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Abstract: The controller switching algorithms of Unfalsified Adaptive Control (UAC) is
investigated. Two modifications of the Morse-Mayne-Goodwin hysteresis switching algorithm
are used and associated convergence theorems are proved. Simulations illustrate that the two
modified algorithms can improve the transient performance. Further theoretical analysis show
that in UAC, decreasing the total number of controller switches is a promising approach to
achieve better transient performance.
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1. INTRODUCTION

The Morse-Mayne-Goodwin ϵ-hysteresis switching algo-
rithm (HSA), see Morse et al. (1992); Weller and Good-
win (1994), plays an important role in adaptive control.
Recently, HSA is widely used in the studies of Unfalsified
Adaptive Control (UAC), a real-time data-driven switch-
ing control approach. UAC adaptively chooses a controller
online from a set of candidate controllers and evaluates
the performance of each candidate based on the real-time
data. With HSA, UAC guarantees closed-loop stability if
the adaptive switching control problem is feasible in the
sense that there exists a robustly stabilizing controller
in the candidate controller set and the employed cost
function is cost-detectable (Wang et al. (2007); Stefanovic
and Safonov (2008); Battistelli et al. (2010)).
However, HSA in UAC may result in transient perfor-
mance problems (Engell et al. (2007); Dehghani et al.
(2007)). In Dehghani et al. (2007), the authors present
an academic example, in which a destabilizing controller
is repeatedly inserted into the loop by HSA and the mag-
nitudes of the control signal and output signal increases to
an unacceptable level before the plant is stabilized finally.
Throughout the paper, we refer to the phenomenon in
this example as the Dehghani-Anderson-Lanzon (DAL)
phenomenon.
DAL phenomenon has stimulated new research directions
of UAC. Chang and Safonov (2008) tried to improve the
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transient performance of UAC with filters. Anderson and
Dehghani (2008); Dehghani et al. (2009) investigated how
to guarantee that only stabilizing candidate controllers can
be switched online. Baldi et al. (2010, 2012) introduced
multi-model in UAC. In Battistelli et al. (2013); Jin et al.
(2014), fading memory data are used in UAC to improve
the ability to detect instability timely. To attenuate the
DAL phenomenon, Wonghong and Engell (2012) designed
a new fictitious reference signals and cost functions, while
Jin and Safonov (2012) designed new controller switching
algorithms. All these results enrich the methods of UAC
and deepen the understanding of data-driven control.
This paper investigates how to improve the transient per-
formance of UAC with two modifications of HSA. The first
modification gives a threshold and the controller switching
is executed by HSA only if the current active controller’s
cost function value is greater than the threshold. The
second modification is well known Scale-Independent HSA
(SIHSA)(Hespanha et al. (2003)), in which the additive
hysteresis constant is replaced by a multiplicative one. As
HSA, the two modifications can stabilize the closed-loop
in UAC subject to feasibility of the adaptive stabilization
problem and cost-detectability of cost function.
Simulations illustrate that both modifications can atten-
uate the DAL phenomenon and improve the transien-
t performance of UAC. Moreover, our simulations show
that it is possible to simultaneously have better transient
performance and a bigger value of the active controller’s
cost function. This implies that, in UAC, the use of HSA
with a small ϵ to guarantee a small upper bound of the
active controller’s cost function may not be necessary. It
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may result in more controller switches and worse transient
performance. A more efficient approach is to minimize the
total number of controller switches, for example, to use
THSA, SIHSA, or HSA with a larger ϵ.
This paper is organized as follows. Section II introduces
the background of UAC and HSA. Section III gives the
two modifications of HSA and their converge theorems.
Then in section IV, theoretical analysis and simulations
illustrate that the two modifications can improve the the
performance of UAC by lessening the controller switches.

2. BACKGROUND OF UAC AND HSA

2.1 Background of UAC

The set of natural numbers, real numbers, and non-
negative real numbers are denoted by N, R, and R+

respectively. For a given x ∈ R+, ⌈x⌉ denotes the smallest
integer greater than or equal to x. For a given τ ∈ R+, the
truncation of a signal y(·) is defined as

yτ (t) ,
{
y(t), 0 ≤ t ≤ τ
0, otherwise

and the truncated L2-norm of y(·) is defined as ∥y∥τ ,
(
∫ τ

0
y(t)T y(t)dt)1/2. If ∥y∥τ exist for any finite τ ∈ R+, we

say the signal y(·) belongs to the linear space L2e.
UAC is an approach to adaptively control a plant without
a priori model of the plant. It merely depends on real-time
data measurement and can avoid the chance that a model
is unreliable(Safonov (2012)). UAC considers the switching
adaptive control system Σ shown in Fig.1. In the system
Σ, the plant P is assumed unmodeled. A finite candidate
controller set K = {K1,K2, · · · ,KN} and a supervisor
are used to stabilize the plant P. The signals r,y and u
are the reference signal, output signal, and control signal
respectively. For brevity, let d(t) = [u(t), y(t)]′. At each
time, one and only one candidate controller is active and
the active controller at time t is denoted as K̂(t).

So, Σ(K̂,P) denotes the closed-loop system with the
switching active controller while Σ(Ki,P) denotes a
closed-loop system in whichKi is the only active controller
for all time. The supervisor monitors the performance of
the system based on measured data and switches controller
if necessary. The supervisor consists of a cost function used
to order candidate controllers based on accumulated data
and a controller switching algorithm that determines how
the cost function is used to switch controllers.
In this paper, the primary performance goal is stability,
which is defined with the input-out data because we do
not have the mathematical model of the plant P.
Definition 1. (Stability) Consider a system T : L2e →
L2e with input r and output y = Tr, where r and y may
be vectors. System T is said to be stable if for every input
r ∈ L2e there exist constants α, β ≥ 0 such that

∥y∥t ≤ β∥r∥t + α, ∀t ≥ 0.

Otherwise, T is said to be unstable.♢
We assume:
A1 There exists at least one candidate controller K in set
K such that Σ(K,P) is stable.
A2 Each candidate controller is LTI and has all zeros in
open left-half s-plane.
The basic idea of UAC is unfalsification, which means
the collected data have not shown an assumption is false.

P

Switching 

Algorithm
V

K2

r e u y

K1

K3

KN

-

Supervisor

Fig. 1. The switching adaptive control system.

Otherwise, the assumption is said falsified. For the stability
defined above, the two concepts are defined as follows.

Definition 2. (Unfalsification of stability) Consider a
system T : L2e → L2e. Suppose we have a pair of input-
output data (r1, y1), where y1 = Tr1. We say that the
stability of T is unfalsified by the data pair (r1, y1) if there
exist constants α1, β1 > 0 such that

∥y1∥t ≤ β1∥r1∥t + α1, ∀t ≥ 0.

Otherwise, we say the stability of T is falsified by (r1, y1).♢
By A2, we can generate the fictitious reference signal of
each controller Ki ∈ K with equation

r̃i = y +K−1
i u.

Here, r̃i is a hypothetical reference signal with which the
closed-loop Σ(Ki,P) would have exactly generated the

data d which are generated by the closed-loop Σ(K̂,P)
with the real reference signal r. Then, for each Ki ∈ K, we
can define its corresponding cost function with

V (Ki, dt, t) = max
τ≤t

∥r̃i − y∥2τ + ∥u∥2τ
∥r̃i∥2τ + γ

, (1)

where γ is a positive constant.
It is easy to verify that for each Ki ∈ K, the cost function
(1) is bounded if and only if the stability of Σ(Ki,P) is
unfalsified by the input-output data pair (r̃i, d). And, the
pair (V,K) has the following property (Wang et al. (2007);
Stefanovic and Safonov (2008)).

Definition 3. (Cost detectability) Consider the switch-

ing adaptive control system in Fig.1. Suppose K̂(t) ∈
K,∀t ∈ R+. The cost function and controller set pair

(V,K) is said to be cost detectable if for every K̂(t) with at
most finitely many switches, the following statements are
equivalent:
(1) Stability of the Σ(K̂(t),P) is unfalsified by (r, d);
(2) V (Kf , dt, t) is bounded as t → ∞, where Kf is the
final active controller.♢
Remark 4. A1 is called feasibility. A controller K ∈ K is
said to be a feasible controller if Σ(K,P) is stable.
Remark 5. A2 guarantees all candidate controllers are sta-
bly causally left invertible (SCLI). However, this assump-
tion can be removed with the approach in Dehghani et al.
(2007) and Manuelli et al. (2007). In this paper, we focus
on the controller switching algorithm and use A2 for brief.
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2.2 HSA used in UAC

If the switching adaptive control problem is feasible, UAC
can guarantee the closed-loop system stability with the
cost-detectable cost function (1) and a suitable controller
switching algorithm. One of the most widely used switch-
ing algorithm in UAC is HSA, whose continuous-time
version is described as follows.
Algorithm I: Continuous-time HSA
Constants
ϵ: hysteresis constant;
dt: infinitesimal time increment.
variables
t: time;
K̂(t): active controller at time t.
Algorithm
(1) Initialization: ϵ > 0, t← 0, K̂(t) ∈ K;
(2) t← t+dt, collect data r, u, y, update r̃i and calculate

V (Ki, dt, t);
(3) IF

V (K̂(t− dt), dt, t) > ϵ+ min
Ki∈K

V (Ki(t), dt, t) (2)

THEN

K̂(t)← arg min
Ki∈K

V (Ki(t), dt, t);

ELSE
K̂(t)← K̂(t− dt);

ENDIF
(4) Go to step (2).

Remark 6. The convergence theorem of Algorithm I used
in UAC can be found in Wang et al. (2007) and Stefanovic
and Safonov (2008).

Remark 7. If inequality (2) holds, we say the controller

K̂(t) is interfalsified at time t by data dt (Jin and Safonov
(2012)). ”Interfalsified” means it is falsified by another
candidate controller.

2.3 DAL phenomenon

As pointed out by Anderson and Dehghani (2008), HSA
used in UAC may cause a bad transient performance. The
flowing is an academic example (Dehghani et al. (2007)).
Example 1 Consider the switching adaptive control sys-
tem Σ shown in Fig.1. Let P = 1

s−1 , K1 = 2,K2 = 0.5,

K = {K1,K2}, and r(t) = sin(t) · 1(t).
In Example 1, it is clear that K1 stabilizes P while K2

does not. But with cost function (1) and Algorithm I, the
supervisor repeatedly inserts the destabilizing controller
K2 into the loop. When ϵ is small, the overshoots of the
control u and the output y may be too high to be accepted.
This is referred to as DAL phenomenon.

3. TWO MODIFICATIONS OF HSA

In this section, two modifications of HSA are used in
UAC. Their convergence theorems are proved. The first
modification is named Threshold Hysteresis Algorithm
(THSA) because it gives HSA a threshold. The second
is the Scale-Independent Hysteresis Algorithm (SIHSA)
proposed by Hespanha et al. (2003).

3.1 THSA

Algorithm II: Continuous-time THSA
Constants

ϵ: hysteresis constant;
M : threshold;
dt: infinitesimal time increment.
variables
t: time;
K̂(t): active controller at time t.
Algorithm
(1) Initialization: ϵ > 0,M > 0, t← 0, K̂(t) ∈ K;
(2) t← t+dt, collect data r, u, y, update r̃i and calculate

V (Ki, dt, t);
(3) IF

(V (K̂(t− dt), dt, t) > ϵ+ min
Ki∈K

V (Ki(t), dt, t)

AND V (K̂(t− dt), dt, t) > M) (3)
THEN

K̂(t)← arg min
Ki∈K

V (Ki(t), dt, t);

ELSE
K̂(t)← K̂(t− dt);

ENDIF
(4) Go to step (2).
The difference between THSA and HSA is (3). In THSA,
the controller switching takes place not only when the
active controller is interfalsified but also when its cost
function value is greater than the threshold M . The
following is the convergence theorem of THSA.

Theorem 8. Suppose A1-A2 hold and cost function (1)
is used. Then, with THSA, the switching control system
Σ(K̂(t),P) in Section 2.1 is stable.
Proof. First, with the definition of stability and unfalsi-
fication, it is clear that if a controller Ki ∈ K stabilizing
the plant P, then the stability of Σ(Ki,P) is unfalsified
for each possible data pair (r̃i, d) and its cost function
V (Ki, dt, t) is uniformly bounded for all t ≥ 0. Let D be the
set of all possible data d. Define the true cost of controller
Ki as

Vtrue(Ki) = sup
d∈D,t∈R+

V (Ki, dt, t),

and the robust optimal controller in K as

KRSP = arg min
Ki∈K

Vtrue(Ki).

With assumption A1, we have Vtrue(KRSP ) <∞.
Second, similar to Lemma 4 of Stefanovic and Safonov
(2008) and Lemma 1 of Battistelli et al. (2013), we can
prove for each reference r, the controller switching stops
and the final controller’s cost function is bounded. Suppose
the final is the f -th switch, which takes place at tf , and
the final active controller is Kf , we have:
(1) If M ≥ Vtrue(KRSP ), then

f ≤ N − 1,

V (Kf , dt, t) ≤M + ϵ;

(2) If M < Vtrue(KRSP ), then

f ≤ N(⌈Vtrue(KRSP )−M

ϵ
⌉+ 1),

V (Kf , dt, t) ≤ Vtrue(KRSP ) + ϵ, ∀t ≥ 0.

Third, with the cost-detectability of (V,K), we conclude

that for each reference r, the stability of Σ(K̂,P) is
unfalsified by (r, d). That is the definition of stability. 2

Remark 9. The terms ”true cost” and ”robust optimal
controller” are cited from Stefanovic and Safonov (2008).
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3.2 SIHSA

Algorithm III: Continuous-time SIHSA
Constants
h: multiplicative hysteresis constant;
dt: infinitesimal time increment.
variables
t: time;
K̂(t): active controller at time t.
Algorithm
(1) Initialization: h > 0, t← 0, K̂(t) ∈ K;
(2) t← t+dt, collect data r, u, y, update r̃i and calculate

V (Ki, dt, t);
(3) IF

V (K̂(t− dt), dt, t) > (1 + h) min
Ki∈K

V (Ki(t), dt, t) (4)

THEN

K̂(t)← arg min
Ki∈K

V (Ki(t), dt, t);

ELSE

K̂(t)← K̂(t− dt);

ENDIF
(4) Go to step (2).
The difference between SIHSA and HSA is (4). The
following is the convergence theorem of SIHSA.

Theorem 10. Suppose A1-A2 hold and cost function (1) is
used. Then, with SIHSA, the switching control system in
Section 2.1 is stable.
Proof. The proof is also in three steps. The first step and
the third step are similar to the proof of Theorem 8. For
the second step, we have:
(1) If there exists Ki ∈ K such that V (Ki, dt, t) ≡ 0, then
we have f ≤ N − 1 and V (Kf , dt, t) = 0.
(2) Otherwise, let t10 be the first instant such that

V (K̂(t), dt, t) > 0. (5)

If at t = t10 we have

V (Ki(t), dt, t) > 0, ∀Ki ∈ K, (6)

then let t1 = t10 and

δ = min
Ki∈K

V (Ki(t1), dt1 , t1); (7)

Else we know a controller switch takes place at t10 and

after the switch V (K̂(t10), dt10 , t
1
0) = 0. Let t20 be the

second instant that (5) holds. If at t = t20 we have (6),
then let t1 = t20 and define δ with (7); Else we know a
controller switch takes place at t20 and after the switch

V (K̂(t20), dt20 , t
2
0) = 0. Repeating the above precess, we can

prove that there exist t1, δ > 0 such that for all Ki ∈ K
we have V (Ki, dt1 , t1) ≥ δ and before t1 there are at most
(N − 1) controller switches.
Then, similar to Lemma 1 of Hespanha et al. (2003), we
can prove

f ≤ 2N +
N

log(1 + h)
log(

Vtrue(KRSP )

δ
),

V (Kf , dt, t) ≤ (1 + h)Vtrue(KRSP ), ∀t ≥ 0.

So, the controller switching stops finally and the final
controller’s cost function is bounded. Then with the cost-
detectability of (V,K), the proof is finished.2

4. SIMULATIONS AND DISCUSSIONS

4.1 Simulations

In this part, we illustrate the performance of the two mod-
ifications with numerical simulations. We present simula-
tions of HSA, of THSA with a small and a large threshold
M , and of SIHSA.
Simulation 1: HSA with a small ϵ. Consider Example
1 in Section II. Using HSA, we set ϵ = 0.1, γ = 0.01 in (1),

and the initial controller K̂(0) = K2 which is destabilizing.
Let dt = 0.01. Simulations are carried out with MATLAB
6.5 and the result in Fig.2 shows the DAL phenomenon.
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Fig. 2. Results of Simulation 1. From the top to the bottom are the
index i of controller Ki, y and u.

Simulation 2: THSA with s small threshold. Con-
sider Example 1 with the use of THSA. All parameters
are the same with those in Simulation 1 and we set the
threshold M = 4. Let dt = 0.01. Simulations are carried
out with MATLAB 6.5 and the results are shown in Fig.3.
The DAL phenomenon is significantly attenuated.
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i

0 10 20 30 40 50 60 70 80 90 100
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0

time/s

u

Fig. 3. Results of Simulation 2. From the top to the bottom are the
index i of controller Ki, y and u.

Simulation 3: THSA with larger thresholds. Consid-
er Example 1 and we use again THSA. All parameters are
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the same with those in Simulation 2 except for threshold
M where we use three different values, i.e. M = 6, 30, 150.
Let dt = 0.01. Simulations are carried out with MAT-
LAB 6.5 and the results are shown in Fig.4. With these
threshold values which are greater than in Simulation
2, the controller is only switched once before the plant
is stabilized. As the threshold gets larger, the overshoot
increases due to the longer time the destabilizing controller
is in the closed-loop.
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0
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i
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0

10

20
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−20

0

20

time/s

u

M=150
M=30
M=6

Fig. 4. Results of Simulation 3. From the top to the bottom are the
index i of controller Ki, y and u. Red, M = 150; Blue, M = 30;
Black, M = 6. To make it clear, the blue and red line i of Ki

is moved upper a little.

Simulation 4: SIHSA. Consider Example 1 with SIHSA.
All parameters are the same with those in Simulation 1.
Let h = 0.2 and dt = 0.01. Simulations are carried out
with MATLAB 6.5 and the results are shown in Fig.5.
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Fig. 5. Results of Simulation 4. From the top to the bottom are the
index i of controller Ki, y and u.

4.2 Comparisons and discussions

As described briefly in Section I, the basic motivation of
this paper is DAL phenomenon. In the preceding simula-
tions, we observe significant DAL phenomenon in Simula-
tion 1, moderate in Simulation 2, and less in Simulation

3 and 4. Comapred with Simulation 1 and 2, Simulation
3 and 4 have much lower overshoots of u and y and
considerably reduced total number of controller switches.
The relation between the overshoots and the number of
controller switches can be interpreted as follows. Once a
destabilizing controller is switched online, it will be kept
in the closed-loop until its cost function is sufficiently big
to be interfalsified by another candidate controller. That
is, the control signal u and output y will increase signifi-
cantly. The more frequent the destabilizing controllers are
switched online, the greater the signal u and y are, and
the worse the transient performance is.
It is interesting that Simulation 3 has the greatest value of
the cost function of the active controller. The cost function
value curves of the Simulations 1 and Simulation 3 with
M = 6 are depicted in Fig.6. In Simulation 3, immediately
before K2 is switched offline, the active controller has a
cost function value greater than 6, while the cost function
value of the active controller in Simulation 1 is always less
than 6. In Simulation 3, even when M = 150, the transient
performance is still much better than in Simulation 1
and 2, while just before K2 is switched offline we have
V (K2, dt, t) > 150.
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0

1

2

3

4
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time/s

V

V(K
1
,d

t
,t)

V(K
2
,d

t
,t)

Fig. 6. Comparison between the cost function of Simulation 1 and
Simulation 3 with M = 6. Upper: Simulation 1; Lower: Simu-
lation 3 with M = 6. Blue, V (K1, dt, t); Black, V (K2, dt, t).

Traditionally, we tend to use HSA with a small ϵ in UAC
based on the following reason. A small ϵ gives a small
upper bound of the final active controller’s cost function
and at each time, the active controller’s cost function
is not much greater than the upper bound. From this
reason, we believe we can find the best controller with a
guaranteed transient performance. But the simulations in
the preceding subsection show that the relation between
the cost function of candidate controllers and the transient
performance is not as straightforward as we previously
believed. A small ϵ may not be the best approach because
it will increase the total numbers of controller switches and
leads to bad transient performance. By contrast, reducing
the total number of controller switches is a more direct and
promising approach to improve the transient performance.
Both THSA and SIHSA can significantly decrease the total
number of controller switches. If we can estimate the upper
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bound of Vtrue(KRSP ) with some knowledge, we can use
THSA and expect at most (N − 1) controller switches to
happen. Otherwise, SIHSA seems a better choice because
its total number of controller switching is logarithmic.
From the viewpoint of controller switching, DAL phe-
nomenon is not a problem of UAC or HSA, but a result
of a too small ϵ. If a larger ϵ is used, the total number
of controller switching will decrease, DAL phenomenon
will be attenuated, and the transient performance will be
improved. The following example illustrates that a larger
ϵ can attenuate DAL phenomenon.
Simulation 5: HSA with a larger ϵ. Consider again
Simulation 1. Using HSA, all parameters are the same
with those in Simulation 1 except for ϵ where we set
ϵ = 1. Simulations are carried out with MATLAB 6.5 and
the results are shown in Fig.7. The DAL phenomenon is
significantly reduced.
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Fig. 7. Results of Simulation 5. From the top to the bottom are the
index i of controller Ki, y and u.

5. CONCLUSIONS

In this paper, two modifications of HSA are used in UAC.
Similar to HSA, the two modifications can also guarantee
the closed-loop stability if the problem is feasible and has
a cost-detectable cost function. Compared to HSA, both of
the two algorithms decrease the total number of controller
switches. Theoretical analysis and simulations show that
the total number of controller switches directly affects the
transient performance of UAC. Reducing the number of
controller switches can significantly improve the transient
performance. Moreover, DAL phenomenon is a result of a
too small ϵ and can be attenuated with a suitable ϵ.
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