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Abstract: Recent approaches for direct load control (DLC) of populations of air conditioners
(ACs) to provide demand-side services in the electricity grid rely on mathematical models of
the aggregate demand dynamics of these populations. These models can be parametrised by
the physical characteristics of the ACs in the population, for example their thermal power. The
knowledge of how their physical parameters are distributed in the population of real devices
is instrumental in the analysis and implementation of controllers based on such models. For
large populations, it is typically assumed that these parameters are stochastically distributed
according to some probability distribution, e.g., log-normal, which has been effective in
simulations. However, the identification of such distribution for a specific population remains an
open problem for real-world deployments of DLC. This paper formulates a Bayesian framework
for the state and parameter estimation of a previously developed input/output model for the
aggregate demand response of heterogeneous populations of ACs. This framework enables us
to assign a prior distribution to the parameters of the model, which is then updated using
measurements of power demand data for the population to reach a posterior distribution that
is more informative about the true value of these parameters. The framework uses sequential
Monte Carlo methods, which are well-suited to existing high-performance computer hardware,
and aims to provide a way to fill a gap between simulation and real implementation by validating
posterior parameter distributions using real measurements. Simulation results indicate that our
approach can successfully capture the values defining the distributions of physical parameters in
a population simulated by 10,000 ACs with a standard hybrid dynamic model for each device.

1. INTRODUCTION

1.1 Motivation

Air conditioners and other thermostatically-controlled
loads (TCLs) possess two main features that make them
suitable candidates for demand response. Firstly, altering
their behaviour during a short period of time can go
unnoticed by the occupants due to the thermal mass in the
air conditioned space acting as energy storage. Secondly,
these devices can respond rapidly to a control signal, such
as “turn off” or “raise temperature” (Callaway, 2009).

When a population of ACs is considered as a whole entity
to be controlled, additional advantages appear. Reliability
is one of them, as a fault in controlling one of many devices
is less critical than a fault in controlling, for example, a
single large industrial load. Another advantage is the fine
granularity achievable in the power output: the compressor
of an on-off AC can only be run at its maximum speed
or not run at all (i.e., two power levels), whereas when
hundreds of these ACs are combined, there are potentially
hundreds of different power levels to which the population
can be controlled. Additionally, the more ACs there are in

the population, the less control effort is needed to achieve
the same desired aggregate power demand, resulting in
lower end-user impact.

To be able to control aggregate power demand dynamics,
researchers have developed different approaches to math-
ematically model the population (e.g., Callaway, 2009;
Bashash and Fathy, 2011; Perfumo et al., 2012; Math-
ieu et al., 2013). These models typically depend on the
physical characteristics of the ACs, such as thermal power,
thermal mass, and level of insulation of the dwelling.

A main challenge in obtaining these mathematical models
is the parameter heterogeneity present in any real-life pop-
ulation of ACs. There are several sources that contribute
to this heterogeneity; for example:

• different AC brands and models will have different
thermal power and coefficients of performance,

• different dwellings will have different heat transfer
rates and thermal capacitances, and

• different local environment conditions, occupancy
patterns and user preferences, which result in differ-
ent internal heat loads and different desired temper-
ature set-points.
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A common and convenient approach to address this chal-
lenge is to assume that the physical parameters of the
devices are distributed in the population according to a
certain probability density function. For example, Call-
away (2009) assumes that thermal power, capacitance and
resistance are log-normally distributed, while in Mathieu
et al. (2013) and Bashash and Fathy (2011) they are
assumed to be uniformly or normally distributed.

Perhaps the most accurate method to characterise these
distributions for a real-world population is by individu-
ally measuring the parameters of each device, namely by
performing physical measurements of the dwelling (such
as surface area, number and size of windows and building
material) as well as logging occupant preferences and usage
patterns. While such a thorough study would result in
a complete characterisation of every device in the pop-
ulation, it can be expensive and cause privacy concerns
amongst participants. Therefore, the nonintrusive identi-
fication of the parameters of such distributed models for
a real population is a problem of practical interest, and is
addressed in the present paper.

1.2 Our approach

We consider the problem of identifying, from experimental
data, probabilistic models to characterise how AC physical
parameters are distributed in a population. The experi-
mental data of interest is the aggregate demand of the
population (mixed or not with demand from other, non-
controllable loads), preferably obtained during periods
when dynamic transients occur, such as after a simulta-
neous change in thermostat set-points.

The parameters we seek to estimate are those of prob-
abilistic distributions, such as means and variances of
probability density functions. We will refer to these as
hyper-parameters (of distributions) to differentiate them
from the physical parameters (thermal power, thermal
resistance and thermal capacitance) of individual devices.

To model the aggregate dynamics of the population we
use an input/output linear time-invariant (LTI) model
introduced in Perfumo et al. (2012). As shown in Perfumo
et al. (2012) and Braslavsky et al. (2013), this model
can capture the dominant dynamics in aggregate demand
response with sufficient accuracy and robustness to allow
tight model-based load control.

While the model from Perfumo et al. (2012) has a sim-
ple dynamic structure, it is parametrized by complex
(but known) nonlinear functions of the distribution hyper-
parameters that we seek to estimate, which then requires
nonlinear identification techniques. While one could em-
ploy approximate methods, such as the Extended Kalman
filter (EKF), the intrinsic approximate nature of an ap-
proach based on linearisation may present convergence
issues even for moderate nonlinearities in these models
(Mathieu et al., 2013).

In this paper we adopt a Bayesian approach, which conve-
niently combines prior knowledge and experimental data
to infer information about the system (Schön, 2003; Gor-
don et al., 1993). The Bayesian approach has received a
great deal of attention in the parameter estimation liter-
ature (e.g., Jeffrey, 2004; Doucet et al., 2001), however,

it has not been more broadly used mainly due to the
computational difficulties involved in computing posterior
densities. Fortunately, there has been significant progress
in recent years both in the Bayesian inference theory
and its implementation on high-performance computing
hardware. A breakthrough has been the introduction of
Markov Chain Monte Carlo methods. From this family
of methods, Sequential Monte Carlo (SMC) methods are
specially suited to joint parameter and state estimation of
complex nonlinear systems, successfully demonstrated in
real-world applications in recent years (Dowd, 2011).

We apply the Bayesian approach by first postulating prior
distributions for the population hyper-parameters. From
these prior distributions we obtain a parametrization for
the LTI model and a prior aggregate dynamic response.
Subsequently, this response and the observed aggregate
demand are used to update the prior distributions to ob-
tain posterior distributions. The means of these posterior
distributions give estimates of the means and variances of
the physical parameters in a population.

The approach is validated through simulations, using ob-
served data generated with “perfect” knowledge of the
hyper-parameters and empirical distributions of the phys-
ical parameters. We simulate a population of 10,000 ACs
operating independently and subject to a simultaneous
step in thermostat set-points. The Bayesian inference en-
gine is implemented using LibBi (Murray, 2013), a versa-
tile computational environment for Bayesian inference.

The simulation results show that the proposed Bayesian
approach can produce estimates that are close to the real
values even when the prior distributions are wide and
uninformative. The method complements the parametric
second order LTI model providing a complete toolkit for
practical model-based direct load control of TCLs.

We describe in more detail the identification problem con-
sidered in Section 2 . Section 3 provides a brief revision of
the Bayesian inference framework and SMC methods used.
The simulation scenarios used to test our approach are
presented in Section 4 describes, followed by a discussion
of the results obtained in Section 5.

2. PROBLEM STATEMENT

The Bayesian-based identification problem considered re-
quires two main components: a parametric model of the
AC population aggregate demand response, and experi-
mental data of such response from a population.

2.1 Parametric model used for Bayesian estimation

We consider the LTI second-order system proposed in Per-
fumo et al. (2012) to model the aggregate power demand
response yp(t) of a large heterogeneous population of ACs,
each of which is modelled as a relay-driven dynamic system
(Chong and Debs, 1979) regulating around a temperature
set-point. According to this model, the aggregate response
to a simultaneous step change in set-points is given by
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yp(t) = Dss(Tr)−D(t), (1)

ẋ(t) =

[

−2ξωn −ω2
n

1 0

]

x(t) +

[

1
0

]

u(t) (2)

D(t) =
[

b1 − 2ξωnb2 b0 − b2ω
2
n

]

x(t) + b2u(t) (3)

where Dss(Tr) is the (mean) asymptotic steady-state ag-
gregate demand of the population with constant temper-
ature set-points Tr, D(t) is the output of a linear system,
x(t) is the state vector and u(t) is a control signal in the
form of a common temperature set point offset.

The derivation of the linear model (1)-(3) is based on the
assumption that all of the ACs in the population have the
same thermal resistance R and thermal power P , and only
the thermal capacitance C is log-normally distributed with
mean µC and relative standard deviation σrel = σC/µC .

The model coefficients b2, b1, b0, ωn and ξ in (2)-(3) are
given as explicit functions of the hyper-parameters µC and
σrel as follows (see Perfumo et al. (2012); Perfumo (2013)
for the derivation of these values):

ωn =
πµv

(
√
6− a)

√

1− ξ2
, ξ =

log(r)
√

π2 + log2(r)
, (4)

b0 =
ω2
n(Dss(Tr)−Dss(Tr + 0.5))

0.5
, b2 = Dss(Tr),

and b1 = ωn

[

ξ(3Dss(Tr)− 2Dss(Tr + 0.5))+

cot(t1ωn

√

1− ξ2)
√

1− ξ2(Dss(Tr)− 2Dss(Tr + 0.5))+

2et
1ωnξ

√

1− ξ2(Dss(Tr + 0.5)−D1)

sin(t1ωn

√

1− ξ2)

]

, (5)

where

t1 = (a− 7

8
)/µv; D1 =

1

6
+

1

6
erf

[− log(µvt
1 + 7

8 )√
2σrel

]

a = exp
[

log(
√
2)− σ2

rel
log(3)
log(2)

]

;µv =
(Ta − Tr)(1 + σ2

rel)

RµC
,

r =

∣

∣

∣

∣

∣

erf
[

(0.9 +
√
8σrel)

−1
]

− 1
2

erf[0.9−1]− 1
2

∣

∣

∣

∣

∣

; σrel = σC/µC (6)

and

Dss(T ) =

(

1 +
log(1 + H

Ta−θ−H/2 )

log(1 + H
PR+T−Ta−H/2 )

)

−1

. (7)

Here, erf[.] is the Gauss error function and H is the ACs’
thermostat hysteresis deadband width.

2.2 Observations used for Bayesian estimation

In practice, the observation data would be power measure-
ments from the real population of ACs whose parameters
we are trying to identify. In order to assess the perfor-
mance of the proposed approach under perfect population
knowledge conditions, we generate virtual observations by
simulating 10,000 ACs using a standard hybrid dynamic
model for each device (Chong and Debs, 1979; Ihara and
Schweppe, 1981) with parameters distributed by suitable
stochastic distributions.

The hybrid dynamic model for each AC in the population
gives the temperature Ti and thermostat relay state mi

(the subindex i denotes the ith AC in the population,
i = 1, 2, . . . , 10, 000) as

dTi(t)

dt
= − 1

CiRi
[Ti(t)− Ta +mi(t)RiPi], (8)

with the relay hysteresis control

mi(t
+) =







0 if Ti(t) ≤ 19.5 + u(t)

1 if Ti(t) ≥ 20.5 + u(t)

mi(t) otherwise,

(9)

where u(t) is a simultaneous 0.5◦C step-change to the
temperature set-points of all ACs.

The aggregated normalized power demand yt (i.e., our
observations) is then given by

yt =

∑n
i=1 mi(t)

Pi

COPi

∑n
i=1

Pi

COPi

, (10)

where COPi is the coefficient of performance of the ith
AC, assumed constant as is common in the literature.

To account for heterogeneity in this ideal population, we
distribute the thermal parameters R, P and C using a
log-normal density function (Callaway, 2009), with distri-
bution parameter values as listed in Table 1.

Table 1. Simulation parameters.

Parameter Value Description

µR 2 ◦C/kW Mean thermal resistance
µC 216 kWmin/◦C Mean thermal capacitance
µP 6 kW Mean thermal power
Tr 20 ◦C Temperature set-point
Ta 26 ◦C Ambient temperature
σrel 0.2 Ratio of Standard deviation to

the mean value of log-normal
distributions for R, C and P

With above mentioned dynamical equations of the ideal
population, 800 one minute sampled data (about 13 hours)
are generated after half a Celsius degree simultaneous
change is applied in thermostat set-points of all devices at
100th time step. The benefit of these artificially generated
observations is that we know the true mean and variance
of the parameters R, P and C in the population. This will
allow us to precisely quantify how close the estimates are
from the real values, which would be very difficult using
actual devices. In the remainder of the paper we focus on
obtaining these values only using the model (1) and the
observations generated by (10).

3. BAYESIAN FRAMEWORK

In this section, we formulate our problem in the Bayesian
framework. This formulation is concerned with the joint
state and parameter estimation of stochastic dynamical
systems, which is introduced next.

3.1 Stochastic model

The stochastic extension of (2) could be easily obtained
by considering an additive white Gaussian noise. The
use of stochasticity may be interpreted as representing
uncertainty in the formulation of the model. In addition,
since the observations are only available as discrete-time

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9926



samples, we consider an Euler-discretization of the model
(1)-(3), namely

ypt = Dss(Tr)−Dt, (11)

xt = (I2 +A∆)xt−1 +

[

∆
0

]

(ut + wt), (12)

Dt = Cxt + b2ut, (13)

where I2 is the 2 × 2 identity matrix, ∆ = 1 minute is
the sample time and wt ∼ Normal(0, 0.3) is the white
Gaussian noise.

The state equation (12) represents a Markovian transition
equation which moves the system state forward and de-
pends only on the previous state. The Markovian property
of equation (12) implies that the state at any time can also
be written as the distribution

xt ∼ p(xt|xt−1, θ), (14)

where θ is the hyper-parameter vector (for example, θ =
[σrel µC ] or θ = [σrel µC µR µP ], depending on the
scenarios which will define in the next section). The prior
distribution over the initial state is given by

x0 ∼ Uniform(0, 0.1).

Equation (12) can be used to generate realizations of
the stochastic process. The ensemble properties of these
realizations can be described by p(Xt|x0, θ), where Xt is
the state over time, i.e., {xi}ti=0.

To be able to relate the output ypt of the linear model (11)
to the observations yt in (10) we model the measurement
noise as

yt ∼ Normal(ypt , 0.2). (15)

This observation model could be considered as the condi-
tional distribution

yt ∼ p(yt|xt, θ). (16)

The observation set is denoted by Yt, which is the mea-
surements up to time t, i.e., {yi}ti=0.

Available measurement information is then used to esti-
mate Xt as well as the hyper-parameter θ. Note that, since
the states of the system are unknown due to the Gaussian
noise wt in (12), we have to estimate both the states and
the hyper-parameters using the SMC method.

3.2 Recursive estimation

A complete solution for the above mentioned stochastic
system at any time t is given by p(xt, θ|Yt), which is the
joint probability density function of the state, xt, and
parameters, θ, given all available observations, Yt. This
joint distribution could be written as

p(xt, θ|Yt) = p(θ|Yt)p(xt|Yt, θ), (17)

where the first factor on the right hand side represents
parameter estimation, and the second state estimation.

In state estimation, we consider θ is known to estimate
the state xt. This is the classic filtering problem, and its
solution is given by (see, for example, Schön, 2003),

p(xt|Yt, θ) ∝ p(yt|xt, θ)p(xt|Yt−1, θ), (18)

p(xt|Yt−1, θ) =

∫

p(xt|xt−1, θ)p(xt−1|Yt−1, θ)dxt−1. (19)

Equations (18) and (19) together provide a recursive
scheme to update the filter density as new measurements
arrive, i.e., a single stage transition from p(xt−1|Yt−1, θ)
to p(xt|Yt, θ). In other words, by recursive estimation, we
mean an estimate of the current state xt, given informa-
tion about the last estimate, parameters and the current
measurement of yt.

In parameter estimation, due to Bayes’ Theorem, we have

p(θ|Yt) ∝ p(Yt|θ)p(θ), (20)

where the posterior distribution of the parameters p(θ|Yt)
depends on a likelihood p(Yt|θ) and a prior p(θ). In study-
ing an AC population, if some information is available
about the physical parameters of a population, we can use
this knowledge to start with a more informative prior dis-
tribution. Otherwise, the prior distribution may be chosen
as uniform over a suitable range of parameter values.

3.3 Sequential Monte Carlo methods

The main idea in SMC methods is to use a set of random
samples, with associated weights, to represent the poste-
rior density (17), (Schön, 2003). To do this, we have to
estimate the hyper-parameters and the states, which is
done with a particle filter to compute (19),(20), and hence
produce a sample from p(xt|Yt, θ) and p(θ|Yt). The particle
filter is a member of the family of SMC methods, first in-
troduced by Gordon et al. (1993) and applied successfully
since in many domains (Doucet et al., 2001).

To implement this particle filter, we have used the soft-
ware package LibBi, which is specially formulated for
Bayesian state-space modelling on high-performance hard-
ware (Murray, 2013).

4. SCENARIOS FOR BAYESIAN FORMULATION

We consider three different scenarios to test the pro-
posed Bayesian inference problem and analyse the effect
of increased stochasticity and different prior knowledge
assumptions on the hyper-parameters. These scenarios and
the corresponding results (Section 5) are summarised in
Table 2.

Since in the model (1)-(3) only the thermal capacitance C
is distributed (log-normally) in the population, we first
consider the hyper-parameter vector θ = [σrel µC ] in
Scenario 1. Subsequently, in Scenario 2, we extend the
analysis to the case where R and P are also distributed
in the population, i.e., θ = [σrel µC µR µP ]. This ex-
tension increases the stochasticity of the system. Note
that the uniform distribution used as prior knowledge of
the hyper-parameters, in both Scenarios 1 and 2, is the
least informative distribution for the Bayesian estimation
and identification problem. The boundaries of the uniform
distributions are chosen around the nominal values of the
population as listed on Table 1.

The normal distribution of Scenario 3 represents a prior
knowledge about the mean thermal power of the ACs in
the population. This information could usually be obtained
by direct measurements and is given in terms of the mean
and the variances of the physical parameters. Therefore,
instead of a uniform prior distribution for µP in Scenario
2, we assign a normal distribution to it.
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Table 2. Scenarios and results

Identified hyper-
parameters

Prior knowledge Mean values of the hyper-
parameters’ posterior dis-
tribution;

MSE between mean of
prior/ posterior distribu-
tion y

p
t and observation yt

θactual =
[

0.2 216 2 6
]

Prior Posterior

Scenario 1 θ =
[

σrel µC

] σrel ∼ Uniform (0.05, 0.3)

µC ∼ Uniform (180, 250)
θ̂ =

[

0.23 238
]

5.7e-3 5.85e-4

Scenario 2 θ =
[

σrel µC µR µP

]

σrel, µC Same as Scenario 1

µR ∼ Uniform (1, 3)

µP ∼ Uniform (5, 7)

θ̂ =
[

0.2 237.7 2.2 6.3
]

5.02e-3 4.07e-4

Scenario 3 Same as Scenario 2
σrel, µC , µR Same as Scenario 2

µP ∼ Normal (6, 0.5)
θ̂ =

[

0.2 214.5 2.45 5.8
]

5.13e-3 8.72e-4

Note that we do not assume any specific distribution for
the physical parameters of the population in the Bayesian
estimation process. We only consider their means and vari-
ances as a hyper-parameter and find the posterior distribu-
tion of the hyper-parameter (not the physical parameter)
based on the observation set. One can then calculate the
mean of the hyper-parameter posterior distribution to
reach to an estimation for the empirical mean/variance
of the population distribution of physical parameters.

5. RESULTS

We now present the results from applying the Bayesian
inference approach described in Section 3 to identify
the hyper-parameters that govern the aggregate power
response of a population of ACs. All the simulations have
been done in LibBi (Murray, 2013), running on CSIRO’s
supercomputer cluster Bragg.

We start with the uninformative prior distributions de-
scribed for Scenarios 1, 2 and 3 presented in Section 4, and
aim to obtain more informative posterior distributions.
Ideally, these posterior distributions should be centered
on the real values of the distributed physical parameters.
However, due to possible model errors, there may be some
discrepancy.

Figure 1 shows the histograms of the posterior samples of
hyper-parameters in Scenario 1. These histograms should
not be mistaken with the actual distributions of the physi-
cal parameters in the population. The intended meaning of
these histograms is “the likelihood of the hyper-parameters
(i.e., mean, variance) taking a certain value”. We observe
that even starting with a very uninformative (uniform)
prior distributions, the obtained posterior distributions
have much less variance and, thus, are more descriptive.
Moreover, the means of these obtained posterior distribu-
tions for µC and σrel (238 and 0.23 respectively) are close
to the true values (216 and 0.2) listed in Table 1. Note that
the results for all scenarios are summarised in Table 2.

Figure 2 shows the prior and posterior distribution of the
aggregated power demand yp(t) in Scenario 1. It can be
observed that while the 95% confidence interval of the
prior distribution is very wide, the posterior distribution
is very narrow around the observations. Additionally,
according to the Mean Squared Error (MSE) index listed
in Table 2, the mean of the posterior distribution is much
closer to the observations than the mean of the prior.

With the same approach to the first scenario, the his-
tograms of the posterior samples of hyper-parameters and

prior/posterior distribution of the aggregated power de-
mand yp(t) in Scenarios 2 and 3 are obtained and their
mean values are listed in Table 2. However, unlike the
first scenario, Scenarios 2 and 3 assume that the thermal
resistance R and thermal power P are also distributed in
the population, which represents a more realistic situation.
We can see in Table 2 that the posterior distributions
of µR and µP of Scenario 2 converge to values that are
very close to the real one, and that the obtained mean
for µC is slightly better than that obtained in Scenario 1.
Furthermore, the estimated mean value of σrel = 0.2 is a
much closer estimation than that obtained with Scenario
1. We attribute this improvement to the extra flexibility
introduced by the increased degree of stochasticity of Sce-
nario 2 over Scenario 1 (the former has two more random
variables than the latter).

Let us now analyse the posterior samples of hyper-
parameters in Scenario 3, which uses a more descriptive
prior distribution for µP . The expected result of having
extra information about the physical parameters is that
the mean of the resulting posteriors distributions are closer
to the true value. However, we can see on Table 2 that we
obtained mixed results for Scenario 3. On the one hand,
the estimate of µC is much closer to the real value than
with the previous scenarios, and differs from the true value
by less than one percent. Additionally, the estimated value
of µP is slightly better in the case of scenario three. On the
other hand, the obtained estimate for µR is further away
from the real value than the estimate obtained in Scenario
2. Further work is needed to determine the reason for the
degradation in the estimate of µR, but one possible expla-
nation could be that the normal prior distribution that we
chose had too high variance, thus not being substantially
more informative than the uniform distribution used in the
previous scenarios.

A comparison between the prior and posterior distribu-
tions of the aggregate power demand yp(t) in Scenarios 2
and 3 can be seen in in Table 2 together with the MSE be-
tween their mean and observations. We see that the mean
of the posterior distribution is about 10 times closer to the
observations than the prior distribution in all Scenarios.
Note that extra degrees of freedom of Scenario 2 lead to
a much wider prior distribution, because there is more
uncertainty. However, the obtained posterior distribution
follows the observations with less MSE than that from
Scenario 1.
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Fig. 1. Histograms of the posterior samples of hyper-
parameters µC (left) and σrel (right) in Scenario 1
against their prior distributions.
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Fig. 2. Scenario 1, prior (gray) vs. posterior (dark, blue)
distribution of the aggregated power demand yp(t)
in (1). The bold lines represent the means, and
the shaded regions the corresponding 95% confidence
intervals at each time. The observations yt in (10) are
plotted in bold black line.

6. CONCLUSIONS

In this paper we have applied Bayesian inference to es-
timate the physical parameters of a population of ACs.
According to the simulation results, our approach results
in estimates that are close to the real value even when the
prior distributions we start with are wide and uninforma-
tive and using a simple second order LTI model to char-
acterise the population of ACs. Thus, a Bayesian-based
approach such as the one presented in the paper appears
a promising candidate to bridge the current gap between
population models that require a probability distribution
for the parameters and real groups of ACs. Certainly,
it is a much more convenient alternative to individually
surveying the dwellings to characterise these distributions.
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