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Abstract: This paper presents an extension to the classical gradient-based extremum seeking
control for the case when the disturbances responsible for changes in the extremum of a selected
performance function are available for measurement. Based on these additional measurements,
an adaptive extremum seeking disturbance feedforward is designed that approximates the
unknown, static mapping between the disturbances and the optimal inputs. For this purpose,
orthogonal, multivariate Tchebyshev polynomials are used. The feedforward enables the ex-
tremum seeking to be conducted in the proximity of the extremum thus yielding improvements
both in terms of accuracy and increased convergence speed compared to the traditional scheme.
Simulation results given for a turbine driven electrical generator system demonstrate the benefits
of the presented design.
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1. INTRODUCTION

In a wide variety of control applications the aim is to
operate a physical system or a process in the vicinity
of an extremum (optimal set-point) of some performance
function. Very often the performance function is measur-
able but unknown to the designer, in terms of its exact
analytical dependency on the system parameters (opti-
mizing inputs). In such cases Extremum Seeking Control
(ESC) techniques can be used to achieve and maintain
the operation of a system under optimal conditions. Nu-
merous reports of successful implementations of ESC can
be found in literature, e.g., for improving continuously
variable transmission efficiency as in Van der Meulen et al.
[2012], or for Maximum Power Point Tracking (MPPT)
in photovoltaic (PV), fuel cell and wind energy systems,
see Zazo et al. [2012], Bizon [2010] and Pan et al. [2008],
respectively.

Extremum Seeking Control was first investigated in the
1950s and 1960s as a control framework for finding a
minimum or a maximum value of a static map, see Tan
et al. [2006]. However, a rigorous stability proof for the
“classical” ESC with a general nonlinear dynamical plant
arrived only at the beginning of the past decade, see Krstić
and Wang [2000]. Since then there has been a revival of
interest and a steady development in the field. Today ESC
encompasses various online optimization techniques which
can roughly be split into gradient-based as in Krstić and
Wang [2000], and gradient-free methods, e.g., sliding mode
ESC as in Korovin and Utkin [1974]. However, hybrid
algorithms such as the Simplex Guided ESC by Zhang and
Gans [2012] – a combination between a local, gradient-
based search and a global, gradient-free direct search
algorithm, also do exist. Furthermore, one can distin-
guish between numerical optimization-based, parametric
and classical-gradient ESC. The classical gradient-based
approach, as in Krstić and Wang [2000], Moura and Chang
[2010] and Van de Wouw et al. [2012], is the most popular
of all ESC schemes due to its simple implementation and a
proof of local convergence. It relies on the fact that a sig-

nal proportional to the local gradient of the performance
function (w.r.t. to the optimizing input) can be extracted
from a product between the sinusoidal input perturbation
and the resulting system’s response. A simple integration
of the gradient estimate (or its negation) is then sufficient
to continuously steer the system toward the extremum.

Overall, the classical gradient-based ESC schemes demon-
strate good seeking behavior when the extremum is static.
However, often the optimal operating point can also
change over time. For instance, shifts in solar irradiation
and wind speed can cause fluctuations in the optimal
PV voltage and the optimal wind turbine rotation speed,
see Kumari and Babu [2012] and Munteanu et al. [2009].
To account for such variations in the extremum, Krstić
[2000] proposed an extension to the original algorithm by
introducing a dynamic compensator into the extremum
seeking loop. Still, the solution applies only for the case of
changes with known dynamics that can be captured by a
linear time-invariant system (e.g., a double integrator).

However, in some practical applications the disturbances
leading to changes in the optimal input/extremum value
of a selected performance function are measurable. In this
paper, we show how this additional information can be
used to achieve faster and more accurate convergence of
the classical gradient-based ESC scheme. In particular, we
use the classical gradient-based ESC both to search for
a new extremum and to identify the mapping between
the disturbances and the optimal inputs. The mapping
is approximated by means of multivariate Tchebychev
polynomials whose coefficients are adaptively updated us-
ing the latest estimate of the optimal input. Based on
the approximate mapping, the proposed solution, i.e., the
Adaptive disturbance feedforward ESC (AESC), is able
to conduct the search in the close vicinity of the ever-
changing extremum. This in turn shortens the convergence
times and improves the overall extremum tracking per-
formance. Note that the proposed method is not limited
to the classical-gradient ESC but can also be used in
combination with other similar ESC algorithms, such as
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those by Ghaffari et al. [2012], Moase et al. [2010] and
Moase and Manzie [2012].

In summary, the main contributions of this paper are as
follows. The paper presents a solution to the problem of
tracking an unknown, time-varying extremum of a cer-
tain performance function. This is achieved by extending
the original classical gradient-based ESC scheme with an
adaptive disturbance feedforward based on multivariate
Tchebychev polynomials. The extension greatly enhances
the extremum tracking performance as demonstrated in a
turbine driven electrical generator system case study.

This paper is organized as follows. Section II provides the
problem formulation, followed by the description of the
proposed ESC scheme in Section III. Section IV contains
representative simulation results from the case study on
a turbine driven electrical generator system. Finally, the
main conclusions are given in Section V.

2. PROBLEM FORMULATION

Consider a stable dynamical nonlinear closed-loop system:

ẋ= f(x, q, θ), (1)

y = h(x),

with continuously differentiable f : Rn × Rl × R → Rn
and h : Rn → R. Here x ∈ Rn denotes the closed-loop
state, y ∈ R the measurable performance function output,
q ∈ Rl the measurable state disturbance and θ ∈ R denotes
a scalar (optimizing) input to the closed loop system.

Let the following assumptions hold:

Assumption 1. The relative degree of (1) w.r.t. the output
y and the input θ is at least 1.

Assumption 2. There exists a smooth function s : R ×
Rl → Rn such that f(x, q, θ) = 0, if and only if x = s(θ, q).

Assumption 3. For each θ ∈ R and q ∈ Rl, the equilib-
rium of the system (1), given by x = s(θ, q), is locally
exponentially stable uniformly in θ and q.

Assumption 4. There exists a smooth function z : Rl → R
such that for each q ∈ Rl

∂h(s(θ, q))

∂θ
(θ∗, q) = 0, (2)

∂2h(s(θ, q))

∂θ2
(θ∗, q) =W (q) < 0, W (q) = W (q)T ,

if and only if θ∗ = z(q), see Fig. 1 for illustration. Without
loss of generality we thus assume that the extremum of h
(w.r.t. θ) is a maximum.

The first assumption removes the possibility of a direct
relation between the optimizing input and the performance
function output (feedthrough). If omitted, the existence of
such a relation would cause the related ESC to optimize
it instead of the equilibrium performance of the closed-
loop system, which is clearly undesirable. The second
relates the equilibria of the system to the input and the
disturbance while the third provides guarantees for their
stability. Finally, the last assumption requires that there
is an equilibrium where the performance function admits a
maximal (optimal) value for every value of the disturbance.
It also states that the corresponding optimizing input is
parameterized by the disturbance. Thus one can proceed
with construction of an extremum (optimum) seeking

algorithm, with a disturbance feedforward. Note that each
of the functions f, s, h and z may be unknown to the
designer.

Within this class of systems we treat a problem of finding
the input θ = θ∗ which optimizes the performance function
h(s(θ, q)) for each value of the measured disturbance q. In
particular, we are interested in the ESC-based solutions
yielding an approximation of the unknown mapping z(q).

θ

q

 

 

min

max

h(s(θ,q))

z(q)

Fig. 1. Illustrations of h(s(θ, q)) and z(q) functions

3. PROPOSED SCHEME

The proposed ESC scheme consists of a performance func-
tion feedback and a disturbance feedforward component,
see Fig. 2. The feedforward component implements an
approximation of the unknown static relation z(q). It com-
putes the feedforward input θff ∈ R as a function of the
disturbance q and the adaptive feedforward parameters
η ∈ Rr. Ideally, one would find the latter by minimizing
the norm of the difference between the optimal and the
feedforward input. However, as the optimal input θ∗ is
inherently unknown η is continuously updated using the
“best guess” instead, i.e., the (unperturbed) input θ̄ ≈ θ∗
to the closed-loop system:

θ̄ = θ̄fb + θff , (3)

where θ̄fb ∈ R represents the unperturbed feedback input
produced by the feedback component as a result of the
application of the classical gradient-based ESC algorithm
of Krstić and Wang [2000].

Performance
functionθ̄fb

θfb

θff
q

y

xθ Closed-loop
system

AESC
Feedback

Feedforward

η +

Fig. 2. Adaptive disturbance feedforward ESC

In other words, the feedforward parameters are found by
minimizing the square of the approximation error e ∈ R
given by:

e = θ̄ − θff = θ̄fb. (4)

The input θ is a sum of the (perturbed) feedback and the
feedforward input, θfb and θff :

θ = θfb + θff , (5)

where the feedback input is obtained by adding a sinu-
soidal perturbation signal δ = α sin(ωt) to θ̄fb:

θfb = θ̄fb + δ. (6)
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Here α ∈ R and ω ∈ R denote the perturbation amplitude
and frequency.

3.1 Extremum Seeking Feedback Control

The structure of the Extremum Seeking (ES) feedback
controller is depicted in Fig. 3. It is shown that the un-
perturbed feedback input is computed by integrating the
approximate gradient g ∈ R (w.r.t. θ) of the performance
function h(s(θ), q), i.e., it holds:

˙̄θfb = K · g, (7)

with θ̄fb(0) = 0. Thus a positive adaptation gain K ∈ R
will result in θfb that tends to maximize y whereas the
negative values will tend to minimize it. The approximate

Gbp Glp K

δ

y g θ̄fb

θfb

1
s

α sin(ωt)
0

+

×

Fig. 3. ES Feedback Controller

gradient g is extracted from the performance function
measurement using a well-known procedure that is in
the core of the classical gradient-based ESC algorithm of
Krstić and Wang [2000] and is given 1 by

g = Glp(s) [Gbp(s) [y] · δ] , (8)

where Glp(s) = ωl
s+ωl

represents a low-pass, Gbp(s) =
s(ωl1+ωh1)

(s+ωl1)(s+ωh1)
a band-pass filter, and ωl, ωl1, ωh1 the re-

lated filter cut-off frequencies.

3.2 Extremum Seeking Feedforward Control

In the following subsection the structure of the ES feed-
forward controller is elaborated in detail, see Fig. 4. In
particular, the specific choices for its parametrization and
the related parameter estimation are treated.

q

1
s

Estimation
rule

η̇ η
ẑ(·)

θffθ̄fb

Aq + b
q̄ η0

Fig. 4. ES Feedforward Controller

Multivariate Polynomial Approximation. Denote with
qmin,j and qmax,j respectively the minimum and maximum
bound of qj , j ∈ {1, . . . , l}. Furthermore, let q̄ ∈ [−1, 1]l,
q̄ = Aq + b be the normalized disturbance, where A ∈
Rl×l is a diagonal matrix with diagonal entries A(j, j) =

2
qmax,j−qmin,j and b ∈ Rl is a vector with elements b(j) =

− qmax,j+qmin,jqmax,j−qmin,j , j ∈ {1, . . . , l}. Also define z̄ : [−1, 1]l → R,

z̄(q̄) = z(q).

The feedforward input is then computed by approximating
the unknown function z̄(q̄) by means of a multivariate
polynomial ẑ : [−1, 1]l × Rr → R of degree c ∈ N0, i.e.,

θff = ẑ(q̄, η). (9)

1 A transfer function in front of a bracketed time function, such
as G(s)[u(t)], means a time-domain signal obtained as an output of
G(s) driven by u(t), as used by Krstić [2000].

In other words,

z̄(q̄) ≈ ẑ(q̄, η) = HT (q̄)η, (10)

where η is a parameter vector of r = (l+c)!
l! c! unknown coef-

ficients and H(q̄) = [h1(q̄), . . . , hr(q̄)]
T a vector of multi-

variate polynomial terms (regressors) hi(q̄) : [−1, 1]l → R,
i ∈ {1, . . . , r}. The latter can be formed as a product of
different univariate polynomials in q̄j , j ∈ {1, . . . , l}.
In particular, in this work the univariate Tchebychev
polynomials of the first kind Tk(q̄j), k ∈ {0, . . . , c} are
used. They offer a number of computational advantages
w.r.t. the other polynomials (e.g., monomials) such as
better numerical conditioning in the related parameter
estimation algorithms, see Mason and Handscomb [2003].
These polynomials are orthogonal on the interval [−1, 1]
and can be constructed using the following recurrence
relation:

Tk+1(q̄j) = 2q̄jTk(q̄j)− Tk−1(q̄j), (11)

where T0(q̄j) = 1 and T1(q̄j) = q̄j , j ∈ {1, . . . , l}.
The regressors hi, i ∈ {1, . . . , r} can then be written as:

hi(q̄) =

l∏
j=1

Tvi,j (q̄j), (12)

where the indexes vi,j ∈ N0 satisfy:

vi,j ∈ {0, . . . , c}, (13)

l∑
j=1

vi,j ≤ c,

[vi1,1, . . . , vi1,l]
T 6= [vi2,1, . . . , vi2,l]

T ,

∀i1, i2 ∈ {1, . . . , r}.

Parameter estimation. As the feedforward parameters η
enter the feedforward function ẑ(q̄, η) linearly (10), there
exists a range of adaptive techniques that can be used for
their estimation, see Astrom and Wittenmark [1994]. Here,
the sparse normalized gradient method proposed by
Gui et al. [2013] is used. It is characterized by the following
parameter update rule:

η̇ = P0He− β2η exp−β1η
2

, (14)

where P = PT ∈ Rr×r denotes positive definite adapta-
tion rate matrix and β1, β2 ∈ R+ certain tuning parame-
ters. The adaptation process is initialized with η(0) = η0 ∈
Rr and a symmetric, positive definite P (0) = P0 ∈ Rr×r.
The selected method can effectively reduce the compu-
tational complexity and increase the speed of parameter
convergence in the case of sparse parameter vectors with
a large number of elements. Such situations are very often
encountered in practice, e.g., when the polynomial order c
is chosen rather large. The sparse normalized gradient
method is based on finding the parameter values which
not only minimize the square of the approximation error
but also (approximately) result in a parameter vector with
a minimal L0 norm, i.e., a minimal number of non-zero
coefficients.

4. CASE STUDY: TURBINE DRIVEN GENERATOR
SYSTEM

In this case study the behaviour of the proposed algo-
rithm is examined in the context of an electrical gener-
ator (directly) driven by a high-speed variable geometry
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turbine (VGT). The AESC is used to find the optimal
reference turbine rotational speed ωt,r = ω∗

t,r such that
the maximum electric power output is achieved. However,
it is known that both the optimal input and the maximal
electric power are time-varying as a consequence of the
changes in the VGT exhaust pressure pe and the VGT
vanes control input ut. The latter two form a disturbance
(q) while ωt,r constitutes the optimizing input (θ). Note
that the value of ut is known as it represents a signal
produced by the external VGT airflow control loop 2 ,
whereas the measurement of pe can be obtained by means
of a suitable air pressure sensor.

4.1 Physical model

The speed of the turbine-generator system can be con-
trolled by manipulating the desired (reference) generator
current ig,r. However, as the related dynamics of the gen-
erator current ig is typically much faster than the speed
dynamics, in the context of speed control the former can
be neglected, implying ig = ig,r. Thus, assuming that
the generator (braking) torque Tg is proportional to its
current, the following holds:

ω̇t =
1

J
(Td(ωt, ut, pe)− kT ig,r) , (15)

where J is the rotor inertia, kT the generator torque
constant and Td the unknown turbine driving torque. The
torque is given by

Td = Pd/ωt, (16)
where Pd denotes the VGT turbine delivered power, mod-
eled 3 as:

Pd = ηtmṁtcpυi

(
1− (pe/pi)

κ−1
κ

)
−Bω2

t , (17)

ηtm = ηtm,max − cm1(ωt − cm2)cm3(BSR−BSRopt)2,

BSR= rtωt

(
2cpυi

[
1− (pe/pi)

κ−1
κ

])−0.5

,

ṁt =Amax
pi√
Reυi

√
1− (pe/pi)

Ktfvgt,

fvgt = cf2 + cf1

√
1− ((ut − cvgt2)/cvgt1)

2
.

Here it is assumed that the turbine is operated in a
rated speed range implying that ωt ≥ cm2 and ηtm ∈
[0, ηtm,max], where ηtm,max ∈ [0, 1] and cm2 ∈ R+. The
chosen parameter values are listed in Table 1.

It can be shown that for each pair of pe and ut values,
there exists an optimal speed ωt = ω∗

t,r for which the
turbine power is maximal Pd = P ∗

d . This is illustrated
in Fig. 5 and Fig. 6 which show the results of numerical
computation of Pd(ωt,r), P

∗
d and ω∗

t,r for the specified
system parameter values. Thus Pd constitutes a valid
choice for the performance function y. Note that one may
be tempted to use the instantaneous electric power Pg =
ig,rvg for this purpose instead since in the equilibrium,
given by ωt = ωt,r and ω̇t = 0, the two powers are

equivalent, i.e., Pg = kω
kT
Pd. Here vg = kωωt denotes the

generator voltage and kω the generator speed constant.
However, this would not be a valid choice due to the
violation of Assumption 1. This is caused by the fact that
ig,r is intended to be the output of a feedback controller

2 The modeling and control of VGT airflow has not been treated in
this paper.
3 For the details regarding the VGT power model and the explana-
tion of its parameters, see Wahlstrom and Eriksson [2011].

acting on the speed error eωt = ωt − ωt,r which will
typically contain a feedthrough term – thereby directly
introducing the optimizing input ωt,r into the performance
function.

Note that the Pd model introduced above is used for design
evaluation only. The identification of its parameter values
is in general cumbersome as it requires a specialized exper-
imentation and identification procedure, see Wahlstrom
and Eriksson [2011]. This justifies the use of non-model
based approaches to turbine-speed optimization, such as
the one presented here.
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Fig. 5. Turbine delivered power Pd as a function of refer-
ence speed ωt,r for fixed VGT vanes control input ut
and the exhaust pressure pe
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4.2 Control design

The controller Gpid(s) = 2.4 · 10−3(1 + 31.04
s + −0.96s

s+90 )
is designed to ensure the closed-loop stability and good
reference speed tracking behavior. The overall control
scheme is depicted in Fig. 7. As shown, the estimate of the
turbine delivered power P̂d is utilized for the performance
function feedback instead of its true value Pd to avoid the
need for the measurement of the turbine torque Td. The
estimate P̂d is obtained by filtering the reference generator
current and the measured turbine speed using an observer

Gkalm(s) =
[

103

s2+200s+2·104 ,
2s

s2+200s+2·104

]
, i.e.,

P̂d = T̂dωt, (18)

T̂d =Gkalm(s)[ig,r, ωt]
T ,

where T̂d denotes the estimated turbine driving torque
Td. The observer constitutes a Kalman filter (see Simon
[2006]) designed on the basis of (16). Finally, the AESC
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Table 1. Parameter values

AESC VGT system
K = 0.7 B = 10−5 [Nms/rad]

ω = 8 [rad/s] cp = 1005 [J/kg/K]
α = 60 [rad/s] κ = 1.4

ωl = ω
4

ηtm,max = 0.82
ωh1 = ω cm1 = 1.36
ωl1 = 20ω cm2 = 200.14
qmax,1 = 90 cm3 = 0.01

qmax,2 = 90 · 103 [Pa] ωt,0 = 5 · 103 [rad/s]
qmin,1 = 10 BSRopt = 0.97

qmin,2 = 30 · 103 [Pa] rt = 0.04 [m]
c = 2 pi = 100070 [Pa]

η0 = [ωt,0, 01×5]T υi = 293.15 [K]
P0 = 5 · 10−2I6×6 Amax = 1.69 · 10−4 [m2]

λ1 = 1 Re = 287.05 [J/kg/K]
λ2 = 0 Kt = 2.89
λ3 = 0 cf1 = 1.95

β1 = 5 · 10−3 cf2 = −0.77
β2 = 2.5 cvgt1 = 1.27 · 102

cvgt2 = 1.17 · 102

J = 10−4 [kgm2]
kT = 1/20 [Nm/A]
kω = 1/20 [Vs/rad]

AESC Gpid

V GT

1
Js

Gkalm

+
+

×

pe, ut

P̂d

ωt,r ωt

Td

Tgig,r

T̂d

− kT

ωt,0

Fig. 7. Turbine driven generator control diagram

has been constructed in a way described in Section 3 using
the parameter values listed in Table 1.

4.3 Simulation results

To provide insight in the AESC optimum-tracking behav-
ior the disturbances pe and ut are defined in terms of time-
varying sinusoids:

pe = 6 · 104 − 1.5 · 104 sin (2πfpet), (19)

ut = 55− 25 sin (2πfutt),

where the frequencies fpe and fut change linearly over
time, i.e.,

fut =
25

48 · 104
t+

1

40
, (20)

fpe =
17

48 · 104
t+

1

200
.

In Fig. 8 the results of the AESC application in the context
of a high-speed turbine driven electrical generator are
shown. From the upper plot it can be seen that the tracking
of P ∗

d is nearly perfect. Namely, once the ESC feedforward
reference speed ωt,r,ff starts to closely follow the optimal
one ω∗

t,r, the contribution of the ESC feedback input ωt,r,fb
becomes negligible. This occurs after approximately 200
seconds from the start of simulation where one can observe
that ωt,r,fb starts approaching zero. The time evolution of
the related feedforward parameters is given in Fig. 9. Here
again the convergence of the feedforward is clearly visible.

For comparison, Fig. 10 presents the case when the tradi-
tional ESC is applied to the same problem with the same

parameter value settings for the ESC feedback (and also
the same inner-loop control). It is immediately apparent
that the resulting extremum tracking performance is much
poorer than in the first case. In fact, during the simulated
time interval the AESC produces significantly less energy

loss E =
∫ tf
0

(P ∗
d − Pd)dt, dropping from 10 [Wh] in the

classical gradient-based ESC to 1.04 [Wh] in the AESC
case, or 89.6%.
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Fig. 8. Simulation results – Adaptive disturbance feedfor-
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Fig. 9. AESC feedforward parameters η
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Fig. 10. Simulation results – classical gradient-based ESC
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Finally, Fig. 11 shows the obtained approximate mapping
between the optimizing input ω∗

t,r and the disturbances ut
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and pe (right plot). When compared to the corresponding
contour plot from Fig. 6 the resulting map appears a bit
inaccurate. One of the reasons for the discrepancy is the
fact that the performance function is quite flat in the
vicinity of the extremum. Thus large deviations of the
reference speed around the optimal value will have very
little effect on the resulting performance function value.
Nevertheless, when such an approximate optimal speed is
substituted in the expression for the delivered power given
by (17), together with the corresponding values for pe and
ut, the resulting power matches the optimal one quite well,
as can be seen in the left plot of Fig. 11.
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Fig. 11. Feedforward approximation of the optimal deliv-
ered power P ∗

d and reference speed ω∗
t,r w.r.t. the VGT

vanes control input ut and the exhaust pressure pe

5. CONCLUSIONS

In this paper a novel Extremum Seeking Control scheme
has been presented based on an adaptive disturbance feed-
forward. The proposed solution achieves significant perfor-
mance improvements especially in terms of convergence
speed and accuracy compared to the original classical
gradient-based ESC. This is verified by means of simu-
lations in a turbine driven generator case study. Future
work will include a rigorous mathematical analysis of the
proposed scheme to provide a theoretical foundation for
the claims made in this paper.
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