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Abstract: Image processing technology has been successfully applied to fault detection of copper 

flotation processes, and the key to realize image processing based fault condition recognition is 

accurately extracting froth image features closely related to key production indices. To extract texture 

features of froth images in real-time, a multi-scale gray level co-occurrence matrix (M-GLCM) method is 

proposed. Firstly, the wavelet transform is applied to the froth gray images, and the coefficients of 

wavelet approximation sub-images in different scales are mapped into gray level of 0~255. Then the 

spatial gray level co-occurrence matrices are calculated, a set of texture features of froth images are 

obtained statistically from the matrices. Lastly, these features are adopted for off-line classification and 

on-line recognition of froth images in different working conditions. As the result shows, froth texture 

features extracted through the multi-scale gray level co-occurrence matrix have a good stability and 

separability suitable for mode classification and thus can be well applied for fault condition recognition 

in copper flotation processes. 

Key words: multi-scale gray level co-occurrence matrix (M-GLCM); texture feature extraction; froth 

image; fault condition recognition; copper flotation; 

 

1. INTRODUCTION 

Visual features of froth play a critical role in flotation 

processes since they can effectively reflect quality index 

like flotation grade etc. (Moolman et al., 1996). In 

traditional practice, the current working condition of a 

flotation process is determined by the visual features of 

froth surface through the direct observation of experienced 

operators. With its great arbitrariness and lack of objectivity, 

the traditional way can hardly help to accurately determine 

the current working condition and guide the operation in 

flotation processes, which ultimately lead to a great 

volatility in product quality. Therefore, the rapid and 

accurate recognition of working conditions is crucial to the 

entire flotation process. 

In recent years, much progress has been made in intelligent 

working condition recognition of flotation processes, in 

which froth image features are adopted together with 

machine vision and image processing technology (Aldrich 

C. et al., 2010). Froth image features adopted in intelligent 

recognition of flotation working conditions mainly include 

the color, size, texture, etc. of froth (Yang et al., 2009; Xu 

et al., 2012; Lin et al., 2013), among which the froth texture 

is one of the key features since it is relatively stable to the 

influence of environment and illuminance (Yang et al., 

2011). At present, methods including gray level 

co-occurrence matrix (GLCM, Haralick et al., 1973) and 

wavelet transform (Mallat, 1989) are most frequently cited 

for froth texture analysis. The GLCM are widely adopted 

based on second order statistics, since it is easily 

understood and rotational invariance. Based on GLCM, 

energy, entropy and inertia of froth image were extracted to 

characterize the froth appearance texture and to recognize 

flotation conditions in Wang et al. (2010) and Ren et al. 

(2011). These features can only reflect the spatial 

information of froth texture at a single scale, yet lacking of 

description on the dependency relationship between scales 

of froth texture (Liu et al., 2009). On the contrary, wavelet 

transform has the multi-scale property, which enables a 

combination of time-frequency domain for signal analysis, 

and thus performs better for identification with texture 

statistical features derived from it. The magnitude and 

phase spectra or the energy features of froth images were 

extracted by applying wavelet transform and then the minor 

differences of various types of froth under different 

flotation conditions were obtained in Liu et al.(2010) and 

Gianni B.et al.(2006). However, these statistical features 

only take the property of sub-band into account and ignore 

the structural information of froth texture. Zhong et 

al.(2011) have proposed a multi-resolution co-occurrence 

matrix by combining wavelet transform with spatial gray 

level co-occurrence matrix. The higher classification 
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accuracy of the features extracted by this new matrix was 

proved with a comparison among the features obtained by 

wavelet transform and GLCM. However, it has not been 

reported so far that M-GLCM were employed to extract 

texture features of froth images and recognize fault working 

conditions in copper flotation processes.  

In this paper, the multi-scale spatial gray level 

co-occurrence matrix (M-GLCM) is adopted for extraction 

of texture features from flotation froth images. Firstly, 

wavelet transform of froth images is carried out, and the 

coefficients in the wavelet sub-images at different scales are 

mapped to gray level of 0~255. Based on the statistics of 

the spatial gray level co-occurrence matrix, a set of texture 

features are obtained, which can effectively reflect the 

multi-scale textural information of froth images. Finally, 

these features are used for fault condition recognition in 

flotation.  

2. FAULT CONDITION RECOGNITION SYSTEM FOR 

COPPER FLOTATION PROCESS 

Fig.1 shows the recognition system for working condition 

in copper flotation. In this system, froth videos from 

flotation site are captured by cameras and the image data is 

pre-processed, after which features of froth images are 

extracted. Based on certain features, different types of froth 

images can be classified so as to realize the recognition of 

working condition in flotation.  

 

Fig.1 Sketch diagram of condition recognition system in 

copper flotation 

As an important visual feature, froth texture can well reflect 

changes of key production indices and technological 

parameters in flotation process. Fig.2 and Fig.3 show 

respectively froth image under normal condition and that 

under fault condition from the copper flotation site. In 

normal condition, the froth is of relatively a rough texture 

and large size, with low spatial variation frequency of gray 

level; Under fault condition, the hydrated froths are mainly 

of a fine texture and small size, with high spatial variation 

frequency of gray level, while the viscous froths are of a 

relatively high viscosity and generally smaller than normal 

ones, with moderate spatial variation frequency of gray 

level. 

 

Fig.2 Froth image of normal condition 

  
(a) Hydrated froth   (b) Viscous froth 

Fig.3 Froth images of fault conditions 

By extracting froth features sensitive to the condition 

changes, fault conditions such as hydrated froth and viscous 

froth, etc. can be detected for timely adjustment of 

production operation and in this way, the copper flotation 

process can be kept at its optimal state. Since statistical 

features generated from GLCM can only describe the 

texture structural information on the spatial domain of 

images, which is obtained at a single scale, there is a loss of 

dependency relationship between texture scales. Wavelet 

analysis enables decomposition of original images into 

sub-band images of different frequencies or resolutions, in 

which the high-frequency sub-band reflects details of 

images such as texture, edge and so on, while the 

low-frequency sub-band reflects outline information of 

images. However, wavelet analysis is helpless for the 

analysis of structural information of froth texture. With the 

combination of wavelet analysis and GLCM, richer 

structural information of texture can be obtained. 

3. TEXTURE FEATURE EXTRACTION OF FROTH 

IMAGE BASED ON GLCM 

3.1 Gray Level Co-Occurrence Matrix 

The GLCM shows the joint probability of the intensity 

values of two pixels i and j with a distance d apart along a 

certain direction , i.e., the probability that i and j have the 

same intensity. It can be shown by a matrix 

( ,  |  , )P i j d  as follow (Haralick et al., 1973): 

   



( , , ) , , , ( , ) ,

( , ) , 0,1, , 1;

0,1, , 1

P i j d x y x x y y f x y i

f x x y y j x M

y N

       

      

 

                                            (1) 

In formula (1) where ,   0,1, 1i j L   , L is the 

quantization of image gray level; x and y are the horizontal 

and vertical coordinates of pixels in images; 

M and N represent respectively the number of rows and 

columns of images; is the included angle between the line 

from one pixel to the other and the positive x-axis, and is 

generally set at four discrete directions, namely, 0°, 45°, 90° 

and 135°, as shown in Fig.4. Moreover, ( , )d x y   and 

it is generally adopted 1, cosx d   and siny d   . 

Since the number of quantitative series for image gray-level 

is set as an integer from 0 to 1L , P is a matrix with a 

L L dimension in regard to a given d and . 

Fig.5 shows the spatial gray-level co-occurrence matrix for 
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an image ( , )f x y when 0   and 1d  . 

0°

45°

90°
135°

 

Fig.4 Four angles in spatial gray-level co-occurrence matrix 
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Fig.5 An example of spatial gray-level co-occurrence matrix 

3.2 Multi-scale Spatial Gray-level Co-occurrence Matrix 

3.2.1 Multi-scale Wavelet Analysis 

Image texture generally has a multi-scale property, which 

demonstrates different texture features in different scales. 

Accordingly, the multi-scale decomposition in wavelet 

transform meets the demand and thus offers an effective 

tool for the analysis of texture details at different scales. 

Therefore, the wavelet analysis is adopted for the 

multi-scale decomposition of images at first. 

By graying the original RGB froth image, the gray-level 

image ( )p qI is obtained. The two-dimensional j -level 

wavelet decomposition of grayscale image ( )p qI (
1jc as its 

coefficient matrix) is carried out; At each decomposition 

level, an approximation sub-image and three detail 

sub-images respectively on the horizontal, vertical and 

diagonal directions are obtained.  

The wavelet transform formula at each decomposition level 

is as follows (Mallat, 1989):  

, , , , , ,

1

, 1, , , , ,

, ,

,1 1 ,2 2 ,3 3

, , ,

, , ,
j k m j k m j k m

j j

k m j k m k m j k m

k m k m

j j j

k m k m k m

k m k m k m

I c c

d d d

 

  



 

  

 

  
          (2) 

At each decomposition level, an approximation coefficient 

matrix ,

j

k mc d three details coefficient matrices
,1

,

j

k md , 

,2

,

j

k md and
,3

,

j

k md can be obtained with the Mallat algorithm for 

two-dimensional wavelet decomposition, as shown in 

following formula: 

1

, 2 2 ,

,

,1 1

, 2 2 ,

,

,2 1

, 2 2 ,

,

,3 1

, 2 2 ,

,

j j
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l n

j j
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l n
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l n

j j
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l n

c h h c

d h g c

d g h c

d g g c


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
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
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                        (3) 

In formula (2),  refers to the scale function,  the 

wavelet function and j the decomposition layers; 

,k m Z represent respectively rows and columns in 

coefficient matrix ,

j

k mc , and ,l n Z represent respectively 

rows and columns in coefficient matrix
1

,

j

l nc 
; the coefficient 

sequence { }ih h is a low-pass filter and { }ih h is the 

sequential inversion of h , namely i ih h , while the 

coefficient sequence { }ig g is a high-pass filter and 

1( 1)i

i ig h   , { }ig g is the sequential inversion of g , 

namely iig g . 

Formula (2) is firstly used for the 1st -level of 

two-dimensional wavelet transform to obtain an 

approximation sub-image and three detail sub-images, 

coefficients of which are calculated through formula (3); 

and then formula (2) is used for 2nd -level two-dimensional 

wavelet transform of the 1st-level approximation sub-image 

(low-frequency part) ,

j

k mc , which produces a 2nd-level 

approximation sub-image and three detail sub-images; the 

process then is repeated till the wavelet transform of 
1

,

j

k mc 
 

at j level is done and accordingly, the multi-scale 

representation of gray-level image ( )p qI  is obtained. 

3.2.2 M-GLCM 

The GLCM can demonstrate the structural information of 

texture in spatial domain; however, the information is 

obtained at the single scale. In contrast, the wavelet analysis 

enables the decomposition of images into the approximation 

sub-images and detail images and thus helps to get more 

statistical features of texture than the single-scale feature, it 

is helpless for the analysis of structural information of froth 

images. In view of that, A M-GLCM is proposed in this 

paper for the sake of acquiring comprehensive and accurate 

information about froth texture. 

The coefficient matrix of the approximation sub-image, 

,

j

k mc and those of detail images,
,1

,

j

k md ,
,2

,

j

k md ,
,3

,

j

k md , at each 

scale are worked out according to formula (2), and then 
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their gray-level is respectively mapped according to the 

following formula: 

   min max min( , ) 255 ( , )j jC k m C k m c c c            (4) 

In formula (4), k and m refer to the row value and column 

value of the matrix element; minc and maxc represent the 

minimum and maximum values of all the elements in 

matrix jC . 

The coefficient matrices obtained after mapping 

are ,

j

k mc ,
,1

,

j

k md  ,
,2

,

j

k md  ,
,3

,

j

k md  , and then their gray-levels are 

quantized with a quantitative series of 8; at last, the spatial 

gray-level co-occurrence matrices of the four angles, 0°, 45°, 

90° and 135°, ( , )jP k m  are respectively worked out.  

3.3 Feature Extraction Based on M-GLCM 

The second statistics from M-GLCM on various directions 

are obtained, which include energy, entropy, contrast ratio 

and correlation of Haralick features and their averages on 

each direction etc. 

As follows (Haralick et al., 1973): 

Secondary Moment (Energy) 

1 1
2

0 0

[ ( , )]
L L

j
k m

E P k m
 

  

                           (5) 

Entropy 

1 1

0 0

( , ) log ( , )
L L

j j
k m

S P k m P k m
 

  

                  (6) 

Contrast Ratio (Inertia Moment) 

1 1
2

0 0

[( ) ( , )]
L L

j
k m

I k m P k m
 

  

                      (7) 

Correlation 

,
( , )

( )( ) ( , | , )

x y

x y j
k m

C d

k m P k m d


 

  
 



    
       (8) 

Wherein： 

2

2

( , | , )

( , | , )

( ) ( , | , )

( ) ( , | , )

x j
k m

y j
m k

x x j
k m

y y j
m k
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m P k m d

k P k m d

m P k m d
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 
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 

 

 

 

    

    

    

    

 

4. ONLINE CONDITION RECOGNITION 

Fig.6 shows the online condition recognition system based 

on M-GLCM and Extreme Learning Machine (ELM). ELM 

is proposed by Huang.et al.(2004) for generalized single 

hidden layer feed-back networks (SLFNs) which can 

randomly chooses the input weights and analytically 

determines the output weights of SLFNs. It can provide 

better generalization performance at extremely high 

learning speed and has been successfully applied in both 

classification and regression applications. 

4.1 Offline classification 

After collection of froth videos in different conditions from 

copper flotation site, multi-scale texture features of each 

image are obtained offline according to the proposed method 

in this paper. Finally, these features are input to an ELM to 

analytically learn an optimal model and offline classification 

rate are obtained at the same time. 

4.2 Online recognition 

After training, the ELM is ready to recognize different 

conditions. Real-time images from the froth videos at a 

period are acquired. M-GLCM features of these images are 

calculated and input to the trained ELM. Finally, the 

recognition results of the ELM are presented.
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Fig.6 Block diagram for condition recognition based on M-GLCM 

5. EXPERIMENT AND ANALYSIS 

Froth videos are obtained in a steady state of the copper 

flotation site. Table.1 shows the feed ore characteristics of 

copper flotation processes. 

5.1 Texture Features Extraction  

5.1.1 Stability Analysis of M-GLCM Texture Features in the 

Same Working Condition 
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Table.1 List of process parameters 

 Feed 

grade 

Pulp 

concentration 
Ph 

Slurry 

particle size 

min 0.85 25% 10 65% 

max 1.12 32% 12 70% 

 

An important characteristic of feature extraction is its 

stability. In working condition recognition, the effectiveness 

of feature extraction method is supposed to ensure that 

features extraction from different images in the same 

working condition are relatively stable. In the experiment, 

the froth video of normal working condition is acquired 

from the flotation site by the system shown in Fig.1, from 

which 15 frames of images are obtained. According to the 

proposed method, energy, entropy, contrast ratio and 

correlation of each image are extracted. Fig.7 shows the 

texture features on 135° direction of the M-GLCM. 

As shown in Fig.7, these features from the froth video in that 

condition keep a relatively good stability and do not 

fluctuate greatly in different periods. To evaluate the 

stability quantitatively, the 3σ edit rule is applied to each 

kind of features and the results show that all (100%) of the 

values lie within three standard deviations of the mean of 

features respectively. The results prove that the texture 

features extracted by proposed M-GLCM method in this 

paper enjoy a good stability. 

5.1.2 Separability Analysis of M-GLCM Texture Features in 

different Working Conditions 
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Fig.7 Texture features extracted by M-GLCM under normal 

condition  

Another important characteristic of feature extraction is its 

separability. In working condition recognition, the 

effectiveness of feature extraction method is supposed to 

ensure that features extracted from froth images in different 

conditions have good separability. Froth images are acquired 

from videos of three different conditions as mentioned 

above. According to the proposed method, features include 

energy, entropy, contrast ratio and correlation on four 

directions are extracted from each image. Fig.8 shows the 

texture features on 135° direction of the M-GLCM. 
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Fig.8 Texture features extracted by M-GLCM under different conditions 

A one-way between subjects ANOVA is conducted to 

compare the effect of different conditions on features. Take 

the energy feature as an example, there is a significant 

effect of kinds of conditions on the level of energy at the 

p<0.5 level for the three conditions [F(2, 14) = 4.162, p = 

0.022]. Post hoc comparisons using the Tukey HSD test 

indicate that the mean score of energy for the normal 

condition (M =0.127, SD=0.006) is significantly different 

from the viscous condition (M=0.088, SD=0.009). Also, the 

hydrated condition (M=0.073, SD=0.005) is significantly 
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different from normal and viscous conditions. Taken 

together, these results suggest that different conditions 

really do have an effect on the high levels of features. 

Therefore, the texture features of different conditions 

extracted from the M-GLCM enjoy a good separability. As 

a result, the distribution of texture features can help to 

effectively classify different froth images and thus 

recognize different working conditions. 

5.2 Offline Classification of Copper Flotation Conditions 

A total of 9 froth videos of different working conditions are 

acquired through the system as shown in Fig.1, among 

which 3 are of normal condition and 6 are of fault condition. 

The sampling frequency is 7.5 frames per second. The first 

ten frames of images from each video are used for training, 

while the last five frames are used for testing. In this way, 

there are a total of 90 training samples and 45 testing 

samples. 

First, as for each froth image, the texture features on 

different directions from the M-GLCM are extracted. Based 

on these features, froth images are classified into three types 

with the ELM, namely, the normal, hydrated and viscous 

images. The training accuracy rates reach to almost 100% 

when the sigmoid function is choose as activation function, 

and the hidden neurons are set to 20 in the ELM . Table.2 

shows the test accuracy rate of classification. 

 

Table.2 Accuracy rate of classification for different M-GLCM features 

 Energy Entropy Contrast Ratio Correlation Four Features 

0° 0.7333 0.8000 0.8667 0.9333 0.8222 

45° 0.8444 0.8667 0.7111 0.8667 0.8000 

90° 0.6000 0.9111 0.5556 0.6667 0.5556 

135° 0.8444 0.9333 0.9556 0.9556 0.9556 

Average 0.8667 0.8667 0.9556 0.8667 0.8667 

 

As shown in Table.2, texture features of a 135° angle in the 

M-GLCM have a relatively high accuracy rate of 

classification. Therefore, those features are selected as the 

final feature vector and adopted in the comparative 

experiment with features from GLCM and energy values 

from wavelet transform respectively, in which the Extreme 

Learning Machine is used to classify the froth images into 

three types, the normal, viscous and hydrated one. As to the 

GLCM, the accuracy rates of each direction are almost the 

same , so we also choose the features of 135° as the final 

feature vector .The result is shown in Table.2. 

Table.3 Accuracy rate of classification for features 

extracted by different methods 

 Wavelet 

Transform 
GLCM M-GLCM 

Classification 

Accuracy Rate 
0.7333 0.8222 0.9778 

 

Table.3 shows that features extracted by M-GLCM enjoy 

the highest accuracy rate of classification, compared with 

the energy features from wavelet transform and those from 

the GLCM. In this way, it is clear that the texture features 

of froths can be better represented by M-GLCM. 

5.3 Online Recognition of Fault Condition in Copper 

Flotation Process 

The online monitoring of flotation conditions is carried out 

by online extraction of texture features from M-GLCM. 

First, according to the procedures in Section 4, the 

M-GLCM texture features of certain froth image are 

obtained online in real time. Then based on the trained ELM, 

the working conditions for the real-time froth images are 

determined. As demonstrated in Fig.9, we can easily know 

that the current working condition is normal condition. 
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Fig.9 Online recognition result of ELM  

6. CONCLUSION 

This paper aimed at fault condition recognition of copper 

flotation based on froth image texture analysis. A method 

based on the M-GLCM for feature extraction is proposed. 

Texture features extracted by M-GLCM contain textural 

information of original images at different scales, which 

perform better than single-scale spatial features as well as 

traditional wavelet transform features. Results from both 

offline classification and online detection indicate that the 

texture features from the M-GLCM can recognize 

accurately the fault condition on copper flotation site in 

real time. However, more process variables should be 

taken into account to realize optimal control of the whole 

system, e.g. air flow rate, feed grade, reagent addition. 

And our future work will focus on that and the application 

of the method to wider range of external operating 
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conditions.  
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