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Abstract: This paper is concerned with the finite-time stability (FTS) analysis for a class of
switched linear systems with average dwell time (ADT), a more practical concept of extended
finite time stability (EFTS) is proposed as the first attempt. A parameter-dependent description
approach at the instants of each subsystem switched in and off is invoked to obtain the EFTS
criterion. It has been shown the obtained criterion is less conservative than the existing results.
The switched systems with only unstable subsystems is firstly addressed with ADT and mode-
dependent ADT, the obtained results of ADT are extended to the ones with both stable and
unstable subsystems. A numerical example is given to verify the theoretical findings.
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1. INTRODUCTION

Switched systems, which provide a unified, systematic
framework for modeling practical systems with switch-
ing features, have been made significant contributions in
theoretical research (Blanchini et al (2012), Persis et al
(2003), Zattoni et al (2013), Zhao et al (2012a)) and
practices such as power electronics, Tse et al (2002), flight
control systems, Pellanda et al (2002) and other fields, e.g.,
Geromel et al (2008), Hespanha et al (2004). Most existing
literature focused on the performance of switched systems
in the infinite-time interval, see for example, Zhang et al
(2010), Zhao et al (2012b). However, there are some cases
where large values of the state are infeasible, such as the
terminal guidance of missile and vehicle active suspension
system, see Amato et al (2012). For this purpose, the finite-
time stability (FTS) is addressed. Specifically, a system is
said to be FTS, if the state (norm) with given criteria can
hold below a fixed upper bound over the specified interval.

On another research front, switching signal, which is
used to distinguish the switched systems from the com-
mon time-varying systems, has played an important role
for the system performance. Currently, plenty of exist-
ing studies can be roughly categorized into two class-
es: (a) time-dependent switching laws such as aver-
age dwell time (ADT) (Zhang et al (2012)) and dwell
time(DT)(Morse (1996)); (b) state-dependent switching
approach, e.g., Deaecto et al (2010). Obvious contributions
in the switched systems domain have shown that ADT
switching scheme is more practical and flexible than other-
s, see Vu et al (2007). Then, an mode-dependent ADT ap-
proach is proposed, which can reduce the conservativeness
⋆ This work was partially supported by National Natural Science
Foundation of China (NSFC-61203116) and China Scholarship Coun-
cil (201306120087)

of the ADT criterion by adequately exploring the mode-
dependent information in Zhao et al (2012b). Furthermore,
if more available informations about each subsystem are
known, the conservativeness are further reduced, such as
the total activation time ratio between different kinds of
subsystems, which will be addressed in this paper.

Additionally, many remarkable achievements on the is-
sues of the switched systems with both stable and un-
stable subsystems have been made. To mention a few,
the exponentially stability of switched systems containing
both stable and unstable subsystems was studied firstly
in infinite-time interval in Zhai et al (2001). By limiting
the ratio of the total activation time between stable and
unstable subsystems, the stability conditions have been
derived with ADT. An extended version is also discussed
for asynchronous switched systems with ADT in Zhang
et al (2010). The switched systems involving with stabiliz-
able and unstablizable subsystems have been investigated
on the tracking control issues in Li et al (2009). To our
knowledge, however, few literature have been available on
this subject in the finite-time interval. Most published
results about FTS of the switched systems just simply
considered each subsystem being unstable, see Du et al
(2010), which motivates us for this study.

Greatly different from previous works, the approach pro-
posed in this note is inspired by state-dependent dwell
time description approach in Persis et al (2003), mode-
dependent ADT technique in Zhao et al (2012b) and the
method for dealing with the stability of switched systems
with stable and unstable subsystems in Zhai et al (2001).
Twofold contributions will be addressed in this paper.
Firstly, the mode-dependent ADT approach will be de-
veloped to reduce the conservativeness over the existing
FTS criteria. Then by the extended finite-time stability
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(EFTS) for switched systems, a more practical case of
switched system involving with both stable and unstable
subsystems will also be considered. The remainder of this
paper is organised as follows. In Section 2, the general
FTS and EFTS concepts are firstly defined. The EFTS
conditions of different switched systems based on improved
switching schemes are derived with a novel parameter-
dependent running time description approach in Section
3 and a numerical example is given in Section 4 to show
the effectiveness of the obtained theoretical results. Con-
clusions of this paper are given in the last section.

Notations: The notations used throughout this paper are
fairly standard, and can be found in the relevant literature
of switched systems. We omit them here due to the space
limit.

2. PROBLEM STATEMENTS AND PRELIMINARIES

Consider a class of time-invariant continuous-time switched
linear systems given by

ẋ (t) = Aσ(t)x (t) (1)

where x (t) ∈ Rn is the state vector; σ (t) : [0,∞] →
S , {1, 2, · · · , r, r + 1, · · · , l} is a piecewise constant func-
tion which is deterministic and right continuous, called
a switching signal, where l is the number of subsys-
tems. The switching sequence can be described as σ :
{(t0, σ (t0)) , (t1, σ (t1)) , · · · , (tk, σ (tk)) , · · · } , when t ∈
[tk, tk+1) , we say the σ (tk) subsystem is active. When

Aσ(t) is Hurwitz stable for σ (t) = i, we say i ∈ Φ ,
{1, 2, · · · , r}, where Φ is the set of indexes for all stable

subsystems. Otherwise, i ∈ Φ̃ , {r + 1, · · · , l}, thus we

have S = Φ ∪ Φ̃.

Definition 1. (Finite-time stability, FTS, Du et al (2010)).
Given a positive definite matrix R, three positive constants
c1, c2, Tf with c1 < c2, and a switching signal σ. System
(1) is said to be FTS with respect to (c1, c2, R, Tf , σ) , if
∀t ∈ [0, Tf ]

xT (0)Rx (0) ≤ c1 =⇒ xT (t)Rx (t) ≤ c2.

In this note, we will consider the case that the stable and
unstable subsystems are both existed in the switched sys-
tem, and the total activation time ratio between unstable
subsystems and stable subsystems is known as a priori.
Besides, the evaluation criterion of the system is assumed
to be mode-dependent, which means that the xT (t)Rx (t)
in Definition 1 will be analyzed as xT (t)Rσ(t)x (t). Then,
an extended finite-time stability (EFTS) concept for
switched systems containing both stable and unstable sub-
systems is presented as follows.

Definition 2. (Extended Finite-time stability, EFTS). Giv-
en four positive constants c1, c2, a, Tf , a set of positive

definite matrix Ω , {Ri | i ∈ S} and a switching signal
σa (t) by the activation time ratio a between unstable and
stable subsystems, system (1) is said to be EFTS with
respect to (c1, c2, R,Ω, Tf , σa) , if ∀t ∈ [0, Tf ]

xT (0)Rx (0) ≤ c1 =⇒ xT (t)Rσa(t)x (t) ≤ c2
Note that, when a → ∞, the admissible switching signal
permits all the activate subsystems are unstable ones in
the whole interval of [0, Tf ], which is actually the case
considered in the existing literature, e.g., Du et al (2010).

Thus, the switching signal σa will be restituted by σ
throughout this paper.

3. MAIN RESULTS

In this section, a general switched linear system with only
unstable subsystems will be firstly considered by multiple
Lyapunov-like function (MLF) subject to ADT switching,
where a parameter-dependent running time description
approach will be proposed to obtain the FTS criteria.

Lemma 1. Consider the continuous-time switched system
ẋ (t) = fσ(t) (t) and let ρ1, ρ2, βi > 0, µi > 1, ∀σ (t) =
i ∈ S be given constants. Suppose there exist Lyapunov
functions Vσ(t) : Rn → R, σ (t) ∈ S, such that, ∀σ (t) = i ∈
S,

ρ1∥x (t) ∥2 ≤ Vi(x (t)) ≤ ρ2∥x (t) ∥2 (2)

V̇i(x (t)) ≤ βiVi(x (t)) (3)

c1
c2

eβMTf ≤ ρ1λ1µm

ρ2λ2λ3
(4)

where λ1 , infi∈S {λmin (Ri)}, λ2 , supi∈S {λmax (Ri)},
λ3 , λ2

λmin(R) , µM , supi∈S {µi}, µm , infi∈S {µi} and

βM , supi∈S {βi},

∀
(
σ (tk) = i, σ

(
t−k
)
= j
)
∈ S × S, i ̸= j

Vi (x (tk)) ≤ µjVj

(
x
(
t−k
))

. (5)

If the switching signal σ with ADT satisfies

τa ≥ τ∗a =
Tf lnµM

ln (ρ1λ1µmc2)− ln (ρ2λ3λ2c1)− βMTf
(6)

the system holds EFTS with respect to (c1, c2, R,Ω, Tf , σ) .

Proof. By integrating (3) for t ∈ [tk, tk+1) , ∀t ∈ [0, Tf ] ,
we have

Vσ(tk) (x (t)) ≤ e
βσ(tk)

(t−tk)Vσ(tk) (tk) (7)

Let t0, t1, t2, · · · , tk be the switching instants in the in-
terval [0, t], t ∈ [0, Tf ], where t0 = 0. Then the running
time between two successive switching instants could be
denoted as τ̃σ(tk−1) = tk − tk−1. A parameter-dependent
approach is proposed to describe the running time as fol-
lows. For arbitrary τ̃σ(tk−1), there exist qϕ(tk−1), by which
τ̃σ(tk−1) could be rewritten as

τ̃σ(tk−1) = tk − tk−1 =
lnqϕ(tk−1) − lnµσ(tk−1)

βσ(tk−1)
(8)

where ϕ (tk−1) is a special switching signal, which deter-
mines not only the value of qϕ(t) at the switching inter-
val of t ∈ [tk−1, tk), but also the according value range
qϕ(tk−1) ∈

[
µσ(tk−1),∞

)
.

For arbitrarily given switching sequence, it follows from
(5), (7) and (8) that

Vσ(tk) (x (t))≤ e
βσ(tk)

(t−tk)Vσ(tk) (x (tk))

≤
qϕ(tk)

µσ(tk)
µσ(tk−1)Vσ(tk−1)

(
x
(
t−k
))

≤
qϕ(tk)

µm
µσ(tk−1)e

βσ(tk−1)
(tk−tk−1)

×Vσ(tk−1) (x (tk−1)) ≤ · · ·
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≤
qϕ(tk)

µm
qϕ(tk−1) · · · qϕ(t1)qϕ(t0)Vσ(t0) (x (t0))

=
Ψ[t0,t]Vσ(t0) (x (t0))

µm
(9)

where Ψ[t0,t] , qϕ(tk)qϕ(tk−1)qϕ(tk−2) · · · qϕ(t1)qϕ(t0) stands
for the product of all activation time description parame-
ters from t0 → t.

Thus, for τ[t0,t] ∈ [0, Tf ], the following expression can be
obtained

Tf ≥ τ[t0,t] = τ̃σ(t0) + τ̃σ(t1) + · · ·+ τ̃σ(tk)

=
lnqϕ(t0) − lnµσ(t0)

βσ(t0)
+

lnqϕ(tk) − lnµσ(tk)

βσ(tk)

≥
ln
(
qϕ(tk) · · · qϕ(t1)qϕ(t0)

)
−N[t0,t]lnµM

βM

=
lnΨ[t0,t] −N[t0,t]lnµM

βM
(10)

In addition, based on (2), it yields that

Vσ(tk) (x (t))≥ ρ1∥x (t) ∥2 ≥ ρ1
λ2

xT (t)Rσ(tk)x (t) (11)

Similarly,

Vσ(t0) (x (t0))≤ ρ2∥x (t0) ∥2 ≤ ρ2
λ1

xT (t0)Rσ(t0)x (t0)

≤ ρ2
λ1

qϕ(t−0 )
xT (t0)Rx (t0) ≤

ρ2λ3c1
λ1

(12)

where qϕ(t−0 )
represents the gain from xT (0)Rx (0) to

xT (t0)Rσ(t0)x (t0) and there is no dwell time.

In view of (9)-(12), one has that

xT (t)Rσ(t)x (t)

≤
Vσ(tk) (x (t))λ2

ρ1
≤

Ψ[t0,t]Vσ(t0) (x (t0))λ2

ρ1µm

≤
Ψ[t0,t]ρ2λ3λ2c1

ρ1λ1µm
≤ eβMTf+N[t0,t]lnµM

ρ2λ3λ2c1
ρ1λ1µm

(13)

Based on (4) and N[t0,t] ≤ N∗ =
Tf

τ∗
a
in (6), we have

eβMTf+N[t0,t]lnµM ≤ ρ1λ1µmc2
ρ2λ3λ2c1

(14)

Then, it follows from (13) and (14) that,

xT (t)Rσ(t)x (t) ≤ eβMTf+N[t0,t]lnµM
ρ2λ3λ2c1
ρ1λ1µm

≤ c2

Thus, we can conclude the system holds ETFS with
respect to (c1, c2, R,Ω, Tf , σ) . 2

Remark 1. Construct the Lyapunov functions Vσ(t) (x (t)) =

xT (t) P̃σ(t)x (t) for switched linear systems (1) and sup-

pose that Pσ(t) , R−1/2P̃σ(t)R
−1/2, ∀t ∈ [0, Tf ]. Then

ρ1 and ρ2 in (2) could be respectively obtained as ρ1 ,
infi∈S {λmin (Pi)} and ρ2 , supi∈S {λmax (Pi)}. If we fur-
ther let Ri ≡ R, µM = µm ≡ µi and βM ≡ βi, ∀i ∈ S,
then a similar result could be found in Du et al (2010). By
rewriting the results in Lemma 1 and Du et al (2010), the
following results could be obtained


τ ≥ τ∗a =

Tf lnµM

ln (ρ1µMc2)− ln (ρ2c1)− βMTf
(15a)

τ ≥ τ̄∗a =
Tf lnµM

ln (ρ1c2)− ln (ρ2c1)− βMTf
(15b)

where τ∗a and τ̄∗a are the admissible switching signal of
Lemma 1 and Du et al (2010), respectively. By the given
definition of µM that µM > 1, the conservativeness of
ADT is reduced in this paper. The same results will also
be derived when Rσ(t) is mode-dependent, which will be
demonstrated in the numerical simulation later.

Remark 2. A class of switched nonlinear systems is ad-
dressed for the EFTS analysis in Lemma 1, which is
more general than the existing literature only considered
switched linear systems. Besides, the proposed parameter-
dependent running time description approach in (8) can
reduce the conservativeness of the ADT criterion by Re-
mark 1. Actually, the parameter µi in the above derivation
is only used for describing the maximum ratio between
the abrupt values of Lyapunov-like function owing to the
switch of two different subsystems at the switching instan-
t. The improvement of the developed technique in this
note is attributed to the parameter-dependent description
approach adequately considering the relationship between
the running time and the parameter µi at each subsystem,
then by using (8) in (9), an redundant µi can be cancelled.
However, in the existing results, such as Du et al (2010),
the running number of µi is always considered to be equiv-
alent to the number of all the subsystems, which introduces
the conservativeness of the switching signal with ADT
approach.

3.1 EFTS of Switched Systems with Unstable Subsystems

In this section, the EFTS of switched systems consisting
of only unstable subsystems will be addressed with mode-
dependent ADT switching approach.

Theorem 1. Consider the continuous-time switched sys-
tem ẋ (t) = fσ(t) (t) and let ρ1, ρ2, βi > 0, µi > 1,
∀σ (t) = i ∈ S be the given constants. Suppose there exist
Lyapunov functions Vσ(t) : Rn → R, σ (t) ∈ S, such that,
∀σ (t) = i ∈ S,

ρ1∥x (t) ∥2 ≤ Vi(x (t)) ≤ ρ2∥x (t) ∥2

V̇i(x (t)) ≤ βiVi(x (t))
c1
c2

eβMTf ≤ ρ1λ1µm

ρ2λ2λ3

where λ1, λ2, λ3, µM , µm and βM are denoted as in Lemma
1.

∀
(
σ (tk) = i, σ

(
t−k
)
= j
)
∈ S × S, i ̸= j

Vi (x (tk)) ≤ µjVj

(
x
(
t−k
))

.

If the mode-dependent ADT of i-th subsystem, ∀i ∈ S
satisfies

τai ≥ τ∗ai =
Tf lnµi

ln (ρ1λ1µmc2)− ln (ρ2λ3λ2c1)− βiTf
(16)

the system holds EFTS with respect to (c1, c2, R,Ω, Tf , σ) .

Proof. By performing a similar derivation process in
Lemma 1, we have,

Vσ(tk) (x (t))≤
qϕ(tk)

µσ(tk)
qϕ(tk−1) · · · qϕ(t1)qϕ(t0)Vσ(t0) (x (t0))
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=
l∏

i=1

Ni∏
j=1

(
qϕ(t)=(i,j)

) Vσ(t0) (x (t0))

µσ(tk)

≤
l∏

i=1

Ψi
[t0,t]

Vσ(t0) (x (t0))

µm
(17)

where qϕ(t)=(i,j) denotes the value of q for the j-th running
of the i-th subsystem, Ni is the switching number in the

interval [t0, t]; Ψi
[t0,t]

=
∏Ni

j=1

(
qϕ(t)=i,j

)
stands for the

product of all the qϕ(t)=(i,j) of i-th subsystem from t0 → t.

Let Ti be the total running time of i-th subsystem in
the interval [t0, t], which could also be expressed by the
proposed parameter-dependent running time in (8) that

Ti =
lnqϕ(t)=(i,1) − lnµi

βi
+ · · ·+

lnqϕ(t)=(i,Ni) − lnµi

βi

=

ln

 Ni∏
j=1

lnqϕ(t)=(i,j)

−Nilnµi

 /βi

=
(
lnΨi

[t0,t]
−Nilnµi

)
/βi (18)

By the mode-dependent ADT in (16), (17) and (18), it
implies that

l∏
i=1

Ψi
[t0,t]

=
l∏

i=1

exp (βiTi +Nilnµi)

=

l∏
i=1

exp

(
βiTi +

Tiln (ρ1λ1µmc2)

Tf

−Tiln (ρ2λ3λ2c1) + βiTiTf

Tf

)

= exp

(
l∑

i=1

(
Ti

Tf
ln
ρ1λ1µmc2
ρ2λ3λ2c1

))

=
ρ1λ1µmc2
ρ2λ3λ2c1

(19)

Based on similar lines of (11) and (12), in follows from (17)
and (19) that

xT (t)Rσ(t)x (t)≤
∏l

i=1 Ψ
i
[t0,t]

Vσ(t0) (x (t0))λ2

ρ1µm

≤ ρ1λ1µmc2
ρ2λ3λ2c1

ρ2λ3c1
λ1

λ2

ρ1µm
= c2

Then we can conclude the system holds EFTS with respect
to (c1, c2, R,Ω, Tf , σ) . 2

Remark 3. The mode-dependent ADT is an improved
criterion which can be easily certified by comparing (6)
with (16). It is obviously that τ∗i ≤ τ∗a because of βi ≤ βM

and µi ≤ µM , ∀i ∈ S, which means that the system could
tolerate faster switching. Therefore, it can be asserted that
the conservativeness of the presented criteria in Theorem 1
is reduced than the general ADT criteria in Lemma 1 and
Du et al (2010) owing to the mode-dependent features.

3.2 EFTS of Switched Systems with Both Stable and
Unstable Subsystems

In this section, the EFTS of the system (1) with both
stable and unstable subsystems will be analyzed, a set
of admissible switching signal with ADT will be derived
under a given ratio a of the total running time between
the unstable and stable subsystems.

Theorem 2. Consider the continuous-time switched sys-
tem ẋ (t) = fσ(t) (t) and let ρ1, ρ2, µi > 1, ∀σ (t) = i ∈ S,

αi > 0, ∀i ∈ Φ and βi > 0, ∀i ∈ Φ̃ be the given constants.
Suppose there exist Lyapunov functions Vσ(t) : Rn →
R, σ (t) ∈ S, such that,∀σ (t) = i ∈ S,

ρ1∥x (t) ∥2 ≤ Vi(x (t)) ≤ ρ2∥x (t) ∥2, ∀i ∈ S

V̇i(x (t)) ≤
{
-αiVi(x (t)), ∀i ∈ Φ

βiVi(x (t)), ∀i ∈ Φ̃
(20)

exp

(
Tf (aβM − αm)

1 + a

)
≤ λ1ρ1µmc2

ρ2λ2λ3c1

where µm , infi∈S {µi}, αm , infi∈Φ {αi} and βM ,
supi∈Φ̃ {βj}, µM , λ1, λ2 and λ3 are denoted as in Lemma
1.

∀
(
σ (tk) = i, σ

(
t−k
)
= j
)
∈ S × S, i ̸= j

Vi (x (tk)) ≤ µjVj

(
x
(
t−k
))

.

If the switching signal with ADT satisfies
T�[t0,t]

T�[t0,t]
≤ a and

τa ≥ τ∗a =
(1 + a)Tf lnµM

(1 + a) (φ1 − φ2)− (aβM − αm)Tf
(21)

where φ1 = ln (ρ1λ1µmc2) and φ2 = ln (ρ2λ3λ2c1), then
the system holds EFTS with respect to (c1, c2, R,Ω, Tf , σa)

Proof. By integrating (20) for t ∈ [tk, tk+1), it yields that{
Vσ(tk) (x (t)) ≤ e

−ασ(tk)
(t−tk)Vσ(tk) (x (tk)) , σ (tk) ∈ Φ

Vσ(tk) (x (t)) ≤ e
βσ(tk)

(t−tk)Vσ(tk) (x (tk)) , σ (tk) ∈ Φ̃

Similar to the approach of (8), the running time of
switched systems with both stable and unstable subsys-
tems are described respectively as

τσ(tk−1) = tk − tk−1 =
lnµσ(tk−1) − ln pϕ(tk−1)

ασ(tk−1)

τ̃σ(tk−1) = tk − tk−1 =
lnqϕ(tk−1) − lnµσ(tk−1)

βσ(tk−1)

(22)

where τσ(tk−1) and τ̃σ(tk−1) represent the running time of
the interval t ∈ [tk−1, tk) respectively for σ (tk−1) ∈ Φ

and σ (tk−1) ∈ Φ̃. ϕ (tk−1) is a special switching signal
which determines the value rang of pϕ(t) and qϕ(t), which
can be specifically expressed as pϕ(tk−1) ∈ (0, µi] and
qϕ(tk−1) ∈ [µi,∞) respectively for σ (tk−1) = i ∈ Φ and

σ (tk−1) = i ∈ Φ̃.

Based on aforementioned (22), and arbitrarily assigning a

feasible switching sequence σ (tk) ∈ Φ, σ (tk−1) ∈ Φ̃ · · · ,
σ (t0) ∈ Φ, then we have

Vσ(tk) (x (t))≤
pϕ(tk)

µm
qϕ(tk−1) · · · pϕ(t0)Vσ(t0) (x (t0))

=Ψ[t0,t] (t) Ψ̃(t0,t] (t)Vσ(t0) (x (t0)) /µm (23)
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where Ψ[t0,t] (t) ,
∏

σ(t)∈Φ pϕ(t), Ψ̃[t0,t] (t) ,
∏

σ(t)∈Φ̃ qϕ(t).

Other feasible switching sequences will admit the same
results.

Based on the given switching sequence in (23), it follows
from (22) that

Tf ≥ τ[t0,t] = τσ(t0) + · · ·+ τ̃σ(tk−1) + τσ(tk)

=
lnµσ(t0) − lnpϕ(t0)

ασ(t0)
+ · · ·+

lnqϕ(tk−1) − lnµσ(tk−1)

βσ(tk−1)

+
lnµσ(tk) − lnpϕ(tk)

ασ(tk)

=

r∑
i=1

Nilnµi −
∑Ni

j=1

(
lnpϕ(t)=(i,j)

)
α

+
l∑

i=r+1

∑Ni

j=1

(
lnqϕ(t)=(i,j)

)
−Nilnµi

βi

= T�[t0,t] + T�[t0,t] (24)

where Ni denotes the switching number of i-th subsystem
for [t0, t] . T�[t0,t] and T�[t0,t] are the total running time
of all the stable and unstable subsystems during [t0, t]
respectively.

Let N�[t0,t] and N�[t0,t] be the total switching numbers of
stable and unstable subsystems in [t0, t] respectively, then

we have N�[t0,t] =
∑r

i=1 Ni and N�[t0,t] =
∑l

i=r+1 Ni. By
(24), the following derivation could be obtained

T�[t0,t] =
r∑

i=1

Ni lnµi −
∑Ni

j=1

(
ln pϕ(t)=(i,j)

)
αi

≤
N�[t0,t] lnµM −

∑r
i=1

∑Ni

j=1

(
ln pϕ(t)=(i,j)

)
αm

Consequently,

Ψ[t0,t] (t) ≤ exp(N�[t0,t] lnµM − αmT�[t0,t])

Similarly,

Ψ̃[t0,t] (t) ≤ exp(N�[t0,t] lnµM + αMT�[t0,t])

Thus, we have

Ψ[t0,t] (t) Ψ̃[t0,t] (t)

≤ exp
(
N[t0,t] lnµM + αMT�[t0,t] − αmT�[t0,t]

)
(25)

Analogous to the techniques of (11) and (12), it follows
from (23) and (25) that

xT (t)Rσ(t)x (t)≤
Ψ[t0,t] (t) Ψ̃[t0,t]λ3λ2c1

λ1µm

≤ exp

(
N[t0,t] lnµM + αMT�[t0,t]

−αmT�[t0,t]

)
ρ2λ3λ2c1
ρ1λ1µm

(26)

Based on T[t0,t] , T�[t0,t] + T�[t0,t] and the known
T�[t0,t]

T�[t0,t]
≤

a, we have

N[t0,t] lnµM + αMT�[t0,t] − αmT�[t0,t]

Table 1. Admissible ADT of different criteria

Switching schemes ADT Switching Ratios

Du et al (2010) τ̄∗a = 0.8725 none

Lemma 1 τ∗a = 0.8025 none

Theorem 1

{
τ∗a1 = 0.6038
τ∗a2 = 0.8025

none

Theorem 2 τ∗a = 0.6785 a = 2.6

Remark 4

{
τ∗0 = 0.4840
τ∗∞ = 0.8025

{
a ≡ 0
a → ∞

≤ N[t0,t] lnµM +
a

1 + a
αMT[t0,t] −

1

1 + a
αmT[t0,t]

= N[t0,t] lnµM +
T[t0,t] (aαM − αm)

1 + a
. (27)

Combining (26) and (27), by N[t0,t] ≤ N∗ =
Tf

τ∗
a
in (21), it

implies that,
xT (t)Rσ(t)x (t) ≤ c2

then we conclude that the system holds EFTS with respect
to (c1, c2, R,Ω, Tf , σa). 2

Remark 4. For the switching signal in (21), if the acti-
vation time ratio a → ∞, there are no constraints of the
running time between the stable and unstable subsystems,
the admissible criteria of switching signal with ADT can
be obtained as

τa ≥ τ∗∞ =
Tf lnµM

ln (ρ1λ1µmc2)− ln (ρ2λ3λ2c1)− βMTf

Likewise, if a ≡ 0, which means that only stable subsys-
tems are permitted to run, the admissible ADT can be
given as

τa ≥ τ∗0 =
Tf lnµM

ln (ρ1λ1µmc2)− ln (ρ2λ3λ2c1) + αmTf

Comparing with the two cases of a → ∞ and a ≡ 0, it
is obvious that the introduction of stable subsystems will
reduce the conservativeness of the switching signal with
ADT. The advantage will also be further illustrated in the
following example.

4. NUMERICAL EXAMPLE

In this section, a numerical example will be presented to
demonstrate the validity of the results obtained above.

Consider the continuous-time switched linear system with
four subsystems, parts referred to Du et al (2010)

A1 =

[
0 −1.0
2.0 0

]
, A2 =

[
0 −2.0
1.0 0

]
,

A3 =

[
−0.22 0.01
−0.2 −0.04

]
, A4 =

[
−0.12 −0.16
−0.15 −0.22

]
where c1 = 1, c2 = 20, Tf = 10, R1 = diag {1.02, 1.01},
R2 = diag {1.03, 1.02}, R3 = diag {1.01, 1.02}, R4 =
diag {1.03, 1.00}, R = I, µ1 = µ2 = µ3 = µ4 = 1.05
and β1 = β2 = α3 = 0.01, α4 = 0.03. Subsystems 1 and
2 are unstable while 3 and 4 are Hurwitz stable. Table I
lists the admissible ADT for different switching criteria.

Obviously, by the employing of proposed parameter-
dependent running time description approach, Lemma 1
can obtain less conservative criteria of switching signal
than that in Du et al (2010). Additionally, owing to the
existence of stable subsystems, the admissible ADT is
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Fig. 1. The response of switched system with both stable
and unstable subsystems under switching signal σ1

and σ2
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Fig. 2. The response of switched system with unstable
subsystems under switching signal σ3 and σ4

relaxed to τ∗a = 0.6785 with the given ratio of switching
time a = 2.6 by Theorem 2, and the feasible criteria
of EFTS for switched subsystems with both stable and
unstable subsystems are less conservative than Lemma 1
with only unstable subsystems. Furthermore, if the ADT
exceed the admissible value range, xT (t)Rσ(t)x (t) may
exceed the upper bound. Fig.2 shows the trajectories of
xT (t)Rσ(t)x (t) containing stable and unstable subsystems
with feasible switching signals σ1 and infeasible switching
signals σ2.

Besides, by the developed with mode-dependent ADT
switching signal in Theorem 1, the admissible criteria of
each mode can be obtained as τ∗a1 = 0.6038 and τ∗a2 =
0.8025, which can adequately demonstrate the advantage
of mode-dependent approach than Lemma 1 and Du et al
(2010). Actually, EFTS of switched systems consisting of
only unstable subsystems is just one special case of Theo-
rem 2 when a → ∞ by Remark 4. The simulation results
for the switched systems with only unstable subsystems for
feasible switching signal σ3 and infeasible switching signal
σ4 are presented in Fig.3, respectively.

5. CONCLUSION

The so-called EFTS problems for the switched systems
with only unstable subsystems and both stable and unsta-
ble subsystems have been investigated respectively. The
existence criteria of EFTS with ADT and mode-dependent
ADT in nonlinear setting are given by a parameter-
dependent running time description approach. The ob-
tained results are also extended to the switched systems
with both stable and unstable subsystems by a given ratio
of switching time between unstable and stable subsystem-
s. The developed techniques provide a less conservative
switching signal. The simulation results also demonstrate
the advantages of the improved techniques.
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