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Abstract: An adaptive output feedback is presented. The adaptive gain is used to relax the
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1. INTRODUCTION

Sliding-mode control is considered as one of the main
methods for control and observation under uncertainty
conditions (Utkin , 1992), (Utkin , 2009). Classical sliding
modes can bring an output σ to zero in finite time and
can keep it in zero exactly by using high-frequency control
switching, in a very accurate and robust way, but it
requires the relative degree of σ to be one with respect
to the control variable u. This relative degree restriction
can be removed by means of higher-order sliding modes
(HOSM). For relative degree r > 1, it is possible, using
HOSM algorithms, to bring to zero in finite time not only
σ but also r−1 of its time derivatives σ = σ̇ = . . . = σ(r−
1) = 0, and they will be kept at zero exactly and in a robust
manner (Fridman, Levant , 2002), (Levant, 1993).

Twisting controller (TC) is historically the first 2-SMC
algorithm (Levant, 1993), (Levant , 1985) that drives the
output and its derivative of the system with relative degree
two to the origin in finite time in the presence of the
bounded disturbance (even dry friction), whose boundary
is known.

In (Utkin, et. al. , 2011) a second order sliding mode
controller is presented with adaptive gain. The adapta-
tion process is based on the estimation of the equivalent
control, which is obtained by filtering the control signal
by a low-pass filter. The disadvantage of this method is
that the equivalent control signal is delayed by the effect
of the filter. Also the bound of the perturbation derivative
should be known.

The problem of state observation for a system whose
dynamics may involve poorly known, perhaps even non
locally Lipschitz functions and whose output measurement
may be corrupted by noise is address in (Sanfelice, Praly
, 2011). The proposed method is based on the study of
differential inequalities involving quadratic functions of

the error system in two coordinate frames plus the gain
adaptation law.

The objective and the contribution of this paper are in
developing the adaptive-gain twisting control (ATC) algo-
rithm in the presence of the bounded disturbances with
the unknown boundaries, using the Lyapunov approach
(Moreno, Osorio , 2012), (Polyakiv, Poznyak , 2009), (Sht-
essel, et. al. , 2010), (Kochalummoottil , 2011). Further-
more only the state x1 is available, in other to estimate the
state x2 a higher order sliding mode observer is introduce
with adaptive gain.

The main results of this paper are (i) the state feedback
controller with adaptive gain, (ii) the observer with adap-
tive gain and (iii) the output feedback controller with
adaptive gains resulting from the interconnection. A Lya-
punov approach is used to prove the results. The novelty
on this work is that the perturbation bound exist but in
not known.

2. PROBLEM STATEMENT AND MAIN RESULT

Consider the following SISO dynamical system (Levant ,
2007)

ξ̇ = f(t, ξ) + g(t, ξ)u

σ = h(t, ξ)

where ξ ∈ Rn is the state, y ∈ R is the control variable,
and σ ∈ R is the measured output. The functions f, g, h
and the dimension n are unknown. It is assumed that the
system has a well defined relative degree 2. Under these
conditions, taking the second order total time derivative
of the output σ, and defining x1 = σ, x2 = σ̇, it is obtained

ẋ1 = x2

ẋ2 = a(t, ξ) + u (1)
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where a(t, ξ) is some unknown scalar function that is
bounded, i.e.

|a(t, ξ)| ≤ ap

In this paper the coefficient of the controller is considered
a one. The results presented here can be easily extended
to the case where the coefficient is unknown but the upper
and lower bounds of it are known.
The control task is to drive the output σ to zero in finite
time and to keep σ ≡ 0, despite the perturbation, using
only the measurement of the output σ.
A discontinuous globally bounded controller that drives
the output σ to the origin in finite time and keeps σ ≡ 0
is the Twisting Algorithm (Levant, 1993). In order to
implement this controller the states should be available.
In the case that is considered in this paper, the only
information available is the state x1. The state x2 has to
be determined by means of an observer with the use of the
state x1. This problem has been solved in (Moreno, 2012),
(Levant , 1985) with the knowledge of the perturbation
bound ap.
In this paper it is assumed that the perturbation a(ξ, t)
is bounded. The bound is considered as unknown. To
cope with this problem the gains of the controller and the
observer are adapted. In section 3 a twisting controller is
designed with adaptive gain, assuming that both states
are available. In section 4 an observer with adaptive gain
is designed to estimate the state x2. Finally in section 5 it
is stated that the closed loop system enforce the states to
the origin.

3. ADAPTIVE TWISTING

Considering that the states x1, x2 are available, the twist-
ing controller drives the output σ to zero in finite time
if the gains are selected properly. The restriction on the
gains depends on the bound of the perturbation a(t, ξ),
that means that the bound ap should be known. Given
that the bound ap is unknown, an adaptive gain L(t) is
introduced so the twisting controller with adaptive gain is

u = −L(t) (k1sign(x1) + k2sign(x2)) (2)

where the adaptive gain dynamics are defined by

L̇(t) =

{
l(t), if x = 0

0, if x 6= 0
(3)

were l(t) > 0 is a positive function. The closed loop system
becomes

ẋ1 = x2

ẋ2 =−L(t) (k1sign(x1) + k2sign(x2)) + a(ξ, t) (4)

Theorem 1. Consider the system (1) with a bounded per-
turbation |a(ξ, t)| and the controller (2) with adaptive
gain. Assuming that the bound ap is unknown, if the
controller gains are selected such that

k1 > k2 > 0

then the trajectories of the closed loop system (4) will
reach the equilibrium point in finite time. Moreover the
adaptive gain L(t) will remain bounded for all time.

2

Note that after reaching the origin the states will remain

there unless the perturbation grow once the equilibrium
point is reached. In that case the adaptive gain L(t) will
grow until it reaches a value that is large enough to drive
again the trajectories to the equilibrium point

Proof. To prove that the controller (2) drives the output
σ to zero in finite time, without knowing the perturbation
bound ap, a Lyapunov function (Moreno, 2012) is used.
The following change of variables is introduce

z1 =
( κ
Lq

)2 x1
L

z2 =
( κ
Lq

) x2
L

where κ > 0 is some positive constant, and 0 < q ∈ R. In
the new coordinates the system (1) is given by

ż1 =− (2q + 1)

(
L̇

L

)
z1 +

( κ
Lq

)
z2

ż2 =− (q + 1)

(
L̇

L

)
z2 −

( κ
Lq

)
[k1sign(z1) + k2sign(z2)]

+
( κ
Lq

) a(t, ξ)

L

Consider the following Lyapunov function (Moreno, 2012)
in the new coordinates

V (z) =

(
π1|z1|+

1

2
z22

)3/2

+ π2z1z2 (5)

where π and π2 are positive constant that are chosen such
that the inequality k2 > |π1 − k1| − π2 2

3 (2)
1
2 is fulfilled.

It has been proved in (Moreno, 2012) that the following
inequalities holds

η1|z1|3/2 + η2|z2|3 ≤ V (z) ≤ η3|z1|3/2 + η4|z2|3

where

η1 , π
3
2
1 −

2

3
π2

(
νb2

1
2

(π2
3

) 1
3

+ (1− νb)
(

3

2π2

) 2
3

π1

) 2
3

,

η2 ,

(
1

2

) 3
2

− 1

3
π2

(
ν2

1
2

(π2
3

) 1
2

+ (1− ν)

(
3

2π2

) 2
3

π1

)−3
η3 ,

(
φmaxπ

3
2
1 +

2

3
π2c

3
3

)
η4 ,

(
φmax

(
1

2

) 3
2

+
1

3
π2c
−3

)
0 < νb < 1, c > 0

The derivative of the function (5) can be bounded as
follows

V̇ (z)≤−
( κ
Lq

)[
1− Wa(z)

W0(z)

a(t, ξ)|
L

]
W0(z)

− (2q + 1)
3

2

(
L̇

L

)
Wd(z)

where
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W0(z) =
3

2

(
π1|z1|+

1

2
z22

) 1
2

(k2 − |π1 − k1|)|z2|

− π2z22 + π2(k1 − k2)|z1|

Wa(z) =
3

2

(
π1|z1|+

1

2
z22

) 1
2

|z2|+ π2|z1|

Wd(z) =

(
π1|z1|+

1

2
z22

) 1
2
(
π1|z1|+

q + 1

q + 1
2

1

2
z22

)
+
q + 2

3

q + 1
2

π2z1z2

Given that
(
π1|z1|+ 1

2z
2
2

)
≥
(
1
2

) 1
2 |z2|, for the function

W0, the following inequality holds

W0 ≥
3

2

(
1

2

) 1
2
(
k2 − |π1 − k1| − π2

2

3
(2)

1
2

)
|z2|2 +

+ π2 (k1 − k2) |z1|

Given that the constants π > 0 and π2 > 0 are selected
such that k2 > |π1 − k1| − π2

2
3 (2)

1
2 , the function W0 is

positive definite if

k1 > k2 > 0 (6)

The function Wa(z) is also positive definite, and Wd(z)→
V (z) uniformly as q → ∞. This implies that for q suffi-
ciently large Wd(z) is also positive definite.

The function

ν(z) =
Wa(z)

W0(z)

is homogeneous of degree zero with weights (2,1), this
means that

ν(k2z1, kz2) =
Wa(k2z1, kz2)

W0(k2z1, kz2)
=
k2Wa(z)

k2W0(z)
= ν(z)

and so all values of the function are taken on the unit

homogeneous ball Bh =
{
z|
(
|z1|+ |z2|2

) 1
2 = 1

}
. since

W0(z) is positive definite and Wa(z) takes only finite
values on Bh, then there exist a maximum and a minimum
value taken by ν(z) on the unit ball, and therefore on the
whole space, i.e.

0 < νmin ≤ ν(z) ≤ νmax

In the same manner it can be proved that

0 < αmin ≤
W0(z)

V
2
3

≤ αmax,

0 < δmin ≤
Wd(z)

V (z)
≤ δmax

Thus, the derivative of the Lyapunov function satisfies

V̇ (z) ≤−
( κ
Lq

)[
αmin − νmaxαmax

|a(t, ξ)|
L

]
V

2
3 (z)

− (2q + 1)
3

2

(
L̇

L

)
Wd(z) (7)

L(t) will reach a value which is sufficient large to drive
z(t) to zero, therefore the state x(t) eventually go to zero,
and L will stop growing remaining positive and bounded
for all t ≥ 0.

4
Remark 2. Theoretically, the adaptive gain will stop grow-
ing when the states are exactly zero. In application, this
condition can not be achieve because the measurement will
always be noisy. In this case, the gain will stop growing
when the state reach a neighborhood of the origin, i.e. it
should stops growing when |x| < ε, ε > 0. Then the states
will remain in a neighborhood of the origin ε and practical
stability will be achieved. The selection of parameter ε will
depend on the bounds of the noise signals.

4. ADAPTIVE SUPER TWISTING OBSERVER

In this section an adaptive observer for the plant (1)
without input is designed (for the closed loop system
the input will be considered). In(Moreno, 2012) a super-
twisting based observer is presented with constant gain.
Here the observer will be design with adaptive gain.
Consider the super-twisting based observer

˙̂x1 =−h1γφ1(e1) + x̂2
˙̂x2 =−h2γ2φ2(e1) (8)

where the no-linearities are given by

φ1 = µ1|e1|1/2sign(e1)

φ2 =
µ2
1

2
sign(e1)

and the estimation error is e1 = x̂1 − x1.
The gain γ is an adaptive gain, i.e. γ = γ(t), which
dynamics are given by

γ̇ =

{
s(t), if e1 6≡ 0

0, if e1 ≡ 0
(9)

were s(t) > 0 is a positive function.

Theorem 3. Consider the observer (8) with constant gains
h1, h2 and an adaptive gain γ(t) with a bounded pertur-
bation. Then, if h1 > 0 and h2 > 0 the trajectories of
the estimation error will reach the origin in finite time.
Moreover the adaptive gain γ(t) will remain bounded for
all time.

2

Note that if the perturbation grows after the origin is
reached the adaptive gain L(t) will grow until it reaches a
value that is large enough to drive again the trajectories
to the origin.

Proof.

For the observation errors (e1 = x̂1−x1, e2 = x̂2−x2) the
following equalities hold

ė1 =−h1γφ1(e1) + e2

ė2 =−h2γ2φ2(e1)− a(ξ, t) (10)
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To prove that the adaptive gain observer converge in finite
time, the following vector is introduce

ε =

[
φ1(e1)
e2

]
its derivative is given by

ε̇= φ′1(e1)

 −h1γφ1(e1) + e2

−h2γ2φ1(e1)− a(ξ, t)

φ′1(e1)


= φ′1(e1) ((A0 − ΓH0C0) + ρ̃)

where

A0 =

[
0 1
0 0

]
,Γ =

[
γ 0
0 γ2

]
, H0 =

[
h1
h2

]
,

C0 = [1 0] , ρ̃ =

 0
−2|e1|1/2a(ξ, t)

µ1


Consider the following lemma

Lemma 4. Consider the positive constant h1 > 0, h2 > 0
, the algebraic Lyapunov equation (ALE)

ATP + PAT = −Q

and the symmetric matrix R

R = NP + PN, N =

[
1 0
0 2

]

Given the matrix Q = QT =

[
q1 q3
q3 q2

]
> 0 and the

matrixA =

[
−h1 1
−h2 0

]
that is Hurwitz. If the elements of the

matrix Q are chosen such that the following inequalities
hold

q2 = 1

2h1q1q3 + h21q1 + q21 + h2q1 + 2h1h2q3 +

+q1h2 + h22 +
7h21h2

16
> 0

then, the matrices P , R are positive definite.

2

A change of variables is introduce

ζ = Γ−1ε =

 ε1γε2
γ2


given that Γ−1A0Γ = γA0 and C0Γ = γC0, the derivative
of the variable ζ is

ζ̇ = Γ−1φ′1(e1) [(A0 − ΓH0C0)Γζ + ρ̃] +
γ̇

γ
Nζ

= φ′1(e1)
[
γ(A0 −H0C0) + Γ−1ρ̃

]
− γ̇

γ
Nζ

where N is given in lemma 4

The following Lyapunov function is defined

V = ζTPζ (11)

where P is the solution of the algebraic Lyapunov function

(A0 −H0C0)TP + P (A0 −H0C0) = −Q

choosing the gains h1, h2, such that the matrix A0−H0C0

is Hurwitz, and an arbitrary symmetric positive definite
matrix Q = QT > 0 the solution P is unique and symmet-
ric positive definite.

Deriving the equation (11) it is obtained

V̇ = φ′1(γζT
[
(A0 −H0C0)TP + P (A0 −H0C0)

]
ζ +

+2ζTPΓ−1ρ̃)− γ̇

γ
ζTRζ

note that

||Γ−1ρ̃||2 ≤ 4a2p||ζ||2 (12)

According to lemma 4, the matrix Q can be chosen such
that the matrices P and R are positive definite. Thus
the following inequalities hold for the positive symmetric
matrix R

0 < λmin(R)||ζ||2 ≤ ζTRζ ≤ λmax(R)||ζ||2

and Q = QT > 0 holds with

0 < λmin(Q)||ζ||2 ≤ ζTQζ ≤ λmax(Q)||ζ||2

then, considering (12)

V̇ ≤ (−φ′1(e1)(γλmin(Q)− 4apλmax(P ))

− γ̇

γ
|λmax(R)|

)
||ζ||2

.

It is clear that after a finite time the following inequality
holds

γλmin(Q)− 2kλmax(P ) > 0

Given the inequality

λmin(P )||ζ||2 ≤ ζTPζ ≤ λmax(P )||ζ||2 (13)

then

V̇ ≤−
(
λmin(Q)− 2kλmax(P )

γ

)
µ2
1

2λ
1/2
max(P )

V 1/2 +

− γ̇

γλmin(P )
|λmax(R)|V

It is observed that that there exist a time to where the
gain γ(t) is large enough to compensate the perturbation
term and make the derivative of the Lyapunov function
negative. Therefore the Lyapunov function will converge
to zero in finite time. As a consequence the gain γ(t) will
stop growing in finite time, thus, it will remain bounded.

4
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Remark 5. The adaptive gain will stop growing when the
error is exactly zero. In application this condition can
not be achieve, therefore, in this case, the gain will stop
growing when the error reach a neighborhood of the
origin, i.e. it stops growing when |e1| < δ, δ > 0, then
the estimation errors will remain bounded and practical
stability will be achieved. Information of the noise signal
should be available in order to select the parameters of the
algorithm including the boundδ.

5. MAIN RESULT: THE CLOSED LOOP STABILITY

In this section the main result is presented.

Theorem 6. Consider the system (1)where a(t, ξ) is some
unknown scalar function that is bounded by an unknown
constant ap. The output feedback controller, with adaptive
gain defined by (3),

u = −L(t) (k1sign(x1) + k2sign(x̂2)) (14)

where x̂2 is provided by the observer with adaptive gain
(9)

˙̂x1 =−h1γφ1(e1) + x̂2
˙̂x2 =−h2γ2φ2(e1) + u

where the no-linearities are given by

φ1 = µ1|e1|1/2sign(e1)

φ2 =
µ2
1

2
sign(e1)

drives the trajectories of the closed loop system to zero
in finite time. If the perturbation grows after the origin
is reached the states will diverge from the origin and the
adaptive gains will grow until the trajectories of the system
return to zero in finite time.

2

The proof of theorem 6 is given in the appendix.

Remark 7. The states and the observation errors can be
deviated from the origin after they reach it. In this case the
adaptation gains will grow until the states and observation
errors return to the origin. This fact is observed in the
simulation.

6. SIMULATION

Consider the following system

ẋ1 = x2

ẋ2 =−10 + 5sen(4πt) (1 + p)

y = x1 (15)

where

p =

{
0, if t < 10

65, if t ≥ 10

The controller (14) and the observer (15) were imple-
mented in system (15).

On figures (1, 2) it can be observed that the estimation
error for the observer converges to zero in finite time. The
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states also converges to the origin in finite time. The gains
γ and L stop growing and as result the control signal stops
growing.
When the perturbation grows, it can be observed that the
sates deviate from the origin and the adaptive gain L(t)
stars growing until the states return to zero. As a result the
control signal also grows to cope with the new amplitude
of the perturbation.

7. CONCLUSIONS

An adaptive output feedback second order sliding mode
controller were introduce. It has been proven that both,
the controller and the observer, converge to zero in finite
time with an adaptive gain despite that the perturbation
bound is not known. The adaptive gains grows until the
observer errors and the states converge to zero. As seen
in the simulation, if the perturbation magnitude grows
after the observation error and the states converge to
zero, they will diverge and the gains will grow again, until
they are large enough to compensate the perturbation.
Therefore it can not be guaranteed that the sliding mode
will be preserved after it is reached. The Lyapunov analysis
was essential to prove that both adaptive techniques will
respond to any bounded perturbation.
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8. APPENDIX

A.1 proof of theorem 6

Defining the estimation errors as e1 = x̂1 − x1 and e2 =
x̂2 − x2, the closed loop dynamics can be written as

C :


ẋ1 = x2
ẋ2 = −L(t) (k1sign(x1) + k2sign(x2))

+a(t, ξ) + χ(t, ξ, x2, e2)

O :

{
ė1 = −h1γ(t)φ1(e1) + e2
ė2 = −h2γ2(t)φ2(e1)− a(ξ, t)

where the perturbation terms are given by

χ(t, ξ, x2, e2) , k2[sign(x2(t))− sign(x2(t) + e2(t))].

The perturbation term vanishes when e2 = 0. This pertur-
bation is uniformly bounded

|χ(t, ξ, x2, e2)| ≤ 2k2

In section 4, it is proved that the estimation error of system
O converges to zero in finite time, i.e. there exists a time
T (e0) > 0 such that for all t ≥ T (e0), it follows that
e1(t) = e2(t) = 0. Note that the trajectories of system C
cannot escape to infinity in finite time. This is due the fact
that f(x) satisfies the growth condition

||f(x)|| ≤ ks||x||, ∀||x|| ≥ cs

for some ks > 0, cs > 0, and where f(x) is the right
hand side of system C. Moreover, the perturbation signal
of system C is also bounded, and since there exist a time
where the gain L(t) is large enough to compensate any
bounded perturbation, the state x(t) converges to the
origin in finite time. 4 A.2 Proof of lemma 4
Given the matrix

P =

[
p1 p3
p3 p2

]
> 0

The matrix Q can be written as

Q =

[
q1 q3
q3 q2

]
=

[
2 (h1p1 + h2p2) h1p3 + h2p2 − p1
h1p3 + h2p2 − p1 −2p3

]
then the elements of P can be written in terms of the
elements of Q

p1 =
q1 + h2q2

2h1

p2 =
2h1q3 + h21q2 + q1 + h2q2

2h1h2

p3 =−q2
2

The matrix R can be written as

R = −
[
2p1 3p3
3p3 4p2

]
then R is positive definite if the following inequalities hold

p1 > 0

8p1p2 − 9p23 > 0 (16)

the condition (16) is equivalent to

q1 + h2q2 > 0(17)

8

(
q1 + h2q2

2h1

)(
2h1q3 + h21q2 + q1 + h2q2

2h1h2

)
− 9

(q2
2

)2
> 0

without loss of generality q2 can be chosen as q2 = 1, then
the condition (17) holds. Condition (16) holds if

2h1q1q3 + h21q1 + q21 + h2q1 + 2h1h2q3 + h21h2 + q1h2 + h22

−9h21h2
16

> 0

that is always possible since the parameters q1, q3 can be
chosen large enough. 4
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