants that were considered ‘at-risk’ of type 2 diabetes 

and related metabolic disorders. Hence, the outcomes of this 

study may be isolated to cohorts of this type. However, it 

may be reasonably assumed that gender does not play a 

significant role in the modulation of insulin secretion as a 

function of glucose excursions. Furthermore, this cohort is 

the cohort of greatest clinical interest to the mitigation of 

glycemic and other metabolic disorders. Further confirmation 

must be undertaken in various other cohorts. 

 

5. CONCLUSIONS 

 

This study presented a thorough analysis of proportional-

integral-derivative and proportional-derivative control 

models of insulin secretion. The proposed models linked 

insulin secretion to glucose concentration and able to deliver 

a good compromise between model simplicity and accuracy 

particularly model 4 (PDonly). This analysis found that the 

ideal model formulation does not require integral control, and 

the basal secretion rate should be located via a proportional 

gain and the basal glucose concentration. Although the 

proposed model requires further validation, it is likely to be 

useful for analysis of the pathogenesis of T2D as it captures 

the physiological determinants of patient-specific UN profile. 
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